
ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1

sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Informatique

Ecole doctorale MATISSE

présentée par

Amélie Stainer
Préparée à l’unité de recherche n°6074 IRISA

Institut de recherche en informatique et systèmes aléatoires
ISTIC

Contribution à la
vérification des
automates
temporisés :
déterminisation,
vérification
quantitative et
accessibilité dans
les réseaux
d’automates

Thèse soutenue à Rennes
le 25 novembre 2013
devant le jury composé de :

Sophie Pinchinat
Professeur à l’Université de Rennes 1 / présidente du
jury

Paul Gastin
Professeur à l’ENS Cachan / rapporteur

Joël Ouaknine
Professeur à l’Université d’Oxford / rapporteur

Patricia Bouyer-Decître
Directrice de recherche CNRS, LSV, ENS Cachan /
examinatrice

Didier Lime
Maître de conférence à Centrale Nantes / examinateur

Thierry Jéron
Directreur de recherche à INRIA Rennes-Bretagne
Atlantique / directeur de thèse

Nathalie Bertrand
Chargée de recherche à INRIA Rennes-Bretagne
Atlantique / co-encadrante de thèse

2

Contribution to the Verification of Timed Automata:
Determinization, Quantitative Verification
and Reachability in Networks of Automata

Amélie Stainer
University of Rennes 1

Supervised by: Nathalie Bertrand and Thierry Jéron
INRIA Rennes - Bretagne atlantique

Rennes - Septembre 2013

2

Contents

I Contribution à la vérification des automates temporisés 9
0.1 Introduction à la vérification des automates temporisés 11
0.2 Déterminisation des automates temporisés et application au test 14
0.3 Fréquences dans les automates temporisés . 15
0.4 Accessibilité dans les automates temporisés communicants 17
0.5 Conclusion . 18

II Introduction 19

1 Introduction 21

2 Technical preliminaries 29

III Determinization of Timed Automata 35

3 A Game Approach to Determinize Timed Automata 41
3.1 The game approach . 42

3.1.1 Game definition . 42
3.1.2 Example . 45
3.1.3 Properties of the strategies . 47

3.2 Comparison both existing methods . 54
3.2.1 Comparison with [KT09] . 54
3.2.2 Comparison with [BBBB09] . 56

3.3 Extension to ε-transitions and invariants . 59
3.3.1 ε-transitions . 59
3.3.2 Invariants . 61
3.3.3 Properties of the strategies in the extended game 63
3.3.4 Comparison with [KT09] . 66

3.4 Beyond over-approximation . 67
3.4.1 Under-approximation . 67
3.4.2 Combining over- and under-approximation 67

3.5 Implementation of a prototype tool . 73
3.5.1 Using zones instead of regions . 73
3.5.2 Implementation of the prototype . 73
3.5.3 Execution of the program . 75

3

CONTENTS

4 Application of the Game Approach to Off-line Test Selection 79
4.1 A model of open timed automata with inputs / outputs 81

4.1.1 Timed automata with inputs/outputs . 81
4.1.2 The semantics of OTAIOs . 82
4.1.3 Properties and operations . 84

4.2 Conformance testing theory . 87
4.2.1 The tioco conformance theory . 87
4.2.2 Refinement preserving tioco . 90

4.3 Off-line test case generation . 92
4.3.1 Test purposes . 92
4.3.2 Principle of test generation . 93
4.3.3 Test suite properties . 99

4.4 Discussion and related work . 102

IV Frequencies in Timed Automata 107

5 Preliminaries 115
5.1 Frequencies in timed automata . 116
5.2 Frequency-based semantics . 118

5.2.1 Frequencies and timed automata . 118
5.2.2 A brief comparison with the usual semantics 119
5.2.3 A particular case of double-priced timed automata 120

5.3 The corner-point abstraction . 121
5.3.1 Definition and examples . 121
5.3.2 Ratios in the corner-point abstraction . 124
5.3.3 Set of ratios in the corner-point abstraction 125

5.4 Forgetfulness . 128
5.4.1 Forgetfulness and aperiodicity . 128
5.4.2 Comparison with the forgetfulness of [BA11] 131

6 Frequencies in One-Clock Timed Automata 133
6.1 From A to Acp . 133

6.1.1 Contraction and dilatation . 134
6.1.2 Proposition 6.1 does not extend to timed automata with two clocks 138

6.2 From Acp to A . 139
6.2.1 Reward-diverging case . 139
6.2.2 Proposition 6.2 extends neither to timed automata with two clocks, nor to

Zeno runs. 140
6.2.3 Proposition 6.2 does not extend to reward-converging runs 141
6.2.4 Reward-converging case . 141

6.3 Set of frequencies in A . 142
6.3.1 Set of frequencies of non-Zeno runs in A 142
6.3.2 Realizability of bounds by Zeno runs in A 143
6.3.3 Proof of Theorem 6.1 . 146

4

CONTENTS

7 Frequencies in Forgetful Timed Automata 149
7.1 Frequencies in one-clock forgetful timed automata 150
7.2 Extension to several clock forgetful timed automata 153

7.2.1 Inclusion of the set of frequencies in the set of ratios 154
7.2.2 Techniques to compute the frequencies . 155
7.2.3 Inclusion of the set of ratios in the set of frequencies 157
7.2.4 Discussion about assumptions . 159

8 Emptiness and Universality Problems in Timed Automata with Frequency 161
8.1 Consequences of Chapters 6 and 7 . 161
8.2 Lower bound for the universality problem . 162
8.3 Decidability of the universality problem for Zeno words with positive frequency in

one-clock timed automata . 163

V Reachability of Communicating Timed Automata 167

9 Communicating Timed Processes: a Uniform Semantics 175
9.1 Definition of communicating timed processes . 175
9.2 Communicating timed or tick automata . 177

9.2.1 Communicating timed automata . 177
9.2.2 Communicating tick automata . 178

9.3 Discussion about the models . 179
9.3.1 Modeling urgency with emptiness test . 179
9.3.2 On the power of time . 180
9.3.3 Undecidability of multi-tick automata . 181

10 Reachability Problem in Communicating Tick Automata 183
10.1 Communicating counter automata . 183
10.2 From tick automata to counter automata. 184
10.3 From counter automata to tick automata . 187
10.4 Characterization of the decidable topologies . 189

11 Reachability Problem in Communicating Timed Automata 191
11.1 From continuous time to discrete time . 191
11.2 Correctness of the reduction . 193

11.2.1 Proof of the correctness using a rescheduling lemma 193
11.2.2 Proof of the rescheduling lemma . 195
11.2.3 Consequences . 198

11.3 Reciprocal reduction and its consequences . 198
11.4 Abstraction of communicating timed automata with emptiness tests is difficult 199

11.4.1 Our construction is not sound for emptiness test 199
11.4.2 Why soundness is hard to achieve . 200

VI Conclusion and Future Works 203

Bibliography 213

5

CONTENTS

6

Remerciements

Je tiens tout d’abord à remercier mes rapporteurs, Paul Gastin et Joël Ouaknine et plus généralement
tous les membres de mon jury, Patricia Bouyer-Decître, Didier Lime et Sophie Pinchinat. Je remercie
tous les collègues avec qui j’ai travaillé dans le monde de la recherche comme dans le cadre des
enseignements. Je remercie Thierry et Nathalie pour m’avoir supportée durant ces 3 ans et encore
aujourd’hui. Ils étaient présents dans les moments festifs comme dans les moments difficiles. Je
tiens à remercier tous les membres de l’équipe VerTeCs et plus largement les collègues avec qui nous
prenions les pauses. Ces moments étaient une source de joie au quotidien et d’un soutien crucial dans
les périodes compliquées. Je remercie ma famille pour tout le bonheur qu’ils me procurent chaque
jours. Finalement, je voudrais dire à Philippe tout l’amour que je lui porte, à quel point je suis heureuse
de partager sa vie et d’être la maman de notre petit Tao.

7

CONTENTS

8

Part I

Contributions à la vérification des
automates temporisés : déterminisation,
vérification quantitative et accessibilité

dans les réseaux d’automates

9

INTRODUCTION À LA VÉRIFICATION DES AUTOMATES TEMPORISÉS

0.1 Introduction à la vérification des automates temporisés

Nous rencontrons de plus en plus de systèmes informatiques dans la vie de tous les jours comme
dans les environnements plus spécialisés. Ces systèmes doivent respecter des spécifications, c’est-à-
dire avoir un comportement conforme aux attentes. En particulier, beaucoup d’entre eux doivent aussi
satisfaire des contraintes sur leur temps de réponse. Ces systèmes sont dits "temps réel". La correction
de tels systèmes dépend donc de la validité des sorties du système, mais aussi des délais dans lesquels
elles sont émises. Les unités de temps considérées et la précision des horloges dépendent des contextes
et peuvent être très différentes. Un premier exemple de contexte d’application des systèmes temps réel
est l’industrie aéronautique. Dans l’avionique comme dans l’aérospatial, des ordinateurs sont utilisés
comme assistants et contrôleurs durant les vols d’avions ou de navettes. Par ailleurs, l’exploration
des planètes est faite par des robots qui collectent et analysent des données. Dans ces situations, les
systèmes doivent être réactifs, ne serait-ce que dans la gestion de leurs déplacements. Dans de tels
contextes, des erreurs peuvent causer des pertes humaines ou avoir des conséquences économiques
considérables. Les systèmes temps réel sont également très utilisés pour la production supervisée
dans l’industrie. La production d’éléments chimiques tels que l’éthylène ou le prophylène est ainsi
gérée et contrôlée par des ordinateurs. Ces systèmes requièrent une grande précision dans les délais
d’actions. La moindre erreur pourrait être à l’origine d’une catastrophe écologique.

Vérification de systèmes temps réel La liste des applications critiques des systèmes temps réel
est longue et fournit autant de raisons de développer des méthodes de vérification. Les propriétés
attendues pour un système temps réel peuvent être représentées de plusieurs façons. Suivant le niveau
de criticité, la connaissance du système et les propriétés à vérifier, beaucoup d’approches sont possi-
bles. Si le système est inconnu, des cas de test peuvent être générés pour interagir avec lui et détecter
d’éventuelles non-conformités vis-à-vis de la spécification. En revanche, si le système est connu, la
vérification peut être faite à différents niveaux d’abstraction. Des programmes peuvent être vérifiés et
il existe des compilateurs certifiés pour des cas d’extrême criticité. Le matériel peut également être
vérifié par simulation.

Dans ce document, nous nous intéressons à la vérification des modèles. L’idée est de représenter
le système en utilisant un formalisme dédié pour exprimer les caractéristiques concernées par les
propriétés à vérifier. On peut alors vérifier que le modèle satisfait les propriétés, en utilisant des
techniques formels. Notons qu’au lieu de vérifier de façon passive, les systèmes peuvent aussi être
monitorés, c’est-à-dire que les non-conformités peuvent être bloquées à la volée. On peut également
forcer le système à respecter une spécification en modifiant certains comportements à l’aide d’un
contrôleur ou en forçant la propriété durant l’exécution en stockant les sorties dans un tampon jusqu’à
être sûr que la propriété est satisfaite.

Automates temporisés et autres modèles pour les systèmes temps-réel Nous nous intéressons
à la vérification de modèles de systèmes temps-réel. Différents formalismes peuvent être utilisés
pour représenter ces systèmes. Tout d’abord, un modèle bien connu est celui des réseaux de Petri
temporels [Mer74], une extension des réseaux de Petri. Rappelons que les réseaux de Petri son com-
posés d’un ensemble de places qui sont connectées par des transitions. Une transition connecte deux
ensembles de places et peut être tirée s’il y a suffisamment de jetons dans le premier ensemble (pré-
condition) et l’activation de la transition supprime les jetons spécifiés par la pré-condition et ajoute
des jetons dans le second ensemble de places (post-condition). Une exécution d’un réseau de Petri
commence avec un nombre de jetons donné dans certaine place (c’est ce qu’on appelle le marquage

11

initial). Les aspects temporisés peuvent être ajoutés de différentes manières. Dans les réseaux de Petri
temporels [Mer74], les contraintes de temps sont mises sur les transitions. Quand la pré-condition
d’une transition est satisfaite, une horloge est réinitialisée et la transition pourra être tirée lorsque la
valeur de l’horloge appartiendra à l’intervalle associé à la transition. Notons qu’il existe d’autres ex-
tensions des réseaux de Petri prenant en compte le temps mais elles sont moins utilisées. Par exemple,
les réseaux de Petri temporisés dont les transitions ont des durées d’exécution fixées [Ram74]. Les
aspects temporels peuvent également concerner les jetons en considérant leurs âges comme dans les
réseaux de Petri à arcs temporisés [Han93].

En plus des réseaux de Petri, un autre modèle usuel a été étendu pour représenter des systèmes
temps-réel : les diagrammes haut niveau de séquences de messages [IT11]. Les diagrammes de
séquences de messages fournissent une représentation simple des scénari de communication entre
processus d’un système. Plus précisément, chaque processus envoie et reçoit des messages dans un
certain ordre fixé. Cela induit des contraintes sur le comportement des autres processus. En parti-
culier, un message ne peut pas être reçu avant son émission. Néanmoins, il peut y avoir plusieurs
manières correctes d’entrelacer ou de linéariser les exécutions locales des processus. Par exemple,
si un processus p envoie un a et un b à un processus q, et q les reçoit dans le même ordre, alors le
a peut être reçu par q avant ou après l’envoi du b par p. Les diagrammes haut niveau de séquences
de messages sont des graphes permettant de définir des diagrammes de séquences de messages par
concaténation de motifs. La sémantique d’un chemin correspond à la concaténation des motifs con-
sécutivement rencontrés le long du chemin. Finalement, les diagrammes haut niveau de séquences de
message temporellement contraints (ou TC-MSC graphs) [IT11] sont une extension de ces graphes
où des contraintes temporelles sont ajoutées le long des exécutions des processus. Des intervalles
sont ainsi placés entre deux actions d’un processus pour spécifier les délais autorisés entre ces deux
actions.

Finalement, les automates temporisés ont été introduit par Rajeev Alur et David L. Dill au début
des années 90 [AD90, AD94]. Grossièrement, un automate temporisé est un automate fini équipé
d’horloges continues qui évoluent de façon synchrone. Les arcs sont étiquetés avec des gardes sur les
horloges (e.g. l’horloge x est supérieure à 1) et peuvent réinitialiser des horloges à zéro. La recherche
autour de ce modèle est très active. Plusieurs problèmes (comme les problèmes de la déterminisabilité
des automates temporisés ou de l’universalité des langages temporisés reconnus par des automates
temporisés) sont indécidables, mais la principale raison du succès de ce modèle est l’abstraction des
régions qui permet, par exemple, de décider le problème de l’accessibilité des localités en espace poly-
nomial [AD94]. Dans ce document, nous nous intéressons à la vérification des automates temporisés.

Les réseaux de Petri et les diagrammes de séquences de messages modélisent naturellement la
concurrence alors que ce n’est pas le cas des automates temporisés. Pour cela, on peut considérer
des réseaux d’automates temporisés. L’avantage des automates temporisés est que le problème de
l’accessibilité est décidable en espace polynomial alors que c’est indécidable pour les réseaux de Petri
temporels [JLL77] et les TC-MSC graphes [GMNK09]. Néanmoins, une abstraction a été développée
pour décider le problème de l’accessibilité dans les réseaux de Petri temporel bornés en espace poly-
nomial [BD91]. Malheureusement, le caractère borné des réseaux de Petri temporels est indécidable.

Notons que les systèmes temps-réel peuvent aussi être modélisés avec une grande expressivité par
des automates hybrides qui généralisent les automates temporisés en remplaçant les horloges par des
fonctions continues dont les valeurs sont décrites par des équations différentielles [ACHH92]. Mal-
heureusement, l’expressivité a un coût et les classes d’automates hybrides pour lesquelles le problème
de l’accessibilité est décidable sont très restrictives.

12

INTRODUCTION À LA VÉRIFICATION DES AUTOMATES TEMPORISÉS

L’abstraction des régions et ses conséquences Les états des automates temporisés sont des cou-
ples avec une localité et une valuation d’horloges (i.e. une fonction associant une valeur réelle à
chaque horloge). Les automates temporisés ont donc un nombre d’états non-dénombrable. L’idée de
l’abstraction des régions est que certaines valuations d’horloges sont similaires et peuvent être traitées
ensemble, par exemple (x = 2.3, y = 5) et (x = 2.35, y = 5). Plus précisément, les régions sont
des classes d’équivalence sur les valuations d’horloges. Deux valuations appartiennent à la même
région si elles satisfont les mêmes gardes et si leurs successeurs satisferont les mêmes gardes. En
d’autres mots, depuis un état avec l’une ou l’autre des valuations, on peut suivre les mêmes chemins
dans l’automate temporisé. Les automates temporisés peuvent alors être quotientés par la relation
d’équivalence des régions en un automate fini. Une première application est la décidabilité du prob-
lème de l’accessibilité d’une localité de l’automate temporisé en espace polynomial [AD94]. Plus
généralement, l’automate des régions permet de décider les propriétés de sûreté, les propriétés ω-
régulières ou les propriétés non-temporisées exprimées en logique temporelle (linear temporal logic
ou LTL) [Pnu77] ou en logique arborescente (computation tree logic ou CTL) [CE81].

Limites de l’abstraction finie Les automates temporisés peuvent être vus comme des accepteurs
de langages temporisés, simplement en choisissant un ensemble de localités acceptantes, de la même
façon que pour les automates finis. Ils peuvent ainsi accepter des mots temporisés, finis ou infinis
suivant la sémantique. Certaines transitions peuvent être internes, c’est-à-dire qu’elles n’ajoutent pas
de lettres au mot lu. On dit que deux automates temporisés sont équivalents s’ils acceptent le même
langage. Notons que les automates temporisés avec transitions internes sont strictement plus expres-
sifs que sans [BGP96]. Cela signifie qu’il existe des automates temporisés avec transitions internes qui
n’admettent pas d’automate temporisé équivalent sans transition interne. Décider le problème du vide
d’un langage de mots temporisés pour les automates temporisés, c’est exactement décider le problème
de l’accessibilité des localités acceptantes (et donc faisable par l’abstraction des régions). The prob-
lème du vide pour les langages de mots infinis peut également être décidé en utilisant l’automate des
régions.

L’abstraction par un automate fini a tout de même des limites. Le problème de l’universalité est
de savoir si un langage contient tous les mots temporisés. D’autre part, le problème de l’inclusion
demande si un langage donné est inclus dans un second langage. On peut remarquer que le prob-
lème de l’universalité est un cas particulier du problème de l’inclusion où le premier langage est
universel. Ces deux problèmes sont indécidables pour les langages représentés par des automates
temporisés (finis or infinis) [AD94]. Si les automates temporisés ont au plus une horloge, la preuve
de [AD94] n’assure que la récursivité non-primitive. La décidabilité a été un problème ouvert jusqu’en
2004 [OW04]. Plusieurs variantes de ces problèmes ont été étudiées dans [OW04] et [ADOW05] pour
tracer la frontière de la décidabilité. Le problème de l’inclusion est, par exemple, décidable pour les
mots temporisés finis si l’automate dont le langage est sensé être plus grand, a au plus une horloge
et pas de transition interne [OW04]. Le problème de l’universalité est donc aussi décidable pour
cette classe d’automates temporisés. En revanche, le problème de l’universalité (et donc le problème
de l’inclusion) devient indécidable pour les automates ayant au moins deux horloges, des transitions
internes ou si l’on considère les mots temporisés infinis.

Un automate temporisé est complémentable si on peut construire un automate temporisé accep-
tant le complémentaire du langage. Les problèmes de l’universalité et de l’inclusion sont proches
du problème de la complémentabilité. En effet, ils sont décidables pour les automates temporisés
complémentables, grâce à la même astuce que pour les automates finis. Les automates temporisés
ne sont pas complémentables en général, même s’ils n’ont qu’une horloge [AD94], ce qui rend sur-

13

prenante la décidabilité du problème de l’inclusion pour les automates avec une seule horloge. D’un
autre côté, les automates temporisés déterministes (i.e. ayant au plus une exécution lisant chaque mot)
sont facilement complémentables, en intervertissant les localités acceptantes et non-acceptantes. Les
automates temporisés ne sont donc pas déterminisables en général [AD94].

0.2 Déterminisation des automates temporisés et application au test

Déterminisation des automates temporisés La déterminisation est utile dans beaucoup de con-
textes quel que soit le modèle utilisé. C’est une clé pour plusieurs problèmes tels que l’implémentabilité
des modèles, parce qu’une implémentation est nécessairement déterministe. C’est aussi intéressant
pour le diagnostic de faute, où l’on veut détecter si une trace d’un système mène nécessairement à un
évènement fautif, c’est-à-dire si pour toute exécution correspondant à cette trace, la localité courante
est fautive. Pour la génération de cas de test, la déterminisation permet de connaître toutes les sorties
autorisées après une trace, dans le but d’émettre un verdict correct. Plus généralement, la détermini-
sation est utile pour les problèmes où l’analyse sous-jacente dépend du comportement observable ou
pour les problèmes où une complémentation du modèle est nécessaire.

