Thèse soutenue

Développement d'un outil de modélisation aéroélastique du vol battu de l'insecte appliqué à la conception d'un nano-drone résonant

FR  |  
EN
Auteur / Autrice : Thomas Vanneste
Direction : Eric CattanSébastien GrondelJean-Bernard Paquet
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 04/07/2013
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie - Institut d'électronique- de microélectronique et de nanotechnologie / IEMN
Pôle de recherche et d'enseignement supérieur (PRES) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Olivier Thomas
Examinateurs / Examinatrices : Eric Cattan, Sébastien Grondel, Jean-Bernard Paquet, Régis Dufour, Kevin Knowles, Vincent Chapin, Jean-Camille Chassaing
Rapporteurs / Rapporteuses : Régis Dufour, Kevin Knowles

Résumé

FR  |  
EN

Développer, à partir de zéro, un drone imitant le vol battu de l'insecte est une tâche ambitieuse et ardue pour un designer en raison du manque de savoir-faire en la matière. Pour en accélérer le développement pendant les phases de design préliminaires, un outil modélisant les phénomènes aéroélastiques du vol de l'insecte est un véritable atout pour le designer et est le sujet de cette thèse. Le cœur de cet outil est un solveur éléments finis 'structure' couplé, en utilisant une approche par tranche, à un modèle aérodynamique quasi-statique du vol de l'insecte prenant en compte la flexibilité de l'aile, à la fois selon l'envergure et la corde, mais aussi ses grands déplacements. L'ensemble est conçu de manière à contenir le coût de calcul tout en étant assez modulaire pour s'adapter à un large panel d'applications. Afin de valider l'intégralité de cet outil, un processus en deux étapes a été entrepris avec d'abord une approche numérique et ensuite une validation expérimentale grâce à un banc de caractérisation dédié. Les résultats du modèle concordent de manière satisfaisante dans les deux cas, capturant l'amortissement dû aux forces aérodynamiques, et ouvrent ainsi la voie à son utilisation pour le design de drones à ailes battantes. Pour démontrer l'intérêt de cette approche lors des phases de design préliminaires, deux applications sur un nano-drone résonant sont réalisées: la définition d'une stratégie d'actionnement efficace et la recherche d'une géométrie d'aile potentiellement intéressante d'un point de vue aérodynamique, en couplant l'outil de modélisation à un algorithme génétique. Les résultats obtenus sont cohérents avec ceux trouvés dans la nature et sont en cours d'implémentation sur le drone.