Détection et suivi visuels robustes d'objets complexes : applications au rendezvous spatial autonome
Auteur / Autrice : | Antoine Petit |
Direction : | Éric Marchand |
Type : | Thèse de doctorat |
Discipline(s) : | Traitement du signal et télécommunications |
Date : | Soutenance le 19/12/2013 |
Etablissement(s) : | Rennes 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) |
PRES : Université européenne de Bretagne (2007-2016) |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Dans cette thèse nous étudions le fait de localiser complètement un objet connu par vision artificielle, en utilisant une caméra monoculaire, ce qui constitue un problème majeur dans des domaines comme la robotique. Une attention particulière est ici portée sur des applications de robotique spatiale, dans le but de concevoir un système de localisation visuelle pour des opérations de rendez-vous spatial autonome. Deux composantes principales du problème sont abordées: celle de la localisation initiale de l'objet ciblé, puis celle du suivi de cet objet image par image, donnant la pose complète entre la caméra et l'objet, connaissant le modèle 3D de l'objet. Pour la détection, l'estimation de pose est basée sur une segmentation de l'objet en mouvement et sur une procédure probabiliste d'appariement et d'alignement basée contours de vues synthétiques de l'objet avec une séquence d'images initiales. Pour la phase de suivi, l'estimation de pose repose sur un algorithme de suivi basé modèle 3D, pour lequel nous proposons trois différents types de primitives visuelles, dans l'idée de décrire l'objet considéré par ses contours, sa silhouette et par un ensemble de points d'intérêts. L'intégrité du système de localisation est elle évaluée en propageant l'incertitude sur les primitives visuelles. Cette incertitude est par ailleurs utilisée au sein d'un filtre de Kalman linéaire sur les paramètres de vitesse. Des tests qualitatifs et quantitatifs ont été réalisés, sur des données synthétiques et réelles, avec notamment des conditions d'image difficiles, montrant ainsi l'efficacité et les avantages des différentes contributions proposées, et leur conformité avec un contexte de rendez vous spatial.