L’impossibilité de déterminiser les automates temporisés peut alors être gênante. De plus, le prob-
lème de la déterminisabilité des automates temporisés est indécidable, même si l’on fixe le nombre
d’horloges et la constante maximale [Tri06, Fin06]. Des solutions partielles sont donc apportées.

Suivant le contexte, deux approches sont possibles quand on a besoin de déterminiser des au-
tomates temporisés: soit on se restreint à des classes d’automates déterminisables, soit on fait une
déterminisation approchée. Ces deux pistes ont été récemment explorées.

Premièrement, il existe une procédure de déterminisation [BBBB09] qui fournit un automate
temporisé déterministe équivalent à l’automate temporisé original, mais elle ne termine pas pour
tous les automates temporisés. Néanmoins, cette procédure termine pour tous les automates des
classes connues d’automates temporisés déterminisables (les automates temporisés fortement non-
Zeno [AMPS98], les automates temporisés event-clock [AFH94] ou encore les automates temporisés
à réinitialisations entières [SPKM08]).

Deuxièmement, un algorithme de déterminisation sur-approchée [KT09] a été développé pour
construire un automate temporisé déterministe acceptant au moins les mots acceptés par l’automate
temporisé original. Cette approche utilise une politique de réinitialisation fixée a priori pour les
horloges de l’automate temporisé déterministe. On essaie ensuite de simuler le comportement de
l’automate temporisé original en utilisant des estimées d’états. Cette approche ne préserve pas le
langage, même pour des automates déterministes. En revanche, elle termine toujours.

Contribution 1 : une approche par le jeu pour déterminiser les automates temporisés Dans
cette thèse, nous proposons une combinaison des deux approches. Nous utilisons des estimées d’états
similaires à celles de [KT09]. Le principe de la méthode est de construire un jeu pour trouver une
politique de réinitialisation adaptée pour minimiser le risque d’approximation. Notre algorithme est
plus précis que la sur-approximation existante [KT09] et de plus, il déterminise de façon exacte,
strictement plus d’automates temporisés que l’autre approche existante [BBBB09]. Cette contribution
a été publiée dans le papier [BSJK11a].

Application de la déterminisation au test basé sur les modèles Dans ce document, nous dévelop-
pons l’application de la déterminisation à la sélection de tests. Dans la littérature, on trouve plusieurs
problèmes de test. Nous nous concentrons sur le test de conformité de modèles. Étant donnée une

14

FRÉQUENCES DANS LES AUTOMATES TEMPORISÉS

spécification et une implémentation inconnue, le but est de vérifier que l’implémentation est conforme
à la spécification. Le modèle de l’implémentation n’étant pas disponible, on ne peut qu’interagir avec
elle en la stimulant par des entrées et en observant les sorties tout en vérifiant leur conformité. Pour
cela, on génère des automates temporisés appelés cas de test.

L’objectif de l’exécution des cas de test est de détecter les non-conformités et ainsi d’émettre
un verdict d’échec. En effet, on ne peut pas espérer prouver que l’implémentation n’a aucune non-
conformité simplement par le test. La propriété principale pour les cas de test, appelée correction,
est donc le fait que tout verdict d’échec correspond à une non-conformité. Pour émettre des verdicts
corrects, on a besoin de connaître toutes les sorties autorisées par la spécification après l’observation
courante. On a donc besoin de calculer l’ensemble des états accessibles après cette observation. Ceci
est très proche de la déterminisation. En fait, soit la spécification est déterministe (ou déterminisée
hors-ligne), soit on doit, en quelque sorte, la déterminiser à la volée (dans le cas du test en-ligne).

Contribution 2 : génération hors-ligne de cas de test Dans cette thèse, nous proposons une ap-
proche formelle pour la génération hors-ligne de cas de tests pour les automates temporisés non-
déterministes. Nous utilisons des objectifs de test modélisés par des automates temporisés qui sont
capables d’observer les horloges de la spécification. Leur rôle est de guider la génération des cas
de test. Notre modèle intègre l’observabilité partielle et l’urgence qui sont primordiales pour mod-
éliser des systèmes réactifs réalistes. Comme les automates temporisés ne sont pas déterminisables, la
plupart des contributions sur le test d’automates temporisés sont restreintes à des spécifications déter-
ministes ou déterminisables [KJM04, NS03]. Une exception notable est [KT09] qui gère le problème
en utilisant l’algorithme de déterminisation approchée dont nous avons discuté plus tôt. Leur modèle
intègre l’urgence, malheureusement la déterminisation approchée la supprime complètement. Dans
ce cas, l’implémentation qui ne fait rien est conforme à toutes les spécifications. Au contraire, les ex-
tensions de notre approche par le jeu pour la déterminisation des automates temporisés permettent de
traiter les transitions internes qui modélisent l’observabilité partielle, et les invariants qui modélisent
l’urgence. De plus, la construction de notre jeu est adaptée pour traiter différemment les entrées et
les sorties. Ceci permet de préserver la relation de conformité tioco [KT09] sans restrictions sur les
spécifications, contrairement à [KT09]. Ce travail a été publié dans [BJSK11, BJSK12].

0.3 Fréquences dans les automates temporisés

Aspects quantitatifs dans les automates temporisés Dans ce document, nous nous intéressons
à l’ajout d’aspect quantitatifs dans la vérification des automates temporisés. Notre but est, par ex-
emple, de modéliser des problèmes de consommations d’énergie, de ratios d’erreur ou de risques
d’erreur. Récemment, plusieurs approches ont été proposées dans cet esprit. Les notions de volume
et d’entropie ont été introduites pour les langages temporisés lus par des automates temporisés et
plusieurs moyens de les calculer ont été proposés [AD09a, AD09b, AD10]. D’un autre côté, une
sémantique probabiliste pour les automates temporisés a été introduite [BBB+08]. Cette sémantique
résout le non-déterminisme avec une sorte d’équité, grâce à une distribution de probabilité. La vérifi-
cation quantitative de propriétés ω-régulières peut alors être faite pour les automates temporisés à une
horloge [BBBM08]. En d’autres termes, on sait décider si la probabilité de satisfaire une propriété
ω-régulière donnée, satisfait une contrainte de seuil pour un seuil rationnel. La méthode utilise un
algorithme permettant de calculer la probabilité de satisfaire la propriété si le seuil est rationnel, et qui
l’approche à une précision donnée sinon. Notons que d’autres modèles combinent des aspects tem-
porisés et probabilistes. Par exemple, dans [KNSS02] une variante des automates temporisés dont les

15

horloges peuvent être mises à jour avec une valeur aléatoire a été enrichie en ajoutant des transitions
dont la cible est aléatoire. Une méthode approchée (avec estimation d’erreur) a alors été proposée
pour le model-checking de propriétés quantitatives telles que "la probabilité maximale de passer in-
finiment souvent par une localité donnée est plus grande que 1

3". Finalement, des travaux traitent
des automates temporisés avec des coûts ou des doubles prix [ATP01, BFH+01, BBL08]. Des coûts
ou des couples coût-récompense sont définis sur les arcs et les localités. Une valeur est ainsi asso-
ciée à chaque exécution en prenant en compte les coûts rencontrés le long de l’exécution (min, max,
moyenne...). Il est alors possible, par exemple, de vérifier des propriétés telles que "le coût minimal
pour accéder à une localité donnée est plus petit que 3" [ATP01, BFH+01]. On sait également calculer
un ordonnancement optimal dans un automate temporisé avec coûts et récompenses [BBL08].

Contribution 3 : automates temporisés avec fréquences Pour les mots temporisés infinis, la con-
dition d’acceptation habituelle est la sémantique de Büchi, c’est-à-dire qu’une exécution est acceptée
si elle passe infiniment souvent par des localités acceptantes. Cette sémantique n’est pas adaptée
à tous les contextes. Par exemple, si les localités acceptantes modélisent les états du système dans
lesquels des ressources sont utilisées de façon optimale, ou dans lesquels certaines actions sont par-
ticulièrement bon marché, le temps écoulé dans ces localités acceptantes peut être important. Dans
cette thèse, nous introduisons la notion de fréquence d’une exécution comme étant la proportion de
temps écoulé dans les localités acceptantes. Nous définissons alors des sémantiques avec des condi-
tions d’acceptation prenant en compte la fréquence. Par exemple, une exécution peut être acceptée
si sa fréquence est plus grande que 2

3 . Cela permet de définir des langages temporisés prenant en
compte des aspects quantitatifs. Ensuite, nous présentons des techniques pour calculer les bornes
de l’ensemble des fréquences des exécutions d’un automate temporisé, dans le but de décider les
problèmes du vide et de l’universalité de ces langages. La méthode est basée sur un raffinement de
l’abstraction des régions, appelé abstraction des coins [BBL08]. Ceci permet d’abstraire le temps
écoulé le long des exécutions, et ainsi de définir une fréquence abstraite en utilisant des coûts et
des récompenses. Dans un premier temps, nous ne considérons que les automates temporisés à une
horloge, car leur comportement temporel est plus simple. Cette contribution a été publiée dans le
papier [BBBS11].

Réalisabilité et convergences D’un point de vue implémentabilité, les automates temporisés ne
sont pas toujours réalistes. En effet, la précision absolue des horloges est irréaliste. Plusieurs pa-
piers à propos de la robustesse des comportements des automates temporisés ont été récemment
publiés (voir [Mar11] pour un survey). Intuitivement, les gardes sont légèrement modifiées et les
horloges peuvent dériver légèrement pour prendre en compte les imprécisions possibles, on vérifie
alors si certaines propriétés sont préservées. D’un autre côté, pour être en mesure d’observer certains
phénomènes de convergence le long des exécutions infinies, il serait nécessaire de disposer d’horloges
de plus en plus précises au fil de l’exécution. Le plus connu est le phénomène Zeno, où le délai accu-
mulé le long d’une exécution infinie est borné. Avec deux horloges, d’autres types de convergences
peuvent apparaître. En effet, le long d’un cycle à deux horloges, il est possible de forcer les délais
écoulés dans une localité donnée à décroîtrent. D’autre part, dans le contexte du calcul de l’entropie
des langages d’automates temporisés, la notion de cycle amnésique a été définie pour caractériser les
cycles n’exhibant pas de telles convergences. Un moyen de décider si un cycle est amnésique est
présenté dans [BA11]. Comme les convergences ne sont pas réalistes, il est raisonnable de supposer
que le système n’admet pas de tels phénomènes, tout en gardant à l’esprit qu’il serait intéressant de
savoir décider si un automate temporisé satisfait l’hypothèse d’amnésie.

16

ACCESSIBILITÉ DANS LES AUTOMATES TEMPORISÉS COMMUNICANTS

Contribution 4 : fréquences dans les automates temporisés amnésiques Les techniques utilisées
pour les automates temporisés à une horloge ne peuvent pas s’appliquer aux automates temporisés
à plusieurs horloges. De plus, toutes les illustrations de cette limite contiennent des phénomènes
de convergence forcée le long de cycles. Dans cette thèse, nous proposons donc une extension de
l’étude de l’ensemble des fréquences pour les automates temporisés à plusieurs horloges, en supposant
qu’ils n’admettent pas de phénomènes de convergence (ou sous des hypothèses plus faibles donc la
satisfaction est décidable). Le calcul est toujours effectué grâce à l’abstraction des coins. L’ensemble
des fréquences abstraites est calculé dans l’abstraction. Ensuite, nous prouvons que cet ensemble est
égal à l’ensemble des fréquences dans l’automate temporisé, en utilisant des propriétés des cycles
amnésiques. Cette extension a été publiée dans le papier [Sta12].

0.4 Accessibilité dans les automates temporisés communicants

Communication entre automates temporisés Nous considérons maintenant des systèmes temps
réel distribués où les processus peuvent communiquer. Un premier défi est de les modéliser avec des
formalismes adaptés. Pour cela, il faut trouver le bon compromis entre l’expressivité et la complexité.
Malheureusement, le problème de l’accessibilité est indécidable dans la plupart des modèles possibles,
même sans aspects temporels. Le second défi est donc de trouver des restrictions, les plus faibles
possible, qui rendent le problème de l’accessibilité décidable.

Des systèmes composés de plusieurs automates temporisés peuvent être considérés avec dif-
férentes modélisations de la communication, de la même façon que pour les automates finis. Ils
peuvent principalement communiquer par synchronisation sur des actions (e.g. input/ouput), par des
canaux (parfaits ou imparfaits) ou encore par broadcast. Pour les automates temporisés, un autre
moyen de communication utilisant les valeurs des horloges a été exploré [ABG+08]. Les résultats
sont assez surprenant. Les automates temporisés distribués ont des processus avec des horloges lo-
cales qui évoluent à des vitesses indépendantes. Chaque automate temporisé observe les horloges
des autres sans pouvoir les réinitialiser. Dans un tel modèle, on ne peut pas décider si un mot non-
temporisé donné peut être lu quelque soit les décalages d’horloges, même si les différences ou les
ratios d’horloges sont bornés.

Les machines communicantes à états finis (i.e. les automates finis communiquants via des canaux
non-bornés) [Pac82] sont un modèle fondamental pour les systèmes distribués. Une extension na-
turelle de ce modèle est de considérer des automates temporisés au lieu des automates finis. Ce
modèle a été étudié dans [KY06]. Pour les machines communicantes à états finis, il est bien connu
que le problème de l’accessibilité est décidable si et seulement si la topologie est une polyforêt (i.e.
un graphe sans cycle indirect) [Pac82, BZ83]. Ajouter des aspects temporels dans ce modèle mène
à un résultat d’indécidabilité très fort [KY06]. Plus précisément, le problème de l’accessibilité a été
prouvé indécidable pour les pipelines (i.e. suites de processus où chaque processus peut envoyer des
messages au suivant) si et seulement s’il y a au moins trois processus dans le pipeline.

Contribution 5 : accessibilité dans les automates temporisés communicants Dans [KY06], la
preuve d’indécidabilité utilise une réduction du problème de l’accessibilité dans les machines à deux
compteurs avec tests à zéro. Or on remarque que les tests à zéro sont simulés dans le pipeline
d’automates temporisés grâce à l’urgence des réceptions (i.e. les réceptions sont prioritaires sur
les actions internes). Nous avons décidé d’étudier la décidabilité du problème de l’accessibilité en
supprimant l’hypothèse d’urgence sur les canaux. Pour cela, nous étudions d’abord plus un mod-
èle plus simple d’automates communicants tic-tac, c’est-à-dire des automates finis communiquants

17

et se synchronisant sur une action discrète. Ce modèle peut être vu comme un système de proces-
sus communicants à temps discret. Ensuite, nous réduisons le problème de l’accessibilité dans les
processus communicants à temps continu au problème de l’accessibilité dans les processus commu-
nicants à temps discret. De cette façon, sans urgence, les topologies pour lesquelles le problème de
l’accessibilité est décidable sont les mêmes pour les machines communicantes à états finis, les au-
tomates communicants tic-tac et les automates temporisés communicants. Nous proposons, de plus,
une caractérisation plus précise des topologies décidables pour les systèmes de processus temporisés
communiquants par canaux urgents et non-urgents. Ce travail a été publié dans le papier [CHSS13].

0.5 Conclusion

Nous avons contribué dans trois différentes branches de la vérification des automates temporisés, à
savoir la déterminisation des automates temporisés, la vérification d’automates temporisés avec des
aspects quantitatifs et la vérification d’automates temporisés communicants. La suite du manuscrit dé-
taille largement ces contributions ainsi que l’état-de-l’art de ces trois directions. La langue employée
est l’anglais pour pouvoir être lue par un jury de thèse international.

18

Part II

Introduction

19

Chapter 1

Introduction

In daily life as well as in very specialized contexts, we meet more and more systems governed by
software. They play an increasingly important role in our society and we need to be sure that they
behave as expected. Beyond reacting in a correct manner in any situation, most of these systems must
satisfy explicit response-time constraints or risk severe consequences, including failure. These are
called real time systems. The correctness of such systems is based on the correctness of the outputs
but also of their delays. Their clocks can have very different precisions depending on the context. As
a first example, real time systems are present in the aerospace industry. In avionic and space trans-
portation systems, computers are used to monitor and control plane and space shuttle missions. On
the other hand, in planetary exploration applications, real time systems collect and analyze data from
space exploration missions. In these situations, systems have to be reactive already in the moving
management. In such contexts, failures can cause human losses or have expensive costs. Real time
systems are also very useful for production processes in industry. The production of high commodity
chemicals such as ethylene and prophylene is supervised and controlled by computers. These sys-
tems require high performance real-time features and should provide interfaces to regulatory control
instrumentation systems. Any failure here may cause an environmental disaster.

Verification of real time systems The list of critical applications of real time systems is very large
and yields as many reasons to work on their verification. Expected properties for a given real time
system can be represented in several ways. Depending on the criticality level, on the knowledge
about the system and on the properties which have to be checked, a lot of approaches are possible.
If the system is a black box, test cases can be generated in order to communicate with the system
and detect non-conformances with respect to its specification. Otherwise, the verification can be done
at several levels of abstraction. Programs can be proved, with even the certification of compilers
for extreme criticality. Moreover, hardware can also be checked by performing simulations. In this
document, we mainly focus on model-based verification. The idea is to represent the system using a
dedicated formalism expressing features concerned by the considered properties. One can then check
that the model satisfies the properties using formal methods. On the other hand, instead of a passive
verification, systems can also be monitored, that is non-conformances can be blocked, or one can force
systems to respect a specification by restricting behaviors with a controller, or enforcing the property
during the execution by buffering outputs until one is sure that the property is satisfied.

Timed automata and other models for real time systems We are interested in the model-based
verification of real time systems. Different formalisms may be used to model these systems. A first

21

INTRODUCTION

well-known model is time Petri nets [Mer74] an extension of Petri nets. Recall that Petri nets are
composed of a set of places which are connected by transitions. A transition connects two sets of
places, and can be fired if there are enough tokens in the first set (pre-condition) and the activation
of the transition removes the tokens of the pre-condition to add some tokens in the second set (post-
condition). An execution of a Petri net starts with some tokens in some places (initial marking).
Timing aspects can then be added in several ways. In time Petri nets [Mer74], timing constraints
are put on transitions. When the pre-condition of a transition is satisfied, a clock is reset, and the
transition can be fired when the clock value belongs to the interval associated with the transition.
Note that there are other time extensions of Petri nets which are less used. A first example is timed
Petri nets whose transitions have a fixed duration [Ram74]. Timing behaviors can also be supported
by tokens considering the ages of the tokens as in timed-arcs Petri nets [Han93].

Beyond Petri nets, another famous model has been extended to represent real time systems: high-
level message sequence charts [IT11]. Message sequence charts are a simple way to represent com-
munication scenarios between processes of a system. More precisely, each process sends and receives
messages in a certain order which is fixed. This may induce some constraints over the behaviors of
the other process. In particular a message cannot be received before its emission. Nevertheless, there
can be several consistent interleavings or linearizations of the local executions. For example if a pro-
cess p sends a and b to a process q, and q receives them in the same order, then a can be received
by q before or after the emission of b by p. High-level message sequence charts (HSMCs) are graphs
allowing to define message sequence charts by concatenation of given basic message sequence charts.
The semantics of a path thus corresponds to the concatenation of the patterns which are consecutively
visited. Finally, time-constrained message sequence charts graphs (TC-MSC graphs) [IT11] are an
extension of HSMCs where some timing constraints are put along the local runs of the processes as
intervals of allowed values for delays between two actions of a given process.

Finally, timed automata have been introduced by Rajeev Alur and David L. Dill in 1990 [AD90,
AD94]. A timed automaton is roughly a finite automaton equipped with continuous clocks which
evolve in a synchronous way. Edges are labeled with guards over these clocks (e.g. clock x is larger
than 1) and can reset them to zero. Research around this model is very active. Several verification
problems are undecidable, but the main cause of the celebrity of timed automata is the region ab-
straction which allows one to decide reachability of locations in polynomial space [AD94]. In this
document, we are interested in the verification of timed automata.

Time Petri nets and TC-MSC graphs naturally model concurrency, whereas timed automata do
not, but it is possible to consider nets of timed automata. The advantage of timed automata is that
reachability can be decided in polynomial space [AD94], whereas it is undecidable for time Petri
nets [JLL77] and TC-MSC graphs [GMNK09]. Nevertheless, a nice abstraction has been devel-
oped to decide reachability in bounded time Petri nets in polynomial space [BD91], unfortunately the
boundedness of time Petri nets is undecidable.

