Modèles déformables contraints en reconstruction d'images de tomographie non linéaire par temps d'arrivée

par Gil Gaullier

Thèse de doctorat en Signal, image, automatique et robotique

Sous la direction de Fabrice Heitz et de Pierre Charbonnier.

Le président du jury était Philippe Côte.

Le jury était composé de Frédéric Bourquin.

Les rapporteurs étaient Gilles Aubert, Marie-Odile Berger.


  • Résumé

    La reconstruction tomographique par temps de première arrivée est rendue difficile par son caractère mal posé et par la non-linéarité du problème direct associé. Dans cette thèse, on se propose d'employer un modèle déformable, permettant d'introduire un a priori global sur la forme des objets à reconstruire, pour obtenir des solutions plus stables et de meilleure qualité. Dans un premier temps, nous introduisons des contraintes de forme de haut niveau en reconstruction tomographique d'émission, modalité où le problème direct est linéaire. Dans un second temps, différentes stratégies de résolution du problème non linéaire de reconstruction en temps d'arrivée sont envisagées. La solution retenue approche le problème direct par une suite de problèmes linéaires, conduisant à un algorithme par minimisations successives simples, au coursdesquelles l'a priori de forme est introduit. L'efficacité de la méthode est montrée en simulation et à partir de données réelles, acquises sur un banc développé par l'IFSTTAR pour le contrôle non destructif de structures de génie civil.

  • Titre traduit

    Constrained deformable models for non linear first time arrival tomographic data reconstruction


  • Résumé

    Image reconstruction from first time arrival is a difficult task due to its ill-posedness nature and to the non linearity of the direct problem associated. In this thesis, the purpose is to use a deformable model because it enables to introduce a global shape prior on the objects to reconstruct, which leads to more stable solutions with better quality. First, high level shape constraints are introduced in Computerized Tomography for which the direct problem is linear. Secondly, different strategies to solve the image reconstruction problem with a non linearity hypothesis are considered. The chosen strategy approximates the direct problem by a series of linear problems, which leads to a simple successive minimization algorithm with the introduction of the shape prior along the minimization. The efficiency of the method is demonstrated for simulated data as for real data obtained from a specific measurement device developped by IFSTTAR for non destructive evaluation of civil engineering structures.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Strasbourg. Bibliothèque électronique du Services des bibliothèques 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.