Modélisation de la respiration du sol dans les agro-écosystèmes
Auteur / Autrice : | Émilie Delogu |
Direction : | Valérie Le Dantec, Patrick Mordelet |
Type : | Thèse de doctorat |
Discipline(s) : | Écologie fonctionnelle |
Date : | Soutenance en 2013 |
Etablissement(s) : | Toulouse 3 |
Mots clés
Résumé
Le rôle des écosystèmes agricoles - représentant environ 1/3 des terres émergées - dans la régulation du cycle du carbone est une question cruciale posée par la société aux scientifiques. L'étude de la respiration du sol, de ses composantes et de ses mécanismes doit permettre de fixer les bases de la compréhension du fonctionnement carboné du sol puis de l'écosystème agricole en lien avec les questions de réduction des émissions et de stockage de carbone atmosphérique. Les échanges de carbone du sol font d'ailleurs l'objet d'efforts de recherche récents très poussés, tant leur dynamique et leur variabilité sont encore mal connues. Aujourd'hui, il est difficile d'estimer l'efficacité des pratiques expérimentales et aucune méthode n'a encore été reconnue comme référence. La compréhension des sources des émissions et de leurs fluctuations est cruciale pour l'estimation du potentiel de séquestration du carbone par les sols agricoles via l'application de pratiques culturales appropriées. Dans ce contexte, la modélisation s'avère être un outil incontournable pour quantifier les flux (approche empirique) mais aussi pour orienter les recherches vers des domaines où la faible compréhension des mécanismes rend aléatoire l'établissement du bilan carboné (approche mécaniste). La démarche retenue pour ce travail fait appel à la modélisation théorique selon deux approches (empirique et mécaniste) définies pour satisfaire à différents compromis entre précision, généricité et réalité. Le développement de modèles empiriques, sur 5 sites d'étude aux conditions pédoclimatiques différentes, montre l'importance de lier la respiration à plusieurs facteurs abiotiques et biotiques afin d'obtenir des prédictions génériques et robustes. Ainsi, un modèle de respiration hétérotrophe Rh paramétré à l'aide des variables climatiques de température Ts et d'humidité ?s s'est avéré convaincant alors que la modélisation de la respiration du sol Rs n'a pu être satisfaisante qu'à condition de prendre en compte un indice de croissance de végétation supplémentaire (GPP). L'approche empirique n'a cependant pas permis d'évaluer correctement les contributions des différentes composantes de Rs. Le modèle semi-mécaniste décrivant finement les processus a été validé sur 3 sites aux conditions pédoclimatiques contrastées et a permis l'estimation des contributions des sources hétérotrophe et autotrophe au sein de la respiration du sol. Ainsi, Rh représente entre 63 % et 66 % de Rs pour une saison de culture de blé d'hiver et entre 52 % et 56 % de Rs pour une saison de culture de blé de printemps. La contribution de la respiration du sol dans le bilan écosystémique est évaluée entre 33% et 43% pour une culture de blé d'hiver et à hauteur de 50 % pour du blé de printemps. Ce modèle, une fois développé pour intégrer différentes pratiques culturales (fertilisation et travail du sol), a aussi permis de démontrer que les dynamiques de stockage/déstockage du carbone du sol et des émissions de CO2 du sol sont davantage conditionnées par l'apport de matières organiques (fumier, résidus de cultures) que par le travail du sol lui-même.