Note that real time systems can also be modeled with a great expressivity by hybrid automata
which generalize timed automata, using continuous variables whose values are described by ordi-
nary differential equations [ACHH92]. Unfortunately, expressivity has a cost, and classes of hybrid
automata for which the reachability problem is decidable are very restrictive.

The region abstraction and consequences States of timed automata are couples with a location
and a valuation of clocks (i.e. a function assigning a real value to each clock). Timed automata
thus have an uncountable state space. The idea of the region abstraction [AD90, AD94] is that some
valuations of clocks are very similar and can be considered together, e.g. (x = 2.3, y = 5) and

22

(x = 2.35, y = 5). Regions are equivalence classes over the valuations of clocks. Two valuations
belong to the same region if they satisfy the same guards, and their successors will satisfy the same
guards in the future. In other words, from a state with one or the other valuation, the same paths can be
followed in the timed automaton. Timed automata can then be quotiented by the region equivalence
relation into a finite automaton (called the region automaton). The region equivalence relation is then
a time-abstract bisimulation between both automata. This roughly means that the untimed behaviors
are preserved. For example, untimed words which are accepted by a timed automaton with some
timestamps are accepted in the region automaton. A first application of the region abstraction is the
decidability of the reachability of locations in timed automata in polynomial space. More generally,
the region automaton allows to decide all the properties preserved by time-abstract bisimulation. As a
consequence, one can decide safety properties, ω-regular properties, or untimed properties expressed
in linear temporal logic [Pnu77] or in computational tree logic [CE81].

Limits of the finite abstraction Timed automata can be seen as timed languages acceptors simply
choosing a set of accepting locations in the same way as for finite automata. They can thus accept
finite or infinite timed words depending of the semantics. Some transitions can be internal, that is they
do not add letters to the word. We say that two timed automata are equivalent if they accept the same
language. Note that timed automata with internal transitions are strictly more expressive [BGP96]
than timed automata, that is, there exist timed automata with internal actions for which we cannot
build an equivalent timed automaton without internal action. Then, the decision of the emptiness of
the language of finite timed words of a timed automaton is exactly the decision of the reachability
of the accepting locations (feasible thanks to the region automaton). The emptiness for languages of
infinite timed words can also be decided in the region automaton.

Nevertheless, the abstraction by a finite automaton naturally has some limits. The universality
problem asks whether a language contains all timed words. Moreover, the inclusion problem asks,
given two languages, whether the first one contains all the words of the second one. Remark that
the universality problem is a particular case of the inclusion problem where the first language is uni-
versal. Both problems are undecidable [AD94] for languages defined by timed automata (for finite
or infinite words). If timed automata have at most one clock, the hardness proof of [AD94] only en-
sures the non-primitive recursivity, and the decidability has been an open question until 2004 [OW04].
Several variants of these problems have been studied in [OW04] and [ADOW05] to draw the fron-
tier of undecidability. The inclusion problem is, for example, decidable for finite timed words if the
timed automaton whose language is checked to be larger, has at most one clock and no internal tran-
sition [OW04]. As a consequence, the universality problem is also decidable for this class of timed
automata. However, the universality problem (and hence the inclusion problem) becomes undecidable
if timed automata have two clocks, internal actions, or if we consider infinite timed words [ADOW05].

The universality problem and the inclusion problem are close to the complementability prob-
lem, because for complementable timed automata, they become decidable with the same trick as for
finite automata. Some timed automata cannot be complemented, even when only one clock is al-
lowed [AD94], which makes the decidability result about the inclusion problem quite surprising. On
the other hand, deterministic timed automata (i.e. having at most one run reading each timed word)
are easily complementable, by switching accepting and non-accepting locations. As a consequence,
timed automata are not determinizable in general [AD94].

23

INTRODUCTION

Determinization of timed automata and application to testing

Determinization of timed automata Determinization is useful in a lot of contexts whatever the
model considered. It is a key issue for several problems such as implementability of models, because
an implementation is necessarily deterministic. It is also interesting for fault diagnosis, where we want
to detect if a trace of the system surely leads to a faulty location, that is for all the runs corresponding
to this trace, the current location is a fault location. For test generation, determinization allows one to
foresee the set of allowed outputs, in order to emit a sound verdict. More generally, determinization
is helpful for problems where the underlying analyses depend on the observable behavior or where
complementation is required.

Then, the unfeasibility of the determinization of timed automata can be embarrassing. Moreover,
the determinizability of timed automata, even when fixing the number of available clocks and the
maximal constant, is undecidable [Tri06, Fin06]. Then, partial solutions to this problem have been
proposed. Depending on the context, two approaches are possible when it is necessary to determinize
timed automata: either restricting to classes of determinizable timed automata, or performing an ap-
proximate determinization. Both approaches have been recently explored.

First, there exists a determinization procedure [BBBB09] which yields a deterministic timed
automaton equivalent to the argument timed automaton, but does not terminate for all timed au-
tomata. Nevertheless, it terminates for all the known determinizable classes: strongly non-Zeno
timed automata [AMPS98], event-clock timed automata [AFH94] or timed automata with integer
resets [SPKM08].

On the other hand, an approximate determinization [KT09] has been developed to build a de-
terministic timed automaton whose language contains at least the words accepted by the argument
timed automaton. This method a priori fixes a reset policy for the clocks of the deterministic timed
automaton, and then tries to simulate behaviors of the argument timed automaton using state esti-
mates. It does not necessarily preserve languages, even for deterministic timed automata, but always
terminates.

Contribution 1: determinization of timed automata In Chapter 3, we propose a combination of
both approaches. We use a state estimate which is similar to the one of [KT09]. However, rather
than fixing a reset policy, the principle of our method is to build a game in order to find a suitable
reset policy that tries to avoid to approximate. Our algorithm is more precise than the existing over-
approximation [KT09], and moreover also yields an exact determinization for strictly more timed
automata than the other existing approach [BBBB09]. This contribution has been published in the
paper [BSJK11a].

Application of the determinization to model-based testing In this document, we develop the ap-
plication to test selection. In the literature, there exist several testing problems but we focus on the
model-based conformance testing. Given a specification and an unknown implementation, we aim at
checking whether the implementation conforms to the specification. The model is not available, and
one can only interact with the implementation by sending inputs and observing outputs and checking
their conformance with respect to expected ones. To do so, test cases are generated as determinisitic
timed automata.

The goal of test execution is to detect non-conformances and emit a fail verdict in this case. One
cannot ensure that the implementation has no non-conformance only by testing. The main property
that is requested for test cases, called soundness, is thus that fail verdicts always correspond to non-

24

conformances. In order to emit a sound verdict, one needs to foresee the outputs allowed by the
specification after the current observation. Then, it requires to compute the set of states reachable after
this observation. This is very close to determinization. In fact, either the specification is deterministic
(or determinized off-line), or it has to be determinized on-the-fly (in the case of on-line testing). The
main drawback of this latter possibility is the computation time. In the context of real time systems,
the on-the-fly computation could hinder the testing process by taking too much time.

Contribution 2: off-line test selection In Chapter 4, we propose a general formal framework for
the off-line test selection for non-deterministic timed automata. We use test purposes modeled by
timed automata which are able to observe clocks of the specification to finely guide the genera-
tion of test cases. Moreover, our model integrates partial observability and urgency. Because of
the non-determinizability of timed automata, most of contributions about testing of timed automata
are restricted to deterministic or determinizable specifications [KJM04, NS03]. A notable exception
is [KT09] where the problem is solved by the use of the over-approximate determinization discussed
above. Their model contains urgency, unfortunately the approximate determinization removes it. In
this case, an implementation which does nothing, conforms to all specifications. On the contrary,
extensions of our game approach for the determinization allow to deal with ε-transitions modeling
partial observability, and invariants modeling urgency. Moreover, the construction of the game is
adapted to preserve the conformance relation tioco, without assumptions over the specification con-
trary to [KT09]. This work has been published in [BJSK11, BJSK12].

Frequencies in timed automata

Quantitative aspects In this Part IV, we are interested in adding quantitative aspects in timed au-
tomata verification. For example to model problems about energy consumptions, failure rates or risks
of failure. Recently, several approaches have been proposed in the same spirit. Volumes and entropies
of timed languages recognized by timed automata have been defined and several ways to compute
them have been studied [AD09a, AD09b, AD10]. On the other hand, a probabilistic semantics for
timed automata has been introduced [BBB+08]. The non-determinism both over delays and over
enabled moves in the execution of a timed automaton is treated with a kind of fairness assumption
thanks to a probability distribution. Then, the quantitative model checking of ω-regular properties
in one-clock timed automata can be performed [BBBM08]. In other words, one can decide whether
the probability to satisfy an ω-regular property, satisfies a threshold condition for a rational threshold.
The approach is based on an algorithm which allows to compute the probability to satisfy the property
if it is a rational number, and to approximate it up to an arbitrary precision otherwise. Note that other
models combining time and probabilities have been defined. For example, in [KNSS02] a variant of
timed automata whose clocks can be set with random values is enriched, defining transitions whose
target is random. For one-clock timed automata, an approximate approach (with estimation of the er-
ror) has then been proposed for the model checking of quantitative properties such as "the maximum
probability to visit infinitely often a given location is larger than 1

3". Finally, several recent works
concern timed automata equipped with costs or double prices [ATP01, BFH+01, BBL08]. Costs or
cost-reward pairs are associated with edges and locations and a value is assigned to each run taking
into account the costs along the run It is, for example, possible to check properties such as "the mini-
mal cost to reach a given location is smaller than 3", or to compute an optimal infinite scheduling in a
double-priced timed automaton.

25

INTRODUCTION

Contribution 3: frequencies in timed automata For infinite timed words, the usual acceptance
condition in timed automata is the Büchi semantics, that is, a run is accepting if it visits infinitely
often accepting locations. This semantics is not always suitable. For example, if accepting locations
model states of a system in which resources are optimally used, or in which some actions are par-
ticularly cheap, the time elapsed in accepting locations can be important. In Part IV, we introduce
the notion of frequency of a run as the proportion of time elapsed in accepting locations along the
run. We thus define semantics with frequency-based acceptance conditions. For instance, a run can
be accepted if its frequency is larger than two thirds. This allows to define timed languages taking
into account quantitative aspects. Then, we present techniques to compute the bounds of the sets of
frequencies of runs in a timed automaton, with the aim to decide emptiness or universality of quantita-
tive languages. The method is based on a refinement of the region abstraction, called the corner-point
abstraction [BBL08], allowing to abstract time elapsed along runs, and thus to define an abstract fre-
quency using costs and rewards. In a first phase, we only consider one-clock timed automata whose
timed behaviors are simpler. This contribution has been published in the paper [BBBS11].

Realizability and convergences From an implementability point of view, timed automata are not
always realistic. Indeed, the absolute precision of clocks is unrealistic. As a consequence, several
papers about the robustness of behaviors in timed automata have been recently published (see [Mar11]
for a survey). Roughly, guards are lightly modified and clocks can derive a bit, to take into account
this lack of precision and one checks whether some properties are preserved. On the other hand, some
convergence phenomena along infinite runs may require more and more precise clocks along the run
to be observed. The most famous is zenoness. An infinite run is said Zeno if the accumulated delay
along the run is finite. With two clocks, other convergences may appear. Indeed, it is possible to force,
along a cycle with two clocks, delays in a fixed location to be smaller and smaller. Moreover, in the
context of the computation of the entropy of the language of a timed automaton, forgetful cycles have
been defined as cycles without such convergences, and a way to decide whether a cycle is forgetful
has been presented [BA11]. As convergences are unrealistic, it is reasonable to assume that the system
has no such phenomenon, keeping in mind that it would be nice to be able to decide whether a timed
automaton satisfies the assumption.

Contribution 4: frequencies in forgetful timed automata Techniques used in the context of fre-
quencies, for one-clock timed automata do not extend to several clocks. Moreover, all the illustrations
of this limitation are based on convergence phenomena forced along non-forgetful cycles. We then
propose an extension of the study of the set of frequencies to timed automata with several clocks,
assuming that they do not admit convergence phenomena (or under weaker assumptions concerning
convergences, whose satisfaction is decidable). The computation is again based on the corner-point
abstraction. The set of abstract frequencies is computed in the corner-point abstraction, and then
proved to be equal to the set of frequencies in the timed automaton, using properties of forgetful
cycles. This extension has been published in the paper [Sta12].

Reachability in communicating timed automata

Communication between timed automata We are interested in distributed real-time systems where
processes can communicate. A first challenge is to model them with suitable formalisms, finding the
good tradeoff between expressivity and complexity. Unfortunately, the reachability problem in most

26

of the possible models is undecidable, even without timing aspects. The second challenge is thus to
find restrictions in which the reachability problem is decidable.

Systems composed of several timed automata can be considered together with several commu-
nication policies as for finite automata. They can mainly communicate thanks to synchronization of
actions (e.g. input/output), by channels (perfect or lossy) or by broadcast. For timed automata, another
dimension of communication has been recently investigated [ABG+08] and results can be surprising.
Distributed timed automata with local times evolving with their own rates are introduced. Each timed
automaton communicates by only observing clocks of the others without the ability to reset them. In
such a model, one cannot decide whether a fixed untimed word can be read for all clock drifts, even if
the differences, or the ratios of the clock drifts are bounded.

Communicating finite-state machines (i.e. finite automata communicating via unbounded chan-
nels) [vB78] is a fundamental model for distributed systems. A natural extension of this model,
considering timed automata instead of finite automata has naturally been investigated in [KY06]. For
communicating finite-state machines, it is well-known that reachability is decidable if and only if the
topology is a polyforest [Pac82, BZ83] (i.e. without undirected cycle). Adding timing aspects in
the model can lead to a stronger undecidability result [KY06]. More precisely, reachability has been
shown undecidable for pipelines (i.e. sequences of processes where each process can send messages
to the following one) if and only if there are at least three automata in the pipeline.

Contribution 5: reachability in communicating timed automata In [KY06], the undecidability
proof is based on a reduction of the reachability in a two-counter machine with zero tests. Noting that,
zero tests are simulated thanks to urgency of receptions (i.e. receptions have priority over internal
actions), we decided to explore the decidability of reachability, removing the urgency assumption
over channels. To do so, we first study communicating tick automata, that is communicating finite
automata synchronizing on a discrete action. This model can be seen as communicating discrete time
processes. We then reduce the reachability problem in communicating continuous time processes
to the reachability problem in communicating discrete time processes. In this way, we obtain the
same decidable topologies for communicating timed automata and communicating tick automata,
when channels are not urgent, as for communicating finite automata. Moreover, we present extended
characterizations of the decidable topologies considering communicating timed automata with urgent
and non urgent channels. This work has been published in the paper [CHSS13].

Outline

In Part III, we present our game approach for the determinization of timed automata and its application
to off-line test selection. Then Part IV is devoted to timed automata with frequencies and, in particular,
to the study of the set of frequencies in timed automata. Finally, in Part V, we characterize topologies
for which the reachability problem is decidable in communicating timed processes.

27

INTRODUCTION

28

Chapter 2

Technical preliminaries

In this chapter, we introduce all the fundamental notions used in the sequel of the document. We start
by defining valuations of a set of clocks together with some operations on them. Then we present a
general definition of timed automata, the syntax and the semantics for finite and infinite runs. Finally,
the usual region abstraction is defined in the last section.

Let us define valuations of clocks and operations such as reset and projection. Given a finite set
of clocks X , a clock valuation is a mapping v : X → R+, where R+ denotes the set of non-negative
reals. We note 0X the valuation that assigns 0 to all clocks (0 if X is clear). If v is a valuation over
X and t ∈ R+, then v + t denotes the valuation which assigns to every clock x ∈ X the value
v(x) + t. Moreover, −→v is the set of the valuations reachable from v letting time elapse, formally
{v + t | t ∈ R+}. For X ′ ⊆ X we write v[X′←0] for the valuation equal to v on X \ X ′ and to 0
on X ′, v|X′ for the valuation v restricted to X ′, and v[X′←0]−1 for the set of valuations v′ such that
v′[X←0] = v.

Guards and invariants are defined as follows. Given a non-negative integer M , an M -bounded
guard over X , or simply guard when M is clear from context, is a finite conjunction of constraints of
the form x ∼ c where x ∈ X, c ∈ [0,M] ∩ N and ∼∈ {<,≤,=,≥, >}. We denote by GM (X) the
set of M -bounded guards over X .

Given a guard g and a valuation v, we write v |= g if v satisfies g. Formally we define inductively
the satisfaction: if g = (x ∼ c) with x ∈ X, c ∈ [0,M] ∩ N and ∼∈ {<,≤,=,≥, >}, then v |= g if
v(x) ∼ c; and if g = g1 ∧ g2 then v |= g if v |= g1 and v |= g2.

Invariants are restricted cases of guards: givenM ∈ N, anM -bounded invariant overX is a finite
conjunction of constraints of the form x � c where x ∈ X, c ∈ [0,M] ∩ N and � ∈ {<,≤}. We
denote by IM (X) the set of invariants.

In the sequel, we sometimes abuse notations by writing in the same way guards or invariants and
the sets of valuations which satisfy them.

We are now able to give the definition of timed automata introduced in [AD90, AD94].

Definition 2.1 (Timed automata). A timed automaton (TA) is a tupleA = (L,L0, F,Σ, X,M,E, Inv)
such that: L is a finite set of locations, L0 ∈ L is the set of initial locations, F ⊆ L is the set
of final locations, Σ is a finite alphabet, X is a finite set of clocks, M ∈ N the maximal constant,
E ⊆ L×GM (X)× (Σ∪{ε})×2X ×L is a finite set of edges, and Inv : L→ IM (X) is the invariant
function.

We graphically represent timed automata in the usual way. The timed automaton represented in
Figure 2.1 has one clock called x, three locations `0, `1 and `2. Location `0 is initial and location `1

29

TECHNICAL PRELIMINARIES

`0

x≤1

`1

x<1

`2

x<1

x<1,a

x<1,a,{x}

x=1,a,{x}

Figure 2.1: An example of timed automaton.

is final. The invariant of location `0 is x ≤ 1. The alphabet of actions is the singleton {a}. The edge
from location `2 to `1 is labeled with a guard x < 1, an action a and a reset of x. Sometimes in the
document, there is no invariant (they are all true), hence they are omitted in the definitions and we
define timed automata as tuples (L,L0, F,Σ, X,M,E).

Definition 2.2 (Semantics of timed automata). The semantics of a timed automatonA = (L,L0, F,Σ,
X,M,E, Inv) is given as a timed transition system TA = (S, S0, SF , (R+ ∪ (Σ ∪ {ε})),→) where
S = L×RX+ is the set of states, S0 = L0×{0} is the set of initial states, SF = F ×RX+ is the set of
final states, and→⊆ S × (R+ ∪ (Σ ∪ {ε}))× S is the transition relation composed of the following
moves:

• Discrete moves: (`, v)
a−→ (`′, v′) for a ∈ Σ∪{ε}whenever there exists an edge (`, g, a,X ′, `′) ∈

E such that v |= g ∧ Inv(`), v′ = v[X′←0] and v′ |= Inv(`′).

• Time elapsing: (`, v)
τ−→ (`, v + τ) for τ ∈ R+ if v + τ |= Inv(`).

A timed automaton is said to be complete if for all actions a ∈ Σ and for all states (`, v) ∈ S,
there exists (`′, v′) such that (`, v)

a−→ (`′, v′).
A finite run % of A is a finite sequence of moves alternating time elapsing and discrete moves,

starting in an initial state s0 ∈ S0 and ending with a discrete move labeled by an action in Σ, i.e.,
% = s0

τ0−→ s′0
a1−→ s1 · · ·

τk−1−→ s′k−1
ak−→ sk. We require that the last discrete move is not labeled

by ε because we consider runs as readers of words. For example, (`0, 0)
1−→ (`0, 1)

a−→ (`1, 0)
0.5−→

(`1, 0.5)
a−→ (`2, 0.5)

0.25−→ (`2, 0.75)
a−→ (`1, 0) is a run of the timed automaton in Figure 2.1. For

readability, we sometimes contract notations by writing s
τ,a−→ s′′ instead of s τ−→ s′

a−→ s′′.
The reachability problem asks, given a timed automaton A and a location ` of A, whether there

exists a finite run of A ending in `.
An infinite run % of A is an infinite sequence of moves alternating time elapsing and discrete

moves, starting in an initial state s0 ∈ S0 and containing an unbounded number of discrete moves
labeled by actions in Σ, i.e., % = s0

τ0−→ s′0
a1−→ s1 · · ·

τk−1−→ s′k−1
ak−→ sk · · · . We require that

infinite runs contain infinitely many discrete moves not labeled by ε because we consider infinite runs

as readers of infinite timed words. For example, the sequence (`0, 0)
1,a−−→ (`1, 0)

(1
3
,a
−−→ (`2,

1
3)

1
3
,a
−−→

(`1, 0)
)ω which endlessly alternates delays 1

3 in `1 and `2, is an infinite run of the timed automaton in
Figure 2.1.

Given an infinite run %, we denote by %|n the finite run defined as the prefix of the run % ending
with the n-th discrete transition different from ε.

Timed automata are often used as recognizers of languages. In the context of testing, one considers
rather traces of the system whereas to study reachability, only runs as sequences of transitions are
needed. The notion of languages is central in this document, hence we give definitions here.

30

Language of finite words of a timed automaton A finite run % is said accepting if it ends in a state
sk ∈ SF , that is in a final location. In the sequel, final locations are thus also said to be accepting and
the other locations are said non-accepting. A finite timed word over Σ is a finite sequence (ti, bi)i≤n ∈
(R+ × Σ)∗ such that (ti)i≤n is non-decreasing. We writeWΣ, for the set of finite timed words over
the alphabet Σ.

The timed word associated with a run % = s0
τ0−→ s′0

a1−→ s1 · · ·
τk−1−→ s′k−1

ak−→ sk is w =
(t0, b0) . . . (tm, bm) where (bj)j≤m ∈ Σm+1 is the subsequence of the discrete moves of % labeled in
Σ and tj =

∑j
l=0 τl. In this case, w is said to be read by %. The τi’s are the delays elapsed between

the actions ai’s along %, whereas the ti’s are the absolute time where actions belonging to Σ (but not
ε) are taken. We write L(A) for the language of A, that is the set of timed words associated with an
accepting run. For example, the language of the timed automaton in Figure 2.1 is the following set:{(

(1, a),
(
(ti, a)(t′i, a)

)
0≤i≤n

)
∈ W{a} | (n ≥ −1) ∧ (t′0 < 2) ∧ (∀0 ≤ i ≤ n, t′i+1 − t′i < 1)

}
. In

words, this timed automaton accepts timed words starting by an action a at one time unit and then
contains an even number of a’s such that each pair of a’s is done in less than one time unit.

Two timed automata A and B are said equivalent whenever L(A) = L(B). In order to com-
pare behaviors of timed transition systems in a more precise way than the equality of languages, we
introduce the notion of weak timed simulation relation.

Definition 2.3 (Weak timed simulation relation). A weak timed simulation relation between two timed
transition systems Ti = (Si, si0, S

i
F , (R+ ∪ (Σ ∪ {ε})),→i) for i ∈ {1, 2} is a relationR ⊆ S1 × S2

such that:

(1) (s1
0, s

2
0) ∈ R,

(2) for all (s1, s2) ∈ R, if s1 ∈ S1
F then s2 ∈ S2

F ,

(3) for all (s1, s2) ∈ R, for all b ∈ Σ whenever s1
b−→1 s

′
1, there exists s′2 ∈ S2 such that (s′1, s

′
2) ∈ R

and s2
b−→2 s

′
2,

(4) for all (s1, s2) ∈ R, whenever s1
τ11−→1

ε−→1 s1
1 · · ·

τ1n−1−−−→1
ε−→1 s1

n−1

τ1n−→1 s′1, there exists s′2 ∈

S2 such that (s′1, s
′
2) ∈ R and s2

τ21−→2
ε−→2 s2

1 · · ·
τ2m−1−−−→2

ε−→2 s2
m−1

τ2m−−→2 s′2 with
∑n

i=1 τ
1
i =∑m

j=1 τ
2
j .

There exists alternative definitions of weak timed simulation relation, in the third item, sequences
of the form ε∗.b.ε∗ (without delays between the actions) are considered instead of simply b. Our defi-
nition covers this case by applying the fourth item and considering only zero delays for the sequences
of ε’s.

If there is a weak timed simulation between TA1 and TA2 , A2 is said to weak timed simulate A1.
The intuition is that all the behaviors of A1 can be found in A2. The weak timed simulation of A1 by
A2 implies, in particular, the language inclusion L(A1) ⊆ L(A2). If the inverse relation of a weak
timed simulation of A1 by A2 is also a weak timed simulation of A2 by A1, we talk about a weak
timed bisimulation. In this case, languages are equal.

In a timed automaton, it is possible to find a timed word which is read by distinct runs. We then
talk about non-determinism.

Definition 2.4 (Determinism). b

• A deterministic timed automaton (abbreviated DTA) A is a TA such that for every finite timed
word w, there is at most one run in A reading w.

31

TECHNICAL PRELIMINARIES

• A timed automaton A is said determinizable if there exists a deterministic timed automaton B
equivalent to A.

There is an alternative notion of deterministic timed automata which is more syntactic. It requires
that from every location of the timed automaton and every action, guards of outgoing edges labeled
with this action do not intersect between them. Our notion implies this one, it has the advantage to
allow ε-transitions and the inconvenient is that it is harder to check whether a timed automaton is
deterministic. Remark that the timed automaton in Figure 2.1 is clearly deterministic because in every
location there is a single outgoing edge.

Language of infinite words of a timed automaton Similarly to the finite words case, one can
define the acceptance of infinite words. The usual semantics to do so is the Büchi semantics. Then
an infinite run is said accepting if it visits infinitely often the set of accepting locations F . An infinite
timed word over Σ is an infinite sequence (ti, bi)i∈N ∈ (R+×Σ)N such that (ti)i∈N is non-decreasing.
We denote byW∞Σ the set of infinite timed words over the alphabet Σ.

As previously, the timed word associated to a run % = s0
τ0−→ s′0

a1−→ s1 · · ·
τk−1−→ s′k−1

ak−→ sk · · ·
is the subsequence of the discrete moves of % labeled in Σ coupled with their absolute time. Thus, we
writeL∞(A) for the language of infinite timed words ofA. For instance, the language of infinite timed
words of the timed automaton in Figure 2.1 is the set

{(
(1, a),

(
(ti, a)(t′i, a)

)
0≤i
)
∈ W∞{a} | (t

′
0 <

2) ∧ (∀0 ≤ i, t′i+1 − t′i < 1)
}

. In words, this timed automaton accepts infinite timed words over the
alphabet {a} starting by an a after one time unit and then, considering them two by two, each pair of
a’s is taken in less than one time unit.

Since runs are infinite, some convergence phenomena may appear. The most famous is the
zenoness which simply corresponds to the convergence of the absolute time along a run.

Definition 2.5 (Zenoness). b

• An infinite run % = s0
τ0−→ s′0

a1−→ s1 · · ·
τk−1−→ s′k−1

ak−→ sk · · · is Zeno (resp. non-Zeno) if the
sum

∑
i∈N τi is bounded (resp. infinite).

• An infinite timed word (ti, bi)i∈N is Zeno (resp. non-Zeno) if (ti)i∈N is finite (resp. diverges).

• A timed automaton is strongly non-Zeno if in every cycle `1 → `2 · · · → `1, there is one clock
which is reset and lower guarded by a positive constant [AMPS98].

Note that an infinite run is Zeno (resp. non-Zeno) if and only if its associated timed word is.
Moreover, the strong non-zenoness is equivalent to the absence of Zeno run.

Region abstraction Given the maximal constant M of a timed automaton A = (S, S0, SF , (R+ ∪
(Σ ∪ {ε})),→), the usual region abstraction introduced in [AD94] forms a partition of the valuations
overX . In the following definition, btc and {t} are respectively the integer part and the fractional part
of the real t.

Definition 2.6 (Region equivalence). The region equivalence ≡A over valuations of X is defined as
follows: v ≡A v′ if

1. for every clock x ∈ X , v(x) ≤M iff v′(x) ≤M ;

2. for every clock x ∈ X , if v(x) ≤ M , then bv(x)c = bv′(x)c and {v(x)} = 0 if and only if
{v′(x)} = 0

32

x

y

1 2

1

2

Figure 2.2: Illustration of the region construction.

3. for every pair of clocks (x, y) ∈ X2 such that v(x) ≤ M and v(y) ≤ M , {v(x)} ≤ {v(y)} if
and only if {v′(x)} ≤ {v′(y)}.

The finitely many equivalence classes of this relation are called regions and RegXM denotes the set
of regions for the timed automatonA. For each valuation v of the clocks ofA, there is a single region
containing v, denoted by R(v). A region R′ is a time-successor of a region R if there exists v ∈ R
and t ∈ R+ such that v + t ∈ R′ and R′ 6= R. For example, for two clocks x and y and the maximal
constant 2, the regions form the partition represented on Figure 2.2. Regions are of several forms,
for example, bounded regions can be triangles, segments (horizontal, vertical or diagonal), or points.
Note that the colored horizontal segment in Figure 2.2 is a time-successor of the colored triangle. In
the sequel, we write

−→
R for the set of time-successors of a region R.

Remark that, by definition of the region equivalence, if a region over a set of clocksX is projected
over a subset of clocks X ′ ⊆ X , the resulting set of valuations is a region over X ′. In particular, in
any region, the set of values of a given clock is a singleton {k} with k ∈ N, or an interval of the form
(k, k + 1) with k ∈ N, or (M,+∞).

Thanks to the region equivalence, from any timed automaton, one can build a finite automaton
called the region automaton which allows to decide properties such as reachability for this timed
automaton.

Definition 2.7 (Region automaton). Let A = (L,L0, F,Σ, X,M,E, Inv) be a timed automaton. The
region automaton RG(A) of A is the transition system (S,S0, SF ,Σ,→) where states in S are pairs
(`, r) with ` ∈ L and r ∈ RegXM , initial states S0 = L0×{0X} are made of an initial location and the
region of the initial valuation, final states SF are pairs (`, r) such that ` ∈ F and r ∈ RegXM , and for
all `, `′ ∈ L, for all r, r′ ∈ RegXM and for all a ∈ Σ∪{ε} there is a transition (`, r)

a−→ (`′, r′) if there

exist two valuations v ∈ r, v′ ∈ r′ and a delay d ∈ R+ such that (`, v)
d−→ (`, v + d)

a−→ (`′, v′) is
a sequence of moves in A.

Figure 2.3 illustrates the construction of the region automaton for the timed automaton in Fig-
ure 2.1. Behaviors of region automata are tightly linked to behaviors of timed automata which are
abstracted. In particular, a run in a timed automaton can be projected in the region automaton as
follows. Given a run % = (`0, v0)

τ0,a0−→ (`1, v1) · · · (`k−1, vk−1)
τk−1,ak−1−→ (`k, vk) · · · , the projection

π% of % is π% = (`0, R(v0))
τ0,a0−→ (`1, R(v1)) · · · (`k−1, R(vk−1))

τk−1,ak−1−→ (`k, R(vk)) · · · . For ex-

ample, the projection of (`0, 0)
1,a−→ (`1, 0)

0.5,a−→ (`2, 0.5)
0.25,a−→ (`1, 0) is (`0, {0})

a−→ (`1, {0})
a−→

(`2, (0, 1))
a−→ (`1, {0}).

33

TECHNICAL PRELIMINARIES

(`0,{0}) (`1,{0})

(`2,{0})

(`2,(0,1))

a

a
a

a

a

Figure 2.3: The region automaton of the timed automaton in Figure 2.1.

More generally, the finite automaton RG(A) time-abstract simulates the timed automaton A, that
is RG(A), seen as a timed automaton with no clock, weakly timed simulates A.

Diagonal constraints In the sequel, we sometimes abuse notations, considering regions as a con-
junction of constraints instead of sets of valuations. Most regions cannot be expressed as the set of
valuations satisfying a conjunction of constraints of the form x ∼ c with x ∈ X, c ∈ [0,M] ∩ N
and ∼∈ {<,≤,=,≥, >}, because the order over the fractional parts of the clocks impacts. As a
consequence, we also need constraints of the form x − y ∼ c where x, y ∈ X, c ∈ [0,M] ∩ N and
∼∈ {<,≤,=,≥, >}. However, the model of timed automata can be enriched with guards containing
diagonal constraints. The resulting model has the same expressiveness as the original one. Indeed,
diagonal constraints can be removed by building as much copies of the timed automaton as sets of
diagonal constraints (see for example [Bou09]). The set of diagonal constraints which are satisfied
in a state is thus encoded by the copy to which the location belongs. Edges go from one copy to the
other, depending on the resets which can change the set of satisfied diagonal constraints. The con-
struction is correct because time elapsing preserves the set of diagonal constraints which are satisfied.
Unfortunately, this construction may introduce an exponential blow-up in the size of the model.

A timed version of the region automaton The region automaton can be seen in a finer way as a
timed automaton by labeling transitions with the corresponding guards and the corresponding resets
and restoring the invariants associated with locations. A transition of the form (`, r)

a−→ (`′, r′) thus

becomes ((`, r), Inv(`))
r′′,a,X′−−−−→ ((`′, r′), Inv(`′)) where r′′ is the time-successor of r equal, after

resets of clocks by the transition, to r′. As explained above, diagonal constraints introduced by the
region guards could be removed inducing a potential exponential blow-up in the size of the automaton.
However, the satisfaction of the diagonal constraints of the region guards is already encoded in regions
of the locations. As a consequence, diagonal constraints are useless and can be removed without the
usual construction.

The resulting timed automata weak timed bisimulates A. This is easily proved considering the
relation≡⊆ (L×RX)×

(
(L×RegA)×RX

)
defined as follows:

(
(`, v),

(
(`′, r′), v′

))
∈≡ if v = v′,

` = `′ and there exists r ∈
−→
r′ such that v ∈ r.

34

Part III

Determinization of Timed Automata

35

Introduction

A timed automaton is said non-deterministic if it has at least two runs reading the same timed word.
The determinization, that is, the construction of an equivalent deterministic timed automaton, is used
to address several problems such as implementability, diagnosis or test generation, where the un-
derlying analyses depend on the observable behavior. For example, in the context of testing, the
specification has to be determinized in some sense. Indeed, we need to foresee the allowed outputs
after a trace (i.e. a sequence of observations), thus the set of states after this trace. More generally,
restriction to deterministic timed automata makes a lot of problems simpler. In particular, a deter-
ministic timed automaton can easily be completed and then complemented by exchanging accepting
and non-accepting locations. This is for instance useful for model-checking. Indeed, given a deter-
ministic timed automaton Aϕ representing a property, one can easily decide whether an other timed
automaton satisfies the property by performing the intersection with the complement of Aϕ, and then
checking the emptiness of the language of the resulting timed automaton. This approach has been
used in [BDL+12] for the model-checking of weighted metric temporal logic, that is a logic that can
express properties such as "Can we reach a target location in less than 10 time units and with a cost
less than 4?".

For finite automata, determinization can be performed by a subset construction. The successor of
a state by an action naturally becomes the set of its successors by this action. For timed automata it is
not as simple because of resets. If two runs read the same word, one where a clock is reset along the
first transition and another where it is not, then for the determinization, we need to preserve the clock
information, hence we intuitively need an additional clock. For example, the timed automaton in Fig-
ure 2.4 is not determinizable. In fact, it is not complementable which implies non-determinizability.

`0 `1 `2

a

a, {x} x = 1, a

a a

Figure 2.4: A non-determinizable timed automaton from [AD94].

This timed automaton accepts runs reading two a’s separated exactly by one time unit. An unbounded
number of a’s may happen in a single time unit. Thus, the complement would need an unbounded
number of clocks to check whether an a does not occur exactly one time unit after each a. As a conse-
quence, determinizable timed automata form a strict subclass of timed automata [AD94]. Moreover,
the determinizability of timed automata is undecidable [Tri06], even with fixed resources [Fin06].
That is, given a fixed number of clocks, a maximal constant and a timed automaton, one cannot de-
cide whether there exists an equivalent deterministic timed automaton with this number of clocks and
this maximal constant.

37

Nevertheless, some timed automata classes are known to be determinizable. A first example
of determinizable class is the one of event-clock timed automata [AFH94], that is timed automata
such that each clock is associated with an action and is reset exactly when this action occurs. More
generally, timed automata whose resets do not depend on the run but only on the input word are
determinizable by performing the classical subset construction. Another example is the class of timed
automata with integer resets, that is timed automata in which resets occur only on edges whose guards
are punctual (i.e. contain a constraint of the form x = c) [SPKM08]. Finally, strongly non-Zeno
timed automata, that is timed automata in which accumulated delays diverges along all runs, are also
determinizable [AMPS98].

To overcome the non-feasibility of determinization of timed automata in general, two alternatives
have been explored: either exhibiting subclasses of timed automata which are determinizable and
provide ad hoc determinization algorithms, or constructing deterministic over-approximations. We
relate below, for each of these directions, a recent contribution.

• A pseudo-algorithm An abstract determinization procedure which effectively constructs a de-
terministic timed automaton for several classes of determinizable timed automata is presented
in [BBBB09]. Given a timed automaton A, this procedure first produces a language-equivalent
infinite timed tree, by unfolding A, introducing a fresh clock at each step. This allows one to
preserve all timing constraints, using a mapping from clocks of A to the new clocks. Then, the
infinite tree is split into regions, and symbolically determinized. Assuming that at each level
of the tree, only a finite number of clocks is used (this condition is the clock-boundedness as-
sumption), the infinite tree with infinitely many clocks can be folded up into a timed automaton
(with finitely many locations and clocks). The clock-boundedness assumption is satisfied by the
syntactic determinizable classes of timed automata mentioned above, which can thus be deter-
minized by this procedure. The resulting deterministic timed automaton is doubly exponential
in the size of A: more precisely, the number of locations of the resulting automaton is doubly
exponential in its number of clocks and in the number of clocks of A and exponential in the
number of locations of A.

• An over-approximation By contrast, Krichen and Tripakis propose in [KT09] an algorithm
applicable to any timed automaton A, which produces a deterministic over-approximation, that
is a deterministic timed automaton B accepting at least all timed words in L(A). Given a set
of new clocks, the timed automaton B is built by simulation ofA using only information stored
in the new clocks. A location of B constitutes a state estimate of A consisting of a (generally
infinite but finitely represented) set of pairs (`, v) where ` is a location of A and v a valuation
over the union of clocks ofA and B. This method is based on the use of a fixed finite automaton
(called a skeleton) which governs the resetting policy for the clocks of B. This policy is a
priori fixed, a deterministic timed automaton could thus be strictly over-approximated by this
approach. Here also the timed automaton B is doubly exponential in the size of A.

Contribution: a new algorithm In this part, we propose to improve both approaches in a sin-
gle one. To do so, we combine advantages of each of them. We want a procedure which exactly
determinizes at least the known determinizable classes, but which always terminates yielding a deter-
ministic timed automaton (potentially approximate). The heart of the problem is to find a good reset
policy. Hence, we propose to build a game using the state estimate of [KT09], in which a player called
"Determinizator" chooses the resets while the opponent "Spoiler" choses the action and its timing. A
winning strategy for Determinizator then corresponds to an exact determinization. A losing strategy
yields a deterministic over-approximation.

38

• Inspired by a game approach for fault diagnosis This approach is inspired by a game ap-
proach which has been developed for fault diagnosis by deterministic timed automata [BCD05].
The problem considered is the synthesis of fault diagnosers which are realizable with determin-
istic timed automata over fixed resources (i.e. number of clocks and granularity of clocks).
Given some resources, a game is built with the following property: there is a winning strategy
for the game if and only if there exists a deterministic diagnoser over these resources. Moreover,
the winning strategy can be turned into such a diagnoser.

• Extension of our approach to deal with ε-transitions and invariants We define extensions
of the approach to deal with ε-transitions and invariants preserving the properties of the results.
These extensions are particularly interesting for the application to test selection. Indeed, they
respectively allow to model partial observability and urgency which are primordial features for
specifications.

• Beyond the over-approximation Depending on the context, the over-approximation of lan-
guages is not the suitable approximation. We thus propose another extension of the approach
which combines under- and over-approximations. We consider timed automata with an alphabet
partitioned in two sub-alphabets. Roughly, transitions over actions in the first one are under-
approximated, and transitions over actions of the second one are over-approximated. Once
again, this extension is, in particular, motivated by the application to testing where inputs and
outputs of the systems need to be treated in different ways.

• Application to model-based conformance testing We then focus on the application of our
approach for the determinization of timed automata to model-based conformance testing.

– Model-based conformance testing Roughly, the problem asks, given the model of a spec-
ification and a black-box implementation, assumed to behave like an unknown timed au-
tomaton, whether this implementation conforms to the specification for a given confor-
mance relation. To do so, a tester interacts with the black-box sending inputs, observing
the outputs and exploring the specification to check whether these outputs are allowed,
and finally emits a verdict: pass or fail. Testing does not permit to prove the conformance
of an implementation, it is rather used to detect non-conformances. As a consequence,
the primordial property of test cases is soundness, i.e. a fail verdict occurs only in case of
non-conformance.

– Our setting In our context, specifications are given as non-deterministic timed automata
and the conformance relation is the classical tioco relation. Roughly, an implementation
conforms to a specification if, after a common trace, outputs of the implementation belong
to the set of enable outputs of the specification. The need for determinization thus appears
when we want to emit the right verdict (i.e. fail verdict should imply to non-conformance).
Indeed, to compute the enable outputs of the specification after a fixed trace, either the
specification is determinized a priori or it is determinized on-the-fly along a trace. The
drawback of the on-the-fly computation is that it could be incompatible with real-time
testing, taking too much time for decisions.

– Our contribution We propose a general framework for the off-line generation of test
cases from specifications given as non-deterministic timed automata. The determinization
of timed automata being impossible in general, we tackle the determinization problem
using our game approach with its extensions. Inputs are under-approximated to specify
less, and outputs are over-approximated to allow more behaviors. Let us consider S′ the

39

resulting deterministic timed automaton from our approach applied to a non-deterministic
specification S where both alphabets are respectively inputs and outputs. Then, the main
property of our approach is that test cases soundly generated from S′ are also sound for S,
even if the determinization was approximated. This is due to the fact that our combination
of under- and over-approximation preserves the conformance relation.
Comparisons with existing work can be found in Chapter 4. In particular, we discuss the
differences with the framework of [KT09] which also uses an approximate determiniza-
tion. The main point is that the urgency of the specification is totally removed by the
determinization in [KT09] but not by ours.

Outline This part is structured in two chapters. Our game approach for the determinization is de-
fined with its extensions and compared to existing methods in Chapter 3. Then, Chapter 4 is devoted
to the application of this approach to off-line test selection.

40

Chapter 3

A Game Approach to Determinize Timed
Automata

Introduction

Determinization of timed automata is not possible in general [AD94], moreover the problem of the
determinizability of a timed automaton is undecidable [Fin06, Tri06]. In the introduction, we pre-
sented some classes of determinizable timed automata and two existing approaches for the deter-
minization. First, a procedure which determinizes all the timed automata belonging to known deter-
minizable classes, but which does not terminate in general [BBBB09]. Second, an algorithm which,
given a timed automaton and fixed resources, yields a deterministic over-approximation over these
resources [KT09].

A very important aspect of the latter approach is the use of an a priori fixed policy for the resets.
Indeed, finding a good policy for resets is the key for determinization. Thanks to this observation,
we propose a method that improves the approaches of [BBBB09] and [KT09], despite their notable
differences. It is inspired by a game-based approach to decide the diagnosability of timed automata
with fixed resources presented by Bouyer, Chevalier and D’Souza in [BCD05]. Similarly to [KT09], in
our approach, the resulting deterministic timed automaton is given fixed resources (number of clocks
and maximal constant) in order to simulate the original timed automaton by a coding of relations
between new clocks and original ones. The core principle is the construction of a finite turn-based
safety game between two players, Spoiler and Determinizator, where Spoiler chooses an action and the
region of its occurrence, while Determinizator chooses which clocks to reset. Our main result states
that if Determinizator has a winning strategy, then it yields a deterministic timed automaton accepting
exactly the same timed language as the initial automaton, otherwise it produces a deterministic over-
approximation.

Our approach is more general than the procedure of [BBBB09], thus allowing one to enlarge
the set of timed automata that can be automatically determinized, thanks to an increased expressive
power in the coding of relations between new and original clocks, and robustness to some language
inclusions (e.g. a non-determinizable sub-automaton can be ignored if its language is included in the
one for the rest of the timed automaton). Moreover, in contrast to [BBBB09], our technique applies
to a larger class of timed automata: timed automata with ε-transitions and invariants. It is also more
precise than the algorithm of [KT09] in several respects: an adaptative and timed resetting policy,
governed by a strategy, compared to a fixed untimed one, and a more precise update of the relations
between clocks, even for a fixed policy, allow our method to remain exact on a larger class of timed

41

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

automata. The model used in [KT09] includes silent transitions, and edges are labeled with urgency
status (eager, delayable, or lazy), but urgency is not preserved by their over-approximation algorithm.
These observations illustrate the benefits of our game-based approach compared to existing work.

Another contribution is the generalization of our game-based approach to generate deterministic
under-approximations or, more generally, deterministic approximations combining under- and over-
approximations. The motivation for this generalization is to tackle the problem of off-line model-
based test generation from non-deterministic timed automata specifications [BJSK12], presented in
Chapter 4. Indeed in this context, input actions and output actions have to be considered differently
while building the approximation. We provide a notion of refinement (and the dual abstraction) and
explain how to extend our approach to generate deterministic abstractions.

This chapter is based on the eponymous paper [BSJK11a] and its research report [BSJK11b].
Its structure is as follows: Section 3.1 is devoted to the presentation of our game approach and its
properties. A comparison with existing methods is detailed in Section 3.2. Extensions of the method to
timed automata with invariants and ε-transitions are then presented in Section 3.3. In Section 3.4, we
finally discuss how the construction can be adapted to perform under-approximations, or combinations
of under- and over-approximations.

3.1 The game approach

Intuitively, the subset construction, which successfully determinize finite automata, fails for timed
automata because of non uniform resets. When performing a subset construction, it could thus be
necessary to use an unbounded number of clocks to store information from all possible paths so
far. This phenomenon on a particular timed automaton indicates that it is not determinizable by the
approach of [BBBB09]. Our objective is to design a finer approach, yet the main problem remains to
find sufficient resources (i.e. a number of clocks and a maximal constant for the guards) and suitable
resets to preserve all the timing information needed for the subset construction. One key feature of
our approach lies in the use of relations between the clocks (i.e. unions of regions corresponding to
conjunctions of atomic diagonal constraints) to encode the important timing information.

In [BCD05], given a plant —modeled by a timed automaton— and fixed resources, the authors
build a game where one player has a winning strategy if and only if the plant can be diagnosed by a
timed automaton using the given resources. Inspired by this construction, given a timed automatonA,
over some resources, and given fixed resources (k,M ′), we derive a game between two players Spoiler
and Determinizator, such that if Determinizator has a winning strategy, then a deterministic timed
automaton B, over resources (k,M ′), with L(B) = L(A) can be effectively generated. Moreover,
any strategy for Determinizator (winning or not) yields a deterministic over-approximation forA. For
clarity, we first expose the method for timed automata without ε-transitions and in which all invariants
are true. The general case is presented as an extension, in Section 3.3.

3.1.1 Game definition

Let A = (L, `0, F,Σ, X,M,E) be a timed automaton. The resources of A are (|X|,M). We aim at
building a deterministic timed automaton B with L(A) = L(B) if possible, or L(A) ⊆ L(B). In order
to do so, we fix resources (k,M ′) for B and build a finite 2-player turn-based safety game GA,(k,M ′).
Players Spoiler and Determinizator alternate moves, and the objective of player Determinizator is
to avoid a set of bad states (to be defined later). Intuitively, in the safe states, for sure, no over-
approximation has been performed.

42

THE GAME APPROACH

One consider timed automata with a single initial location to simplify notations. It is not a restric-
tion because we have ε-transitions. For simplicity, we first detail the approach in the case where A
has no ε-transitions and all invariants are true. Note that the definition can be difficult to read, but
some details of the construction of the game for the small timed automaton in Figure 3.1 with a single
clock are then given to illustrate the different steps.

`0

`1

`2

`3

0 < x < 1, a
0 < x < 1, a

0 < x < 1, a, {x}

0 < x < 1, b, {x}

x = 0, b

Figure 3.1: A timed automaton A.

Let Y be a set of clocks, disjoint fromX , and of cardinality k. This is the set of clocks of B which
encodes X , the set of clocks of A, through relations over X ∪ Y . Formally, given X a set of clocks,
a relation C over X is the union of the regions intersecting a given conjunction of atomic constraints
of the form x − y ∼ c, where x, y ∈ X , ∼∈ {<,=, >} and c ∈ N. When all constants c belong to
[−M,M] for some constant M ∈ N we denote by RelM (X) for the set of relations over X .

The idea is to perform a subtle subset construction using relations to try to determinize A. Using
union of regions instead of simple conjunctions of diagonal constraints allows to restrict their expres-
siveness with a maximal constant to have a finite number of possible relations, in the same way as for
regions. In the examples of the sequel, we often abuse notations writing conjunctions of constraints,
for readability, instead of unions of regions. For instance, ∀z, z′ ∈ X, z− z′ = 0 represents the union
of the regions of the forms {k}X and (k − 1, k)X with k an integer smaller than M , but also with the
region (M,∞)X . Relations are updates in the construction of the game using the operation

←→
R which

assigns to a union of regions R, the union of the time-successors and time-predecessors of regions in
R.

States of the game (future locations of the resulting deterministic timed automaton) are state es-
timates, symbolically represented using locations of A and regions over clocks in Y together with
relations for the clocks in X ∪Y . The risk of over-approximation is marked and propagated thanks to
booleans.

The initial state of the game is a state of Spoiler consisting of a single configuration with location
`0 (initial location of A), the simplest relation over X ∪ Y : ∀z, z′ ∈ X ∪ Y, z − z′ = 0, and the
marking > (no over-approximation was done so far), together with the null region over Y .

In each of its states, Spoiler challenges Determinizator by proposing anM ′-bounded region r over
Y , and an action a ∈ Σ, representing that Spoiler chooses to read an a in the region r. Determinizator
answers by deciding the set of clocks Y ′ ⊆ Y it wishes to reset. The next state of Spoiler contains a
region over Y (r′ = r[Y ′←0]), and a finite set of configurations: triples formed of a location of A, a
relation on clocks in X ∪ Y , and a boolean marking (> or ⊥). A state of Spoiler thus constitutes a
state estimate of A, and the role of the markings is to indicate whether over-approximations possibly
happened. A state of Determinizator is a copy of the preceding state estimate of Spoiler together with
the move of Spoiler.

Bad states player Determinizator wants to avoid are, on the one hand states of the game where all
configurations are marked ⊥ and, on the other hand, states where all final configurations (if any) are
marked ⊥.

43

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

Definition 3.1. Let A = (L, `0, F,Σ, X,M,E) be a timed automaton and (k,M ′) resources. We let
M = max(M,M ′), and Y a set of k clocks. The game associated withA and (k,M ′) is GA,(k,M ′) =
(V, v0,Act, δ,Bad) where:

• V is a finite set of vertices, partitioned into VS (vertices of Spoiler) and VD (vertices of Deter-
minizator). VS ⊆ 2L×RelM(X∪Y)×{>,⊥} × RegYM ′ and VD ⊆ VS × RegYM ′ × Σ;

• v0 = ({(`0,
∧
z,z′∈X∪Y z − z′ = 0,>)}, {0}) is the initial vertex; v0 ∈ VS;

• Act is the set of possible actions partitioned into ActS = RegYM ′ × Σ and ActD = 2Y ;

• δ = δS ∪ δD is the transition relation with δS and δD defined as follows

– δS ⊆ VS × ActS × VD consists of all edges of the form (E , r) (r′,a)−−−→ ((E , r), (r′, a)) if

r′ ∈ −→r and there exist (`, C, b) ∈ E and `
g,a,X′−−−−→ `′ ∈ E such that

[r′ ∩ C]|X ∩ g 6= ∅ ; (C6=∅)

– δD ⊆ VD × ActD × VS is the set of edges of the form ((E , r), (r′, a))
Y ′−→ (E ′, r′[Y ′←0])

where E ′ = ∪γ∈ESucce[r
′, a, Y ′](γ) where:

∗ Succe is the elementary successor function

Succe[r
′, a, Y ′](`, C, b) ={

(`′, C ′, b′) | ∃` g,a,X′−−−−→ `′ ∈ E s.t.

[r′ ∩ C]|X ∩ g 6= ∅
C ′ = up(r′, C, g,X ′, Y ′)
b′ = b ∧ ([r′ ∩ C]|X ⊆ g)

}
, (3.1)

with up the update function for relations

up(r′, C, g,X ′, Y ′) =
←−−−−−−−−−−−−−−−→
(r′ ∩ C ∩ g)[X′←0][Y ′←0] ; (3.2)

• Bad ⊆ VS is the set of bad vertices, defined by

Bad =
{

({(`j , Cj ,⊥)}j , r)
}
∪
{

({(`j , Cj , bj)}j , r) | {`j}j ∩F 6= ∅∧∀j, `j ∈ F ⇒ bj = ⊥
}

.

The objective of the game for player Determinizator is to avoid the set Bad. Player Spoiler has the
opposite objective.

Let us comment the definition of the game. The edge relation δ gives the possible moves for
each player and is deterministic: for every vS ∈ VS and (r′, a) ∈ ActS there is a single successor
vertex vD ∈ VD such that (vS , r

′, a, vD) ∈ δ and for every vD ∈ VD and Y ′ ∈ ActD there is a single
successor vertex vS ∈ VS such that (vD, Y

′, vS) ∈ δ. We now detail how these successors are defined.
A state vS = (E , r) ∈ VS is composed of a state estimate E together with a region over Y , and

elements of E are called configurations. Given vS = (E , r) ∈ VS a state of Spoiler and (r′, a) ∈ ActS
one of its moves, the successor state is defined, provided r′ is a time-successor of r, as the state
vD = (E , (r′, a)) ∈ VD if the successors of this state have a non-empty set of configurations.

Given vD = (E , (r′, a)) ∈ VD a state of Determinizator and Y ′ ∈ ActD one of its moves,
the successor state of vD is the state (E ′, r′[Y ′←0]) ∈ VS where E ′ is obtained as the set of all el-
ementary successors of configurations (`, C, b) ∈ E by move (r′, a) and after resetting Y ′: E ′ =

44

THE GAME APPROACH

{
Succe[r

′, a, Y ′](`, C, b) | (`, C, b) ∈ E
}

. The formal definition of the elementary successor function
is given above in Equation (3.1) for a configuration (`, C, b).

up(r′, C, g,X ′, Y ′) is the update of the relation on clocks in X ∪ Y after the moves of the two
players, that is after taking action a in r′, resetting X ′ ⊆ X and Y ′ ⊆ Y , and ensuring the satisfaction
of g. The resulting updated relation is also formally defined above, in Equation (3.2), as a union of
regions on X ∪ Y with maximal constant M. In the update, the intersection with g aims at stopping
runs that for sure will correspond to timed words outside of L(A). Region r′, relation C and guard g
can all be seen as zones (i.e. unions of regions) over clocksX∪Y . It is standard that elementary oper-
ations on union of regions, such as intersections, resets, future and past, can be performed effectively.
As a consequence, the update of a relation can also be computed effectively.

The boolean b keeps track of potential over-approximations. Boolean b′ is set to⊥ if either b = ⊥
or the induced guard [r′ ∩ C]|X over-approximates g: ¬([r′ ∩ C]|X ⊆ g) (this condition is written
C¬⊆ for short).

Size of GA,(k,M ′). State estimate are sets of configurations, which contain each a relation overX∪Y .
Therefore, the number of states in GA,(k,M ′) is doubly exponential in the size ofA. Also, Determiniza-
tor states have exponentially many outgoing edges in k, the size of Y . We will see in Proposition 3.1
that the number of edges in GA,(k,M ′) can be impressively decreased, since restricting to atomic resets
(resets of at most one clock at a time) does not diminish the power of Determinizator. Nevertheless,
the complexity order is not impacted and the size of the resulting deterministic timed automaton could
even be larger than with multiple resets.

3.1.2 Example

As an example, the construction of the game is illustrated on the non-deterministic timed automatonA
depicted in Figure 3.1, page 43. Part of the construction of the associated game GA,(1,1) is represented
in Figure 3.2. A has a single clock called x, and the game uses a single clock y (for simplicity,
but the construction would work with an arbitrary number of clocks). Rectangular states belong to
Spoiler and circular ones to Determinizator. Note that, to simplify the picture, the labels of states of
Determinizator are omitted (recall that they contain the predecessor state together with the move of
Spoiler).

Let us detail the first steps of the game construction. The initial state v0 contains the single
configuration (`0, x − y = 0,>) together with the initial region {0} over {y}. To determine the
possible moves of Spoiler from the initial state, we examine the outgoing transitions from `0 in A:
they all read letter a and are guarded by 0 < x < 1. Given the relation x − y = 0, this guard can
be expressed using clock y without any approximation: 0 < y < 1. Thus, the only possible move
for Spoiler from the initial state of GA,(1,1) is (0 < y < 1, a) and the successor configurations will
still have > as boolean, reflecting that no over-approximation happened so far (condition C¬⊆ is not
fulfilled). The successor state by this move is a state of Determinizator, defined as the pair formed of
its predecessor state v0 and the move of Spoiler ((0, 1), a).

From there, Determinizator has two possible moves: resetting y or not. We explain the computa-
tion of the successor configurations by the move ∅ of Determinizator, yielding the state v1. Since in
A, from location `0, there are three transitions corresponding to the move (0 < y < 1, a) of Spoiler,
three successor configurations need to be computed. The transitions to locations `0 and `1 do not reset
x, and Determinizator chose not to reset y, thus the relation for the corresponding configurations still
is x − y = 0. For the last configuration, associated with the target location `2, x is reset in A, but y
isn’t and 0 < y < 1, so we derive the relation −1 < x − y < 0. Recall that the markers of all the

45

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

`0, x− y = 0,> {0} v0

`0, x− y = 0,>
(0,1)`1, x− y = 0,>

`2,−1 < x− y < 0,>
v1

`0, 0 < x− y < 1,>
{0}`1, 0 < x− y < 1,>

`2, x− y = 0,>
v2

`0, 0 < x− y < 1,⊥
(0,1)`1, 0 < x− y < 1,⊥

`2,−1 < x− y < 0,⊥
v3

`0, 0 < x− y < 1,⊥
{0}`1, 0 < x− y < 1,⊥

`2, x− y = 0,⊥
v4

{y}

(0, 1), a

{y}
∅

{y}∅

(0, 1), a

(0, 1), a

{y}∅

Figure 3.2: Excerpt the game GA,(1,1).

configurations are > because the guard 0 < x < 1 has not been approximated. Last, the region on
{y} of v1 is naturally 0 < y < 1.

In the state v2 obtained when y is reset by Determinizator, the relations differ. For the configura-
tion with location `2 the relation is simply x − y = 0 since both x and y were reset. The two other
configurations share the relation 0 < x − y < 1 derived from 0 < x < 1 and y reset. In v2 again all
the booleans are true and the associated region is {0}. Note that from v1, the move (0 < y < 1, a) of
Spoiler yields exactly the same successors as from v0. Indeed, the only relevant configuration when
firing action a is the one with location `0 (because there no a-transition can be fired from `1 or `2) and
the configuration associated with `0 in v1 is exactly the same as the unique configuration in v0.

We end this example by detailing the construction of the successors for v2, assuming Spoiler chose
the move (0 < y < 1, a). Here also the only relevant configuration in v2 is (`0, 0 < x − y < 1,>),
because there are no a transitions in A from `1 and `2. Since the relation 0 < x − y < 1 is different
from x − y = 0, the guard on x induced by the region 0 < y < 1 is not trivial. Figure 3.3 illustrates
the computation of the guard over x induced by the relation C = 0 < x − y < 1 and the region
r′ = 0 < y < 1. The dotted area represents the set of valuations over {x, y} which satisfy 0 < y < 1,
and the dashed area represents the relation C = 0 < x − y < 1 with the maximal constant 1. The
induced guard [r′ ∩C]|{x} (i.e. the guard over x encoded by the guard r′ on y through the relation C)
is then the projection over clock x of the intersection of these two areas. In this example, the induced
guard is 0 < x < 2. In fact, the figure represents the computation of the induced guard, without
taking into account the maximal constant. Since the maximal constant is one, the induced guard is
not 0 < x < 2: it is 0 < x. Therefore, the transitions of A corresponding to the choice of Spoiler
(0 < y < 1, a) are the three possible transitions with source `0, but they are over-approximated.

46

THE GAME APPROACH

r′

C

r′ ∩ C

x

y

1 2

1

2

[r′ ∩ C]|{x}

Figure 3.3: Construction of the induced guard.

Indeed, the induced guard [r′ ∩ C]|{x} = 0 < x is not included in the original guard g = 0 < x < 1
in A, i.e., the region r′ possibly encodes more values than the guard g. As a consequence, all the
configurations in v3 and v4 are marked⊥, and thus these states belong to Bad, represented by the gray
color in Figure 3.2.

It remains to detail the computation of the relations in v3 and v4. Assuming Determinizator
chooses not to reset y leads to v3, in which for the configuration with location `0, the relation is
the smallest one containing (0 < x−y < 1)∩ (0 < y < 1)∩ (0 < x < 1), that is 0 < x−y < 1. The

relation for the last configuration is
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→(
(0 < x− y < 1) ∩ (0 < y < 1) ∩ (0 < x < 1)

)
[x←0]

, which is

same as
←−−−−−−−−−−→
(x = 0 < y < 1), that is −1 < x− y < 0.

The complete construction of the game GA,(1,1) is depicted in Figure 3.4, together with a winning
strategy for Determinizator represented by bold edges.

3.1.3 Properties of the strategies

GivenA a timed automaton and resources (k,M ′), the game GA,(k,M ′) is a finite-state safety game for
Determinizator. The possible behaviors in the game are expressed by means of strategies. Intuitively,
a strategy for player Determinizator (resp. Spoiler) chooses which move to perform from vertex
vD ∈ VD (resp. vS ∈ VS) based on the history of the game so far. It is a classical result that,
for safety games, winning strategies can be chosen positional (the chosen move only depends on the
current vertex) and they can be computed in linear time in the size of the arena [GTW02]. Therefore,
in the following, we only consider positional strategies, and simply write "strategies" for "positional
strategies".

A strategy for player Determinizator is thus described by a function σ : VD → ActD assigning
to each state vD ∈ VD a set Y ′ ⊆ Y of clocks to be reset; the successor state is then vS ∈ VS such
that (vD, Y

′, vS) ∈ δ. Symmetrically, a strategy for Spoiler is a mapping σ′ : VS → ActS assigning
to each state vS ∈ VS a region over Y and an action a ∈ Σ; the successor state is then vD ∈ VD
such that (vS , (r

′, a), vD) ∈ δ. A pair of strategies (σ, σ′) (one for each of the players) yields a path,
written πσ,σ′ in the game graph, which is finite or has a lasso shape: a prefix path starting from v0

followed by a cycle. A strategy σ for Determinizator is winning if whatever the strategy σ′ for Spoiler,
the path πσ,σ′ does not visit any Bad states.

With every strategy for Determinizator σ we associate the timed automaton Aut(σ) obtained by

47

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

`0, x− y = 0,> {0}

`0, x− y = 0,>
(0,1)`1, x− y = 0,>

`2,−1 < x− y < 0,>

`3,−1 < x− y < 0,> (0,1)
`3,−1 < x− y < 0,⊥

`3, x− y = 0,> {0}
`3, x− y = 0,⊥

`0, 0 < x− y < 1,>
{0}`1, 0 < x− y < 1,>

`2, x− y = 0,>

`0, 0 < x− y < 1,⊥
(0,1)`1, 0 < x− y < 1,⊥

`2,−1 < x− y < 0,⊥

`0, 0 < x− y < 1,⊥
{0}`1, 0 < x− y < 1,⊥

`2, x− y = 0,⊥

`3, x− y = 0,> {0}

`3, x− y = 0,⊥ {0}

`3, 0 < x− y < −1,⊥ (0, 1)

(0, 1), a

(0, 1), b
(0, 1), a

{0}, b

{0}, a{y} ∅{y}∅

{y}∅
(0, 1), a

{y}

∅

∅

∅

(0, 1), a

(0, 1), b

{y}

{y}

{y}
(0, 1), a

{y}∅

{0}, b {0}, a

{y}

∅

{y}

∅

{y}

∅

{y}{y}

∅
∅

∅

(0
, 1

),
b

(0
, 1

), b

Figure 3.4: The game GA,(1,1) and an example of winning strategy σ for Determinizator.

merging a transition of Spoiler with the transition chosen by Determinizator just after, and setting final
locations as states of Spoiler containing at least one final location of A.

Definition 3.2. Let GA,(k,M ′) = (V, v0,Act, δ,Bad) be the game built from a timed automaton A =
(L, `0, F,Σ, X,M,E) and resources (k,M ′). With a strategy for Determinizator σ : VD → ActD,
we associate the timed automaton Aut(σ) = (VS , v0, F

′,Σ, Y,M ′, E′) defined by:

• VS is the set of locations, with v0 the initial location;

• F ′ = {vS = (E , r) ∈ VS | ∃(`, C, b) with ` ∈ F} is the set of final locations;

• Y is the set of k clocks used in GA,(k,M ′);

• the set of edges is E′ = {(vS , g, a, Y
′, v′S) ∈ VS × GM ′(Y) × Σ × 2Y × VS | ∃vD ∈

VD such that (vS , (g, a), vD) ∈ δ, (vD, Y
′, v′S) ∈ δ and σ(vD) = Y ′}.

48

THE GAME APPROACH

The main result of the chapter is stated in the following theorem and links strategies of Deter-
minizator with deterministic over-approximations of the initial timed language.

Theorem 3.1. Let A be a timed automaton with no ε-transition and no invariant, and (k,M ′) re-
sources. For every strategy σ of Determinizator in GA,(k,M ′), Aut(σ) is a deterministic timed au-
tomaton over resources (k,M ′) and satisfies L(A) ⊆ L(Aut(σ)). Moreover, if σ is winning, then
L(A) = L(Aut(σ)).

The full proof is given in the general case with ε-transitions and invariants in A in Section 3.3.3;
we however give below the main ideas for this simpler case.

Sketch. Given a strategy σ for Determinizator, we show that there exists a weak timed simulation
between A and Aut(σ), namely the relation R defined by: R = {((`, v), ((E , r), v′)) | ∃(`, C, b) ∈
E , (v, v′) ∈ C ∧ v′ ∈ −→r }. This entails the language inclusion L(A) ⊆ L(Aut(σ)).

Assuming now that σ is winning, given a run % in Aut(σ), one can build backwards a path in
A, from an accepting configuration to the initial one applying elementary predecessors. Since σ is
winning, guards are not over-approximated in Aut(σ), and there is a run inA with the same delays as
in % and following the path. This entails the reverse language inclusion L(Aut(σ)) ⊆ L(A). �

Standard techniques based on the computation of attractors allow one to check for the existence
of a winning strategy for Determinizator, and in the positive case, to extract such a strategy [GTW02].
Our game construction can thus be applied to construct deterministic equivalent (or deterministic over-
approximations) to timed automata. On our running example, on Figure 3.4, a winning strategy σWin

for Determinizator is represented by the bold edges. This strategy yields the deterministic equivalent
for Aut(σWin) depicted in Figure 3.5.

`0, x− y = 0,> {0}
`0, x− y = 0,>

(0,1)`1, x− y = 0,>
`2,−1 < x− y < 0,>

`3, x− y = 0,> {0}
`3, x− y = 0,⊥

0 < y < 1, a

0 < y < 1, a

0 < y < 1, b

{y}

Figure 3.5: The deterministic TA Aut(σWin) obtained by our construction.

Remark 3.1. In the approach for the diagnosability problem [BCD05] from which our game con-
struction is inspired, the existence of a winning strategy is equivalent to the existence of a diagnoser
with given resources. In comparison, recall that the determinizability problem with fixed resources is
undecidable [Tri06, Fin06]. As a consequence, in our context, there is no hope to have a reciprocal
statement to the one of Theorem 3.1. In particular, assuming that A can be determinized with re-
sources (k,M ′) does not imply that Determinizator has a winning strategy in GA,(k,M ′). To illustrate
this phenomenon, Figure 3.6 represents a timed automaton A which is determinizable with resources
(1, 1), but for which Determinizator has no winning strategy in GA,(1,1). Intuitively the self loop on `0
forces Determinizator to reset the clock in its first move; afterwards, on each branch of the automaton
(via `1, `2 or `3), the behavior of A is strictly over-approximated in the game. However, each over-
approximation on a branch is “covered” by the other branches, so that the losing strategy yields a
deterministic equivalent to A, represented on Figure 3.7.

49

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

`0 `2 `4

`1

`3

0 < x < 1, a

0 <
x <

1, a

0 < x < 1, a

0 < x < 1, a, {x}
x = 1, a, {x}

1 <
x, a

, {x}

0 < x < 1, a, {x}

Figure 3.6: A determinizable TA for which there is no winning strategy for Determinizator.

`0, x− y = 0,> {0}

`0, x− y = 0,>

{0}`1, 0 < x− y < 1,>
`2, 0 < x− y < 1,>
`3, 0 < x− y < 1,>

`0, x− y = 0,>

{0}
`1, 0 < x− y < 1,>
`2, 0 < x− y < 1,>
`3, 0 < x− y < 1,>
`4, x− y = 0,⊥

`4, x− y = 0,> {0}

0 < y < 1, a

{y}

0 < y < 1, a, {y}

0 < y < 1, a

{y}

y
=

1, a{y}

y
>

1, a, {y}

y
=

1,
a

{y
}

y
>

1,
a,
{y
}

y
=

0, a

y
=

0,
a

Figure 3.7: A deterministic equivalent to the TA in Figure 3.6 obtained with a losing strategy.

Remark 3.2. The size of the game is doubly exponential in the size of the original timed automaton
and we do not have a better upper bound for the resulting deterministic timed automaton. Note that
any deterministic timed automaton Aut(σ) has diagonal guards, since its transitions are guarded by
regions over Y . Yet, this diagonal guards can be removed avoiding the traditional exponential blowup,
because the satisfaction of diagonal constraints is already encoded in the region associated with each
location. From a timed automaton without diagonal guards, our method thus allows one to construct
a deterministic over-approximation without diagonal guards.

Atomic resets We now establish that winning strategies for Determinizator can be chosen in the
restricted class of positional strategies with atomic resets. A strategy σ for Determinizator is with
atomic resets if for every move Y ′ ⊆ Y in σ, |Y ′| ≤ 1: in words, at most one clock is reset on each
move of Determinizator.

Proposition 3.1. Determinizator has a winning strategy σ : VD → ActD if and only if it has a
winning strategy with atomic resets σ′ : VD → Y ∪ {∅}.

Proof. The proof only treats the direct implication because the other is trivial. Intuitively two clocks
of Y with the same value do not give more information than a single one, so that it is never worth

50

THE GAME APPROACH

resetting two or more clocks. More precisely, any timed automaton can be turned into a weakly
timed bisimilar one with atomic resets only, using a construction similar to the one that removes clock
transfers (i.e., updates of the form x := x′) [BDFP04].

Let us assume that Y is totally ordered, and for Y ′ ⊆ Y , we write min(Y ′) for the smallest
element in Y ′ according to the total order, with the convention that min(∅) = ∅ . Given a winning
strategy σ : VD → ActD for Determinizator, we define σ′ : VD → Y ∪ {∅}, with atomic resets,
iteratively. The idea is to simulate σ using only atomic resets. Instead of having several clocks with
same value, we reset only one clock and use a mapping, along the construction, to store which clock
is used to represent which set of clocks. Then, one considers triples with a state reached following σ′,
the corresponding state reached following σ and a mapping γ which assigns to each clock, the clock
used in the state of σ′ to represents its value in the state of σ.

• Temp := {(v, v, Id) ∈ VD × VD × Y Y | ∃(r, a) ∈ ActS s.t. (v0, r, a, v) ∈ δ}

• Vdef := ∅

• While Temp 6= ∅

– take (v′, v, γ) in Temp

– if v′ /∈ Vdef then

∗ σ′(v′) := min(σ(v))

∗ γ′(y) :=

{
σ′(v′) if y ∈ σ(v),
γ(y) otherwise

∗ Temp := Temp ∪ {(w′,w, γ′) | ∃v′S , vS ∈ VS , ∃r′′ ∈ RegYM ′ , ∃b ∈ Σ s.t. v′
σ′(v′)−−−→

v′S
(r′′,b)−−−→ w′ ∧ v

σ(v)−−→ vS
(r′′

[y←γ′(y)],b)−−−−−−−−→ w }
Note that by definition of the set of edges of the game, w = (vS , (r

′′
[y←γ′(y)], b)) and

w′ = (v′S , (r
′′, b)).

∗ Vdef := Vdef ∪ {v′}

• For all vD ∈ VD \ Vdef

– σ′(vD) = ∅

Intuitively, the above algorithm is a traversal of Aut(σ). We propagate the encoding of the clocks
of σ by clocks in σ′ and iteratively build σ′. The set Temp represents the triples to be processed and
the set Vdef represents the states of Determinizator in the game for which the strategy σ′ is defined.
Moreover, the last step of the algorithm consists in arbitrarily defining the strategy for the unvisited
states. By construction, these states are not reachable when Determinizator follows σ′ hence this
choice does not impact. Thus, σ′ is well defined. The correction is a bit tedious, but intuitive: relations
in the states in σ′ give at least as much information as in σ because the time information of each clock
x in σ is carried by γ(x) in the corresponding state in σ′. The duplication of the information does not
help to win.

Let us prove formally that σ′ is a winning strategy using the following lemma.

Lemma A. For all (v′, v, γ) ∈ Vdef with v′ = (Ev′ , (r
′, a′)) and v = (Ev, (r, a)):

i) a′ = a

51

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

ii) r = r′[y←γ(y)]

iii) v has no predecessor in Bad

iv) ∀w′ such that ∃(v′S , r
′′, b) ∈ VS×ActS with v′

σ′(v′)−−−→ v′S
(r′′,b)−−−→ w′, then ∃(w0, γ0) ∈ VD×Y Y

such that (w′,w0, γ0) ∈ Vdef

v) Ev ⊆ {(`, C ′[y←γ(y)],>) | (`, C ′,>) ∈ Ev′} ∪ {(`, C,⊥)}

vi) Ev′ ⊆ {(`, C ′, b′) | (`, C ′[y←γ(y)], b) ∈ Ev}

The proof of Lemma A is simple but tedious. Let us first assume that this lemma is true. The fifth
item implies that for all (v′, v, γ) ∈ Vdef , (v /∈ Bad⇒ v′ /∈ Bad). The third item implies that the v′’s
are not in Bad. The fourth item implies that only these states v′ (appearing in Vdef) impact on the fact
that σ′ is winning or not. As a consequence, if Lemma A is true, then σ′ is winning. �

Let us now prove Lemma A.

Proof of Lemma A. Remark that all triples in Vdef are first added to Temp. Items i), ii), iii) are
satisfied by triples added to Temp at the initialization. Moreover, the updates of Temp only add triples
satisfying i) and ii) and whose a predecessor vS of the second element is a state of Spoiler reachable
following σ, hence iii) is satisfied too (only the markers of the configurations of vS impact on whether
vS ∈ Bad or not, and all the predecessors of v share the same markers over the configurations, by
definition of δ). Therefore, items i), ii), iii) are satisfied for all triples of Temp and thus of Vdef .

Let us prove by induction that items v) and vi) are satisfied for all triples (v′, v, γ) ∈ Vdef .
Triples added to Temp at the initialization are such that Ev = Ev′ , hence they satisfy v) and vi).
Let us prove now that if (v′, v, γ) ∈ Vdef satisfies v) and vi), then triples added to Temp during
the inner loop for this triple, satisfy v) and vi) too. Let (w′,w, γ′) with w′ = (Ew′ , (r

′′, b)) and
w == (Ew, (r

′′
[y←γ(y)], b)) be any triple added to Temp from (v′, v, γ).

v) Let us first prove that Ew ⊆ {(`, C ′[y←γ′(y)],>) | (`, C ′,>) ∈ Ew′} ∪ {(`, C,⊥)}. For any
(`, C,>) ∈ Ew, there exists (`0, C0,>) ∈ Ev such that by definition of the game:

– ∃`0
g,a,X′−−−−→ ` ∈ E s. t. [r′[y←γ(y)] ∩ C0]|X ∩ g 6= ∅

– C =
←−−−−−−−−−−−−−−−−−−−−−−→
(r′[y←γ(y)] ∩ C0 ∩ g)[X′←0][σ(v)←0]

– [r′[y←γ(y)] ∩ C0]|X ⊆ g

By induction hypothesis, there exists (`0, C
′
0,>) ∈ Ev′ such that C ′0[y←γ(y)] = C0, then:

– [r′[y←γ(y)] ∩ C
′
0[y←γ(y)]]|X ∩ g 6= ∅

– [r′[y←γ(y)] ∩ C
′
0[y←γ(y)]]|X ⊆ g

This implies that:

– [r′ ∩ C ′0]|X ∩ g 6= ∅
– [r′ ∩ C ′0]|X ⊆ g

52

THE GAME APPROACH

Indeed, [r′∩C ′0]|X ⊆ [r′|Imγ∪X∩C
′
0|Imγ∪X]|X = [r′[y←γ(y)]∩C

′
0[y←γ(y)]]|X . Then [r′′∩C ′0]|X∩

g = ∅ implies that [r′ ∩C ′0]|X = ∅ which is not possible if v′ is a state of the game. As a conse-

quence, there is a configuration (`, C ′,>) in Ew′ such that C ′ =
←−−−−−−−−−−−−−−−−−−→
(r′ ∩ C ′0 ∩ g)[X′←0][σ′(v′)←0].

Then:
C ′[y←γ′(y)] =

←−−−−−−−−−−−−−−−−−−→
(r′ ∩ C ′0 ∩ g)[X′←0][σ′(v′)←0][y←γ′(y)]

=
←−−−−−−−−−−−−−−−−−−→
(r′ ∩ C ′0 ∩ g)[X′←0][σ′(v′)←0][y←γ(y)][σ(v)←σ′(v′)]

=
←−−−−−−−−−−−−−−−−−−−−−−→
(r′[y←γ(y)] ∩ C

′
0[y←γ(y)] ∩ g)[X′←0][σ(v)←σ′(v′)]

=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(r′[y←γ(y)] ∩ C

′
0[y←γ(y)] ∩ g)[X′←0][σ(v)←0].

Therefore, (w′,w, γ′) satisfies v). Finally, all the triples in Vdef are added in Temp first, so that
by induction v) is satisfied by all the triples in Vdef .

vi) Let us now prove that Ew′ ⊆ {(`, C ′, b′) | (`, C ′[y←γ(y)], b) ∈ Ew}. For any (`, C ′, b′) ∈ Ew′ ,
there exists (`0, C

′
0, b) ∈ Ev′ such that:

– ∃`0
g,a,X′−−−−→ ` ∈ E s. t. [r′ ∩ C ′0]|X ∩ g 6= ∅

– C =
←−−−−−−−−−−−−−−−−−−→
(r′ ∩ C0 ∩ g)[X′←0][σ′(v′)←0]

By induction hypothesis, there exists (`0, C
′
0[y←γ(y)], b) ∈ Ev, then:

– ∅ 6= [r′ ∩ C ′0]|X ∩ g ⊆ [r′[y←γ(y)] ∩ C
′
0[y←γ(y)]]|X ∩ g

As a consequence, there is a configuration (`, C, b) in Ew such that the relation C is equal
to
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(r′[y←γ(y)] ∩ C

′
0[y←γ(y)] ∩ g)[X′←0][σ(v)←0], which has been proved to be equal to C ′[y←γ′(y)]

above. Therefore vi) is satisfied by (w′,w, γ′) and, by induction, by all the triples in Vdef .

Finally, let us prove that iv) is also satisfied for all triples in Vdef . Let (v′, v, γ) be a triple in Vdef .
Let w′ = (Ew′ , (r

′′, b)) be a state of Determinizator such that ∃(v′S , r
′′, b) ∈ VS × ActS such that

(v′, σ′(v′), v′S) ∈ δ ∧ (v′S , (r
′′, b),w′) ∈ δ. Then, there exists (`0, C

′
0, b
′
0) ∈ Ew′ such that:

• ∃`0
g,b,X′−−−−→ `′ ∈ E s. t. [r′′ ∩ C ′0]|X ∩ g 6= ∅

Moreover, there exists (`1, C
′
1, b
′
1) ∈ Ev′ such that:

• ∃`1
g1,a,X′1−−−−→ `0 ∈ E s. t. [r′ ∩ C ′1]|X ∩ g1 6= ∅

• C ′0 =
←−−−−−−−−−−−−−−−−−−−→
(r′ ∩ C ′1 ∩ g1)[X′←0][σ′(v′)←0].

As a consequence there exists a configuration (`, C ′1[y←γ(y)], b1) ∈ Ev such that:

• ∅ 6= [r′ ∩ C ′1]|X ∩ g1 ⊆ [r′[y←γ(y)] ∩ C
′
1[y←γ(y)]]|X ∩ g1.

Then there exists a configuration (`0, C0, b0) of the successor vS of v by the reset σ(v) such that:

• C0 =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(r′[y←γ(y)] ∩ C

′
1[y←γ(y)] ∩ g1)[X′←0][σ(v)←0]

53

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

If we define γ′ as expected (γ′(y) = γ(y) if y /∈ σ(v), γ′(y) = σ′(v′) otherwise) then C0 =
C ′0[y←γ′(y)]. Moreover, ∅ 6= [r′′ ∩ C ′0]|X ∩ g ⊆ [r′′[y←γ′(y)] ∩ C

′
0[y←γ′(y)]]|X ∩ g. Hence (r′′[y←γ′(y)], b)

is a possible move of Spoiler from vS . Therefore there exists w ∈ VD such that (v, σ(v), vS) ∈ δ and
(vS , (r

′′
[y←γ′(y)], b),w) ∈ δ. As a consequence, the triple (w′,w, γ′) is added to Temp, then when this

triple is taken from Temp, either σ′(w′) is not already defined and this triple is added to Vdef or σ′(w′)
has been already defined and another triple of the form (w′,w0, γ0) has been added in Vdef . Therefore
iv) is satisfied by all triples (v′, v, γ) in Vdef . �

We gave the definition of our game approach for the determinization of timed automata without
invariants and ε-transitions. Before extending the procedure to a richer model, we compare, in Sec-
tion 3.2 this first version to two existing approaches which were introduced for this class of timed
automata.

3.2 Comparison both existing methods

In this section, we compare the game approach presented in Section 3.1 to the existing methods: on
the one hand, the approximation determinization algorithm from [KT09] and on the other hand the
determinization procedure from [BBBB09]. We argue that our approach is both more precise than the
algorithm of [KT09] and more general than the procedure of [BBBB09].

3.2.1 Comparison with [KT09]

First of all, our method extends [KT09] since each time the latter algorithm produces a determinis-
tic equivalent with resources (k,M ′) for a timed automaton A, there is a winning strategy for De-
terminizator in GA,(k,M ′). To be more precise, in [KT09] the construction of a deterministic over-
approximation is guided by a skeleton, a finite automaton which governs the clock resets in the deter-
ministic timed automaton in construction. The resets are thus defined by a regular untimed language.
Our strategies are more powerful than the skeletons of [KT09] since the resets also depend on the
regions the actions are taken in. Strategies can thus be seen as timed skeletons (the resets are defined
by a regular timed language with given resources) and the game allows us to choose a good strategy,
contrary to the skeletons of [KT09] that are fixed a priori. Also, when a strategy is winning, we know
that the determinization is exact, while there is no such criterion in the work of Krichen et al. [KT09].

Second, contrary to the algorithm presented in [KT09], our game-approach is exact on determin-
istic timed automata: given a DTAA over resources (k,M), Determinizator has a winning strategy in
GA,(k,M). This is again a consequence of the more general fact that a strategy can be seen as a timed
generalization of the notion of skeleton, and solving our game amounts to finding a relevant timed
skeleton. As an example, on the timed automaton of Figure 3.1, with resources (1, 1) and resetting
the single clock y after each action, the algorithm of [KT09] produces a strict over-approximation,
represented on Figure 3.8, while our approach, with the same resources, is exact.

Last, our approach also improves the precision of the relations between clocks by taking the orig-
inal guard into account when computing the updated relation. Precisely, an intersection with the
guard in the original TA is performed during the computation of the update up. This easy modifi-
cation refines the over-approximation given by [KT09], and thus our method would perform better
than [KT09] even assuming the same simple resetting policies (i.e. assuming strategies correspond to
regular untimed languages) as in the over-approximation algorithm.

54

COMPARISON BOTH EXISTING METHODS

`0, x = y

`0, 0 < x− y < 1
`1, 0 < x− y < 1
`2, x = y

`0, 0 ≤ x− y
`1, 0 ≤ x− y
`2, x = y

`3, 0 ≤ x− y
0 < y < 1, a,

{y}

0 ≤ y < 1, a, {y}

0 ≤ y < 1, a, {y}

0 ≤ y
< 1, b,

{y}

0 ≤ y < 1, b, {y}

Figure 3.8: The result of algorithm [KT09] on the running example.

Inspired by the skeletons of [KT09], we explain how to naturally extend the class of event-clock
timed automata into a class determinizable by our game-based approach. An event-clock automaton
over alphabet Σ is a timed automaton with one clock per action which is reset exactly when the
associated action is fired. The class of event-clock timed automata is determinizable [AFH94], and can
be determinized by the procedure of [BBBB09]. In fact, event-clock automata enjoy a strong input-
determinacy property: resets only depend on the untiming of the input word and neither on the timing
information, nor on the run in the automaton. To extend the class while preserving determinizability,
we introduce the notion of timed skeleton.

Definition 3.3. Given a timed automaton A = (L, `0, F,Σ, X,M,E), a timed skeleton is a deter-
ministic timed automaton Sk = (LSk, `0

Sk, ∅,Σ, X,M,ESk) over the same resources (X,M) such
that: Sk is complete and it governs the clock resets in A, that is, in the synchronous product of A and
Sk, clock resets of both automata coincide.

This notion is inspired by the skeleton of Krichen and Tripakis [KT09], a deterministic finite au-
tomaton that guides the construction of a deterministic over-approximation by fixing the clock resets.
It is also linked with input-determinacy, since if a timed automaton admits a timed skeleton, then the
resets only depend on the input timed word and not the run.

Proposition 3.2. Let A be a timed automaton with resources (X,M). If A admits a timed skeleton,
then A is determinizable by our game-based approach with resources (|X|,M).

Proof. The idea of the proof is that the timed skeleton allows one to define a winning strategy for
Determinizator. It is based on the fact that admitting a timed skeleton is equivalent to having resets
dependent on the input timed word but not on the run.

Let A = (L, `0, F,Σ, X,M,E) be a timed automaton that admits a timed skeleton Sk = (LSk,
`0

Sk, ∅,Σ, X,M,ESk). We consider the game G = GA,(|X|,M) built from A with the same resources
(|X|,M). If Y is the set of new clocks, we write γ : X → Y for the bijection between X and Y .

Let us show that Sk induces a winning strategy for Determinizator: the strategy follows the resets
from the skeleton. Formally, the strategy σ : VD → ActD for Determinizator can be defined as
follows:

• Temp := {(vD, `0
Sk) ∈ VD × LSk | ∃(r, a) ∈ ActS s.t. (v0, (r, a), vD) ∈ δ}

• Vdef := ∅

• While Temp 6= ∅

55

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

– pick and remove (v′, `′Sk) in Temp

– if v′ /∈ Vdef then

∗ Vdef := Vdef ∪ {v′}
∗ σ(v′) := X ′[x←γ(x)] where X ′ is the set of clocks reset along the edge outgoing from
`′Sk in Sk with a guard g ⊇ r[y←γ−1(y)], and the action a such that v′ = (E ′, (r, a)).

∗ Temp := Temp ∪ {(v′′, `′′Sk) | ∃(v′S , r
′′, b) ∈ VS × ActS s.t. (v′, σ(v′), v′S) ∈

δ ∧ (v′S , (r
′′, b), v′′) ∈ δ}

• For all vD ∈ VD \ Vdef such that σ(vD) is not defined

– σ(vD) = ∅

Intuitively, the strategy is defined performing the on-the-fly product with the skeleton, and simply
following its reset policy through the mapping γ, which is simply a bijection between clocks of X
and their copies in Y .

The correction of this construction is intuitive. It is based on the fact that, in every configuration
of every location of the deterministic timed automaton resulting from strategy σ in G, the relation is
included in ∧x∈Xx− γ(x) = 0. Indeed, all the states of the resulting deterministic timed automaton
are added in Vdef , hence they are also added in Temp. All the states added in Temp at the initialization
share the common relation ∧x∈X,y∈Y x − y = 0 which, in particular, contains ∧x∈Xx − γ(x) = 0.
Moreover, by definition of the skeleton, for each element (v′, `′Sk) in Temp, the resets of transitions
from locations of configurations of v′ are the same, and they are fixed by the resets of transitions from
`′Sk. As the resets in σ are defined following the same skeleton up to the mapping γ, relations always
contain ∧x∈Xx − γ(x) = 0. As a consequence, there is no over-approximation of guard and the
strategy σ is winning. �

The proof of Proposition 3.2 shows that there exists a winning strategy staying in states where
relations are such that each clock in X is equal to a clock in Y . Hence, the result would also hold
even if relations were restricted to mappings, and for the associated winning strategy, all the config-
urations have their boolean to >. Moreover, if a timed automaton admits a timed skeleton, it can be
determinized using the determinization procedure from [BBBB09].

3.2.2 Comparison with [BBBB09]

Our approach generalizes the one in [BBBB09] since, for any timed automaton A such that the pro-
cedure in [BBBB09] yields an equivalent deterministic timed automaton with k clocks and maximal
constant M ′, there is a winning strategy for Determinizator in GA,(k,M ′). Intuitively this is a conse-
quence of the fact that relations between clocks of A and clocks in the game generalize the mapping
from [BBBB09], since a mapping can be seen as a restricted relation, namely a conjunction of con-
straints of the form x− y = 0.

Moreover, our approach strictly broadens the class of automata determinized by the procedure
of [BBBB09] in two respects.

• First of all, our method allows one to cope with some language inclusions. For example, the TA
depicted on the left-hand side of Figure 3.9 cannot be treated by the procedure of [BBBB09]
but is easily determinized using our approach. In this example, the language of timed words

56

COMPARISON BOTH EXISTING METHODS

accepted in location `3 is not determinizable. This will cause the failure of [BBBB09]. How-
ever, all timed words accepted in `3 are also accepted in `4, and the language of timed words
accepted in `4 is clearly determinizable. Our approach allows one to deal with such language
inclusions thanks to the boolean (> or⊥) associated with each configuration, and will thus pro-
vide an equivalent deterministic timed automaton. This determinized version of the TA from
Figure 3.9, left, was computed using a prototype implementation. We do not reproduce it here
because it is quite large: it has 41 locations.

• Second, the relations between clocks of the TA and clocks of the game are more precise than the
mappings used in [BBBB09]. For instance, the relation x− y = 2 suffices to express the value
of a clock x thanks to a clock y; as another example, one can deduce that x′ < 2 from y′ < 1
assuming the relation 0 < x′−y′ < 1. The precision we add by considering relations rather than
mappings is sometimes crucial for the determinization. For example, the TA represented on the
right-hand side of Figure 3.9 can be determinized by our game-approach, but not by [BBBB09].
Intuitively, the loop of location `0 forces the procedure of [BBBB09] to introduce a new clock
at each step of its unfolding, whereas the language remains the same if this loop is removed. A
deterministic timed automaton obtained using our prototype using resources (1, 1) for the TA
from Figure 3.9, right, is depicted on Figure 3.10.

`0

`4

`1 `2

`3

b

a

a, {x} x = 1, a

a a

b `0 `1
x = 1, a

x ≥ 2, ax = 1, a, {x}

Figure 3.9: Examples of determinizable TA not treatable by [BBBB09].

y = 1, a, {y} y = 1, a y > 1, a y > 1, a

y > 1, a

y > 1, a y = 1, a
y > 1, a

y = 1, ay > 1, a

Figure 3.10: A deterministic equivalent of the TA of Figure 3.9, right.

Beyond broadening the class of timed automata that can be automatically determinized, our ap-
proach performs better on some timed automata by providing a deterministic timed automaton with
less resources. This is the case on the running example of Figure 3.1. The deterministic automaton
obtained by [BBBB09] is depicted in Figure 3.11: it needs 2 clocks when our method only needs one.

57

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

`0, y0 {0}
`0, y0

(0, 1)× {0}`1, y0
`2, y1

`3, y0 {0}
`3, y1

`3, y0 {0} × (0, 1)

0 < y0 < 1, a, {y1}

0 < y0 < 1, a, {y1}

y1 = 0, b,
{y0}

0 < y1 < y0 < 1, b, {y0}

Figure 3.11: The result of procedure [BBBB09] on our running example.

The same phenomenon happens with timed automata with integer resets. Timed automata with
integer resets, introduced in [SPKM08], form a determinizable subclass of timed automata, where
every edge (`, g, a,X ′, `′) satisfies X ′ 6= ∅ if and only if g contains an atomic constraint of the form
x = c for some clock x. Intuitively, a single clock is needed to represent clocks of A since they all
share a common fractional part.

Proposition 3.3. For every timed automaton A with integer resets and maximal constant M , Deter-
minizator has a winning strategy in GA,(1,M).

Proof. Let A be a timed automaton with integer resets over set of clocks X and maximal constant
M . Note that, by definition of TA with integer resets, along any run of A, all clocks share the same
fractional part. This crucial property ensures that an equivalent deterministic TA with one clock can
be constructed. Precisely, in GA,(1,M) we consider the strategy σ for Determinizator which resets
the single clock y exactly for transitions that correspond to at least one transition of A containing an
equality constraint (atomic constraint of the form x = c). SinceA is a TA with integer resets, clocks in
X cannot be reset out of these transitions. Therefore, for every clock x ∈ X , the value of y is always
smaller than the one of x in Aut(σ) and each relation contains either x− y = c with 0 ≤ c ≤ M , or
x − y > M . In the latter case, necessarily x > M . As a consequence, guards over X can always be
exactly expressed in GM ({y}). This ensures that only states where all configurations are marked >
will be visited in Aut(σ). Hence, σ is winning and L(Aut(σ)) = L(A). Note that Aut(σ) is still a
TA with integer resets and its size is doubly exponential in the size of A. �

As a consequence of Proposition 3.3, any timed automaton with integer resets can be determinized
into a doubly exponential single-clock timed automaton with the same maximal constant. This im-
proves the result given in [BBBB09] where any timed automaton with integer resets and maximal con-
stant M can be turned into a doubly exponential deterministic timed automaton, using M + 1 clocks.
Moreover, our procedure is optimal on this class thanks to the lower-bound provided in [MK10]. Note
also that the one-clock timed automaton we obtain coincides with the one obtained by the ad-hoc
determinization of integer reset timed automata [MK10].

We discussed how our game approach improves the two existing methods for the determinization
of timed automata. In the sequel, we define extensions of the game construction in order to deal with
invariants and ε-transitions.

58

EXTENSION TO ε-TRANSITIONS AND INVARIANTS

3.3 Extension to ε-transitions and invariants

In Section 3.1 the construction of the game and its properties were presented for a restricted class of
timed automata with no ε-transitions and no invariants. Let us now explain how to extend the previous
construction to deal with these two aspects.

3.3.1 ε-transitions

Let us first explain informally the modifications that are needed in the definition of the game to deal
with ε-transitions.

Quite naturally, in order to remove ε-transitions, an ε-closure has to be performed when computing
new states in the game. This closure calls for an extension of the structure of the states: delays might
be mandatory before taking an ε-transition, and hence, potentially distinct regions are attached to
configurations of a state in the game. This phenomenon is illustrated on the example of TA depicted
in Figure 3.12, left. The resulting game, is represented Figure 3.12, right, for resources (1, 2). There,
the rightmost state is composed of the state reached without ε-transitions {(`1, x − y = 0,>, {0})},
and its ε-closure. For instance, the configuration (`1, x−y = −2,>) can only be reached after two ε-
transitions of the original TA, taken respectively after one and two time units. Thus this configuration
can only happen when in clock y reaches region {2} or later, whereas the configuration (`1, x− y =
0,>) could be observed already in region {0}. As a consequence, within a state, configurations can
have different associated regions, each region being a time-successor of the initial region of the state.

`0 `1
x = 0, a

x = 1, ε, {x}

`0, x− y = 0,>, {0}

`1, x− y = 0,>, {0}
`1, x− y = −1,>, {1}
`1, x− y = −2,>, {2}
`1, x− y < −2,⊥, (2,∞)

y = 0, a

{y}

∅

Figure 3.12: A timed automaton with ε-transitions and the resulting ε-closure.

Computing the ε-closure of a state in the game amounts to computing the set of reachable config-
urations by ε-transitions, and associating with every new configuration its corresponding region. This
computation can be seen as a construction of a branch of the game where εwould be a standard action,
but where Determinizator is not allowed to reset any clock; all the states obtained this way are then
gathered into a unique state. For instance, Figure 3.13 represents the computation of the ε-closure
discussed above, for a single clock y and maximum constant 2. This alternative point of view justifies
that the computation always terminates.

Apart from the structure of the individual states, the set Bad also needs to be redefined when
taking into account possible ε-transitions, in particular because regions are now attached to config-
urations and no longer to states. There are two new situations where an over-approximation might
have occurred. First, if the ε-closure leads to a configuration with a final location after a non-zero
delay. Second, if the configurations associated with a final locations in the upper part of the state (i.e.
bearing the initial region) are marked ⊥. In both cases, the state will be declared as final in the timed
automaton Aut(σ) for any fixed strategy σ. However, Determinizator needs to avoid these states in
order to ensure that no over-approximation occurred. Therefore, in these two situations, the state is
added to the set Bad.

We now come to the formal definition of the game.

59

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

`1, x− y = 0,>, {0} `1, x− y = −1,>, {1}

`1, x− y = −2,>, {2}`1, x− y < −2,⊥, (2,∞)

y = 1, ε

y = 2, ε

y > 2, ε

y > 2, ε

Figure 3.13: Step-wise computation of the ε-closure, before merging.

Definition 3.4. Let A = (L, `0, F,Σ, X,M,E) be a timed automaton and (k,M ′) resources. We let
M = max(M,M ′), and Y a set of k clocks. The game associated withA and (k,M ′) is GA,(k,M ′) =
(V, v0,Act, δ,Bad) where:

• V = VS t VD is the finite set of vertices, with VS ⊆ 2L×RelM(X∪Y)×{>,⊥}×RegY
M′ and VD ⊆

VS × RegYM ′ × Σ;

• v0 = clε({(`0,
∧
z,z′∈X∪Y z − z′ = 0,>, {0})}) is the initial vertex, where clε is defined in

Equation (3.5) below, and v0 ∈ VS;

• Act = ActS t ActD is the set of possible actions, ActS = RegYM ′ × Σ and ActD = 2Y ;

• δ = δS ∪ δD is the transition relation with δS and δD defined as follows:

– δS ⊆ VS × ActS × VD is the set of edges of the form E (r′,a)−−−→ (E , (r′, a)) if there exists

(`, C, b, r) ∈ E such that r′ ∈ −→r and there exists `
g,a,X′−−−−→ `′ ∈ E such that condition C 6=∅

is satisfied, that is [r′ ∩ C]|X ∩ g 6= ∅,

– δD ⊆ VD × ActD × VS is the set of edges of the form (E , (r′, a))
Y ′−→ E ′ where

E ′ =
⋃
γ∈E

⋃
γ′∈Succεe[r

′,a,Y ′](γ)

clε(γ
′); (3.3)

∗ where Succεe is the elementary successor function

Succεe[r
′, a, Y ′](`, C, b, r) = {(`′, C ′, b′, r′[Y ′←0]) |

(`′, C ′, b′) ∈ Succe[r
′, a, Y ′](`, C, b)},

(3.4)

∗ and clε is the ε-closure, clε(`, C, b, r) is defined as the least fixpoint of the functional

X 7→ (`, C, b, r) ∪
⋃

(`′,C′,b′,r′)∈X

⋃
r′′∈
−→
r′

Succεe[r
′′, ε, ∅](`′, C ′, b′, r′), (3.5)

• Bad =
{
{(`j , Cj ,⊥, rj)}j

}
∪
{
{(`j , Cj , bj , rj)}j | ∀h

(
(∪jrj ⊆ −→rh) ⇒ (`h ∈ F ⇒ bh =

⊥)
)
∧ (∃i, `i ∈ F)

}
is the set of bad states.

60

EXTENSION TO ε-TRANSITIONS AND INVARIANTS

We now detail the edge relation δ which gives the possible moves of the players. Given a state
of Spoiler vS = {(`j , Cj , bj , rj)j} ∈ VS and (r′, a) one of his moves, the successor state is defined
as the state vD = ({(`j , Cj , bj , rj)}j , (r′, a)) ∈ VD provided there exists (`, C, b, r) ∈ vS , such that

r′ ∈ −→r and there exists `
g,a,X′−−−−→ `′ ∈ E with [r′ ∩ C]|X ∩ g 6= ∅.

Given vD = ({(`j , Cj , bj , rj)}j , (r′, a)) ∈ VD a state of Determinizator and Y ′ ⊆ Y one of his
moves, the successor state vS , formally defined above in Equation (3.3), is obtained as the ε-closure of
the set of all elementary successors of configurations in {(`j , Cj , bj , rj)}j by (r′, a) and resetting Y ′.
Precisely, if (`, C, b, r) is a configuration such that r′ ∈ −→r , its elementary successors set by (r′, a)
and resetting Y ′ are defined in Equation (3.4) using the basic elementary successor Succe defined
in Equation (3.1) on page 44. To complete this definition, let us discuss the ε-closure of a state of
Spoiler. The ε-closure of a configuration (`, C, b, r), denoted by clε(`, C, b, r), is the smallest set of
configurations containing (`, C, b, r) and closed under elementary successor for any pair (r′, ε) where
r′ is a time successor of the source configuration and without resetting any clocks in Y . It is thus
the least fixpoint of the functional in Equation (3.5). The termination in finite time of the iterative
computation of the fixpoint comes from the fact that the number of configurations is finite.

3.3.2 Invariants

We now explain how to adapt the framework to timed automata with invariants. First, while comput-
ing the elementary successors for configurations, invariants have to be taken into account. Second,
with each state of the game, we associate an invariant corresponding to the invariants of the original
locations. Last, the set of bad states needs to be redefined.

An invariant over clocks of Y is attached to each state of Spoiler. A state vS of Spoiler thus has
the form vS = ({(`j , Cj , bj , rj)}j , I) where I ∈ IM ′(Y) is intuitively the most restrictive invariant
that over-approximates every invariant for the configurations composing vS . Formally,

I =
⋃{

r′′ ∈ RegYM ′ | ∃j, r′′ ∈
−→rj ∧ [r′′ ∩ Cj]|X ∩ Inv(`j) 6= ∅

}
. (3.6)

In the computation of the successor states, the invariants are taken care of similarly to the guards:
their satisfaction is checked on both end-points of the transitions. In order to do so, in the definition

of Succεe for a transition `
g,a,X′−−−−→ `′ the condition C 6=∅, that is [r′ ∩C]|X ∩ g 6= ∅, is replaced with the

condition D 6=∅ := [r′ ∩ C]|X ∩ g ∩ Inv(`) ∩ (Inv(`′))[X′←0]−1 6= ∅.
The boolean has to take into account the potential over-approximation of the invariant. It is thus

redefined as follows:

b′ = b ∧
(

[r′ ∩ C]|X ⊆ (g ∩ Inv(`) ∩ (Inv(`′))[X′←0]−1)
)
∧([

[Inv(`) ∩ C]|Y ∩ C
]
|X = Inv(`)

)
∧
(

[Inv(`) ∩ C]|Y = I
)

(3.7)

where I is the invariant of the state containing this configuration. Indeed, in order to have no over-
approximation of the invariant for a configuration, it is necessary that the invariant associated to the
state of the game is not larger than the invariant induced by the configuration, moreover this latter
has to not be an approximation of the invariant in A. As a consequence, the configurations which are
built via an approximation of some invariant are marked ⊥. The relation update is also redefined, to
enforce the satisfaction of the invariants:

up(r′, C, g, `, `′, X ′, Y ′) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(r′ ∩ C ∩ g ∩ Inv(`))[X′←0][Y ′←0] ∩ Inv(`′). (3.8)

61

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

Note that in this definition, the invariant and the configurations are interdependent. This is no problem.
Configurations can be first computed assuming that the last condition

(
[Inv(`) ∩ C]|Y = I

)
for b′ to

be > is true. Then, I can be computed using configurations and last markers can be updated taking
into account I.

Some over-approximation in the invariants can yield a strict over-approximation of the original
timed language. The preservation of the property that any winning strategy for Determinizator yields
a deterministic equivalent of the original timed automaton is ensured thanks to the booleans in con-
figurations taking into account this risk. The definition of the set Bad is thus unchanged.

Let us illustrate the construction of the game, and in particular, the computation of invariants, on
an example. Figure 4.1 represents a timed automaton with invariants. An excerpt of the corresponding

`0

`1 `2

`′1 `′2

x < 2

x < 2

0 <
x <

1
x = 1

0 < x < 1, {x}
0 < x < 1

Figure 3.14: A timed automaton with invariants.

(`2, x− y = 0,⊥, {1})
(`′2, 0 > x− y > −1,⊥, {1})

(`1, x− y = 0,>, (0, 1))
(`′1, 0 > x− y > −1,>, (0, 1))

(`0, x− y = 0,>, {0})

y < 3

tt

tt

∅

y = 1

∅

0 < y < 1

Figure 3.15: Excerpt of the game with resources (1, 3) for the TA from Figure 4.1.

game, over resources (1, 3), is depicted in Figure 3.15. We consider the right-most state in the picture,
and explain how its configurations and its invariant are derived. For the first configuration, with
location `2 and the induced invariant is y < 2, trivially obtained from the invariant x < 2 in `2 and
the relation x − y = 0. The region over y is simply y = 1, and there was no over-approximations so
far. The first configuration thus should be (`2, x− y = 0,>, {1}). Concerning the configuration with
location `′2, the induced invariant is y < 3, since x < 2 and the relation 0 > x−y > −1 imply y < 3.
Note that the region 2 < y < 3 is necessarily included in this invariant because e.g., the valuation
x = 1.9 and y = 2.1 satisfies 0 > x − y > −1, 2 < y < 3 and x < 2. Also, the boolean is ⊥ since
over-approximations occurred. The second configuration is thus (`′2, 0 > x− y > −1,⊥, {1}). Last,
the invariant associated with the state is the union of the invariants for each configurations y < 2 and
y < 3. It is therefore over-approximated for the first configuration, which explains that its boolean is

62

EXTENSION TO ε-TRANSITIONS AND INVARIANTS

set to ⊥ in the end.

3.3.3 Properties of the strategies in the extended game

Theorem 3.1, for timed automata with no ε-transitions and no invariants, extends to timed automata
with these features, using the extended game defined above. Recall that Aut(σ), the timed automaton
derived from the game by fixing a strategy σ for Determinizator, is defined in Definition 3.2.

Theorem 3.2. Let A be a timed automaton, and (k,M ′) resources. For every strategy σ of Deter-
minizator in GA,(k,M ′), Aut(σ) is a deterministic timed automaton over resources (k,M ′) and satisfies
L(A) ⊆ L(Aut(σ)). Moreover, if σ is winning, then L(A) = L(Aut(σ)).

Note that the game construction described in the current section is a conservative extension of the
one given in Section 3.1.1 for timed automata with no ε-transitions and no invariants. As a conse-
quence, the following proof of Theorem 3.2 also serves as a proof for Theorem 3.1.

Proof. The proof is split in two parts. First of all, we show that any strategy σ for Determinizator
ensures L(A) ⊆ L(Aut(σ)). Then we prove that the reverse inclusion also holds for every winning
strategy σ.

(⊆): Let σ be any strategy for Determinizator in GA,(k,M ′). To show that L(A) ⊆ L(Aut(σ))
we prove a stronger fact on the transition systems TA and TAut(σ) associated with A and Aut(σ):
TAut(σ) weak timed simulates TA. Let TA = (S, s0, SF , (R+ × (Σ∪{ε})),→A), TAut(σ) = (S′, S′0,
S′F , (R+ × Σ),→Aut(σ)), andR ⊆ S × S′ the following binary relation:

R =
{(

(`, v), ((E , I), v′)
)
| ∃(`, C, b, r) ∈ E , (v, v′) ∈ C ∧ v′ ∈ −→r

}
.

Let us prove that R satisfies the four conditions from Definition 2.3 on page 31, to be a weak timed
simulation. Given that Aut(σ) has no ε-transitions, the fourth condition can be simplified. We will
thus prove the following onR:

(1) (s0, S
′
0) ∈ R,

(2) (s, S′) ∈ R and s ∈ SF implies S′ ∈ S′F ,

(3) for all (s, S′) ∈ R, for all a ∈ Σ whenever s a−→A s̃, there exists S̃′ ∈ S′ such that (s̃, S̃′) ∈ R
and S′ a−→Aut(σ) S̃

′,

(4) for all (s, S′) ∈ R, whenever s τ1−→A
ε−→A s2 · · ·

τn−1−−−→A
ε−→A sn

τn−→A s̃, there exists S̃′ ∈ S′ such
that (s̃, S̃′) ∈ R and S′ τ−→Aut(σ) S̃

′ with τ =
∑n

i=1 τi.

(1) The first condition about the initial states is trivially satisfied, by definition of the initial state in
the game, and thus the initial location in Aut(σ).

(2) Accepting locations in Aut(σ) are locations in which there is at least one configuration whose
location is accepting in A. As a consequence, the second condition is satisfied byR.

Assume now that s = (`s, vs) and S′ = ((ES′ , IS′), vS′) are states of TA and TAut(σ) respectively
such that (s, S′) ∈ R. Then, there exists a configuration (`s, C, b, r) ∈ ES′ such that vs and vS′ satisfy
the relation C, i.e. (vs, vS′) ∈ C, and vS′ ∈ −→r . Moreover, if vs ∈ Inv(`s), which is true as soon
as s is reachable from s0, then vS′ ∈ IS′ . Indeed, if vs ∈ Inv(`s), then the region rS′ containing
vS′ is such that rS′ ∈ −→r and (vs, vS′) ∈ rS′ ∩ C, hence the condition D 6=∅ is satisfied because
vs ∈ [rS′ ∩ C]|X ∩ Inv(`s). Therefore, by definition of IS′ (see Equation (3.6)), rS′ ⊆ IS′ and thus
vS′ ∈ IS′ .

63

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

(3) Let us prove that the third condition is satisfied. Let a ∈ Σ such that s a−→A s̃. This transition
comes from some edge (`s, g, a,X

′, `s̃) in A where `s̃ is the location of s̃. Let rS′ be the region
containing vS′ . Then, (vs, vS′) ∈ C implies that the condition D6=∅ is satisfied, because vs ∈ [rS′∩
C]|X∩g∩Inv(`s)∩(Inv(`s̃))[X′←0]−1 . Hence, Succεe[rS′ , a, Y

′](`s, C, b, r) is not empty (whatever

is Y ′ ⊆ Y). As a consequence, by definition of the game, there exists an edge (ES′ , IS′)
rS′ ,a,Y

′

−−−−−→
(ES̃′ , IS̃′) in Aut(σ), with some Y ′ ⊆ Y , and there exists a configuration (`s̃, C

′, b′, rS′ [Y ′←0]) ∈
ES̃′ which is an elementary successor of (`s, C, b, r). Letting S̃′ = ((ES̃′ , IS̃′), vS̃′) where vS̃′ =
vS′ [Y ′←0], we observe that (vs̃, vS̃′) ∈ C ′ using the definition of the updates for the relation
(Equation (3.8) on page 61). Hence (s̃, S̃′) ∈ R, which proves condition (3) forR.

(4) Finally, let us prove that R satisfies the last condition. Consider s τ1−→A
ε−→A s2 · · ·

τn−1−−−→A
ε−→A

sn
τn−→A s̃, a sequence of delays and ε-transitions from s inA. Letting sj = (`j , vj) (for 1 ≤ j ≤

n) and s = s1, for every 1 ≤ j ≤ n− 1 there exists an edge in A of the form (`j , gj , ε,Xj , `j+1)
with vj + τj |= gj ∩ Inv(`j) ∩ (Inv(`j+1))[Xj←0]−1 and vj+1 = (vj + τj)[Xj←0]. By definition
of the ε-closure operator clε (Equation (3.5) on page 60), for each index 1 ≤ j ≤ n there is a
configuration (`j , Cj , bj , rj) ∈ Es′ such that (vj , vS′ +

∑j−1
i=1 τi) ∈ Cj and vS′ +

∑j−1
i=1 τi ∈ rj .

As a consequence, ((`j , vj), ((ES′ , IS′), vS′ +
∑j−1

i=1 τi)) ∈ R and, since the invariant Inv(`j) is
satisfied by vj , we get that vS′ +

∑j−1
i=1 satisfies IS′ . In particular, this is true for j = n. Hence,

(vn + τn, vS′ +
∑n

i=1 τi) ∈ Cn and vs̃ = vn + τn. Then, letting S̃′ = ((ES̃′ , IS̃′), vS′ +
∑n−1

i=1 τi),
we obtain that condition (4) is satisfied byR.

This concludes the proof that Aut(σ) weakly timed simulatesA which implies the language inclusion
L(A) ⊆ L(Aut(σ)).

(⊇): Assume now that σ is a winning strategy in GA,(k,M ′). Let us prove that L(Aut(σ)) ⊆ L(A).
Let w ∈ L(Aut(σ)). Then, there exists a run %′w = S′0

w−→Aut(σ) S
′
n in Aut(σ), such that S′n is

accepting. We want to prove that w also belongs to L(A). To do so, we first build a configuration
path going from the initial configuration (`0,

∧
z,z′∈X∪Y z − z′ = 0,>, {0Y }) to a configuration of

S′n whose location is accepting. This is performed backwards, using the definition the function Succεe
for elementary successors. By Equation (3.4), this configuration sequence corresponds to a path in
A (that is, an alternating sequence of locations and edges of A). Then we show that along this path
in A, there exists a run of A reading w. This will allow us to conclude that w ∈ L(A) and thus
L(Aut(σ)) ⊆ L(A).

Before the proof of these two steps, we introduce some notations. The accepting run over w
in Aut(σ) is %′w = S′0

τ0−→Aut(σ)
a1−→Aut(σ) S

′
1 · · ·S′n−1

τn−1−−−→Aut(σ)
an−→Aut(σ) S

′
n with the following

notation w = (
∑j−1

l=0 τl, aj)1≤j≤n. We further write S′i = (LS′i , vS′i) for all 0 ≤ i ≤ n with LS′i =
(E ′i, I′i) and denote by `γ , Cγ , bγ and rγ respectively the location, the relation, the boolean and the
region of a configuration γ.

Construction of a path π in A. Let j be a fixed index such that 1 ≤ j ≤ n. Then, for ev-
ery configuration in E ′j , one can follow backwards the elementary successors by ε-transitions until a
configuration which is the elementary successor of a configuration in E ′j−1. Repeating this, one can
backwards follow the whole run %′w. Formally, for every configuration γj ∈ E ′j marked > of S′j there
is a finite sequence (γij)0≤i≤nj of configurations marked > in LS′j such that:

• there exists γj−1 ∈ S′j−1 such that γ0
j ∈ Succεe[r

0
γj , aj , σ(LS′j−1

, (rγ0j
, aj))](γj−1),

64

EXTENSION TO ε-TRANSITIONS AND INVARIANTS

• γnjj = γj ,

• for all 1 ≤ i ≤ nj , γij ∈ Succεe[rγij
, ε, ∅](γi−1

j).

Remark that the fact that configurations are marked > is implied, by definition of Succεe (see Equa-
tion (3.4)) by the fact that γj itself is marked >.

We can thus consider the configuration path π, corresponding to the entire run %′w starting the
backward construction from an accepting configuration γn marked > in LS′n , because accepting lo-
cations of Aut(σ) are states containing at least one configuration whose location is accepting, and by
definition of Bad because σ is winning. The path π is thus of the following form:

π = (`0,
∧
z,z′∈X∪Y z − z′ = 0,>, {0Y })

ε−→ γ1
0

ε−→ · · · ε−→ γn0
0

a1−→ ε−→ · · · ε−→ γ0
j−1

ε−→ · · · ε−→
γ
nj−1

j−1

aj−→ γ0
j

ε−→ · · · an−→ γn.
Then, still by definition of the function Succεe in Equation (3.4), this configuration path corre-

sponds to a path in A. It is thus sufficient to prove that there is a run %π reading w in A along this
path, that is:

%π = (`0, {0})
τ00−→ ε−→ (`γ10 , v

1
0)

τ10−→ ε−→ · · · ε−→ (`γn00
, vn0

0)
τ
n0
0−−→ a1−→ (`γ01 , v

0
1)

τ01−→ ε−→

· · · ε−→ (`γ0j−1
, v0
j−1)

τ0j−1−−−→ ε−→ · · · ε−→ (`
γ
nj−1
j−1

, v
nj−1

j−1)
τ
nj−1
j−1−−−−→

aj−→ · · · an−→ (`γn , vn)

where for all 0 ≤ j ≤ n− 1,
∑nj

i=1 = τj .

Reading w along π in A. Let us prove that one can define delays along π to obtain a run in A
readingw. We even prove a stronger fact: for each fragment of the path corresponding to one transition
of the run %′w in Aut(σ), from any valuation v ∈ RX+ in relation with the valuation vS′j−1

∈ RY+, one
can define suitable delays. Formally, let us prove that for every 1 ≤ j ≤ n, if (v0

j−1, vS′j−1
) ∈

Cγ0j−1
then there are delays (τ ij−1)’s such that (`γ0j−1

, v0
j−1)

τ0j−1−−−→ ε−→ · · · ε−→ (`
γ
nj−1
j−1

, v
nj−1

j−1)
τ
nj−1
j−1−−−−→

aj−→

(`γ0j
, v0
j) is a run of A with

∑nj
i=1 τ

i
j−1 = τj and (v0

j , γ
0
j) ∈ Cγ0j . Observe that this property holds for

j = 1 since (`0, {0X}) corresponds to (`0,
−−−−−→
{0X∪Y },>, {0Y }), formally ({0X}, {0Y }) ∈

−−−−−→
{0X∪Y }.

The proof is structured as follows. We first show that invariants of A are satisfied in all the states
corresponding to configurations of the path. Then we prove that transition aj can be fired in states
of A corresponding to the configuration γnj−1

j−1 (with the associated valuation in %′w) and reach a state
corresponding to γ0

j . Finally we explain how to define delays in such a way that from any state
corresponding to γ0

j−1, one reaches a state corresponding to γnj−1

j−1 .

• Invariants: assuming that (vij−1 + τ ij−1, vS′j−1
+
∑i

h=0 τ
h
j−1) ∈ Cγij−1

, we prove that vij−1 +

τ ij−1 ∈ Inv(`γij−1
). Indeed, as γij−1 is marked >,

[
[Inv(`γij−1

) ∩ Cγij−1
]|Y ∩ Cγij−1

]
|X =

Inv(`γij−1
) and [Inv(`γij−1

)∩Cγij−1
]|Y = I′j−1 by definition of I′j−1 (Equation (3.6) on page 61).

As a consequence vS′j−1
+
∑i

h=0 τ
h
j−1 ∈ I′j−1 implies vij−1 + τ ij−1 ∈ Inv(`γij−1

). In words,
assuming that valuations in A satisfy corresponding relations with corresponding valuations in
Aut(σ), invariants of locations of A are satisfied.

65

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

• Discrete transitions labeled in Σ: let (`
γ
nj−1
j−1

, v
nj−1

j−1 + τ
nj−1

j−1)
aj−→ (`γ0j

, v0
j) be a discrete

transition of %π, labeled in Σ. Assuming that (v
nj−1

j−1 + τ
nj−1

j−1 , vS′j−1
+ τj−1) ∈ C

γ
nj−1
j−1

, we

prove that it is a transition of A and that (v0
j , vS′j) ∈ Cγ0j .

By construction of %π, γ0
j ∈ Succεe[rj , aj , Yj](γ

nj−1

j−1). Moreover, by definition of %′w, vS′j−1
+

τj−1 ∈ rj . Then, by definition of Succεe in Section 3.3.2, and because γ0
j is marked >, there ex-

ists an edge (`
γ
nj−1
j−1

, gj , aj , Xj , `γ0j
) inA such that conditions D 6=∅ and D⊆ are satisfied, i.e. ∅ 6=

[rj ∩Cγnj−1
j−1

]|X ⊆ gj ∩ Inv(`
γ
nj−1
j−1

) ∩ (Inv(`0j))[Xj←0]−1 , and Cγ0j = up(rj , Cγ
nj−1
j−1

, gj , `γ
nj−1
j−1

,

`γ0j
, Xj , Yj) (defined in Equation (3.8) on page 61). As a consequence, this edge is fireable from

(`
γ
nj−1
j−1

, v
nj−1

j−1 +τ
nj−1

j−1), indeed vnj−1

j−1 +τ
nj−1

j−1 ∈ [vS′j−1
+τj−1∩Cγnj−1

j−1
]|X ⊆ [rj∩Cγnj−1

j−1
]|X ⊆

gj ∩ Inv(`
γ
nj−1
j−1

) ∩ (Inv(`0j))[Xj←0]−1 . Finally, (v0
j , vS′j) ∈ Cγ0j

by definition of up (Equa-

tion (3.8)).

• Delays and ε-transitions: let (`γ0j−1
, v0
j−1)

τ0j−1−−−→ ε−→ · · · ε−→ (`
γ
nj−1
j−1

, v
nj−1

j−1)
τ
nj−1
j−1−−−−→ (`

γ
nj−1
j−1

,

v
nj−1

j−1 +τ
nj−1

j−1) be a sequence of delays and ε-transitions of %π corresponding to the delay τj−1 of
%′w in Aut(σ). Assuming that (v0

j−1, vS′j−1
) ∈ Cγ0j−1

, we prove that one can fix τ ij−1’s such that

this is a sequence of transitions ofA,
∑nj−1−1

h=0 τhj−1 = τj−1 and (v
nj−1

j−1 +τ
nj−1

j−1 , vS′j−1
+τj−1) ∈

C
γ
nj−1
j−1

.

Note that vS′j−1
∈ r

γ
nj−1
j−1

and vS′j−1
+ τj ∈ rj ⊆ −−−→r

γ
nj−1
j−1

. Let us define τ ij−1 as follows: τnj−1

j−1 =

τj−
∑nj−1−1

i=0 τ ij−1 and for all 0 ≤ i < nj−1, τ ij−1 = 0 if vS′j−1
+
∑i−1

h=0 τ
h
j−1 ∈ rij−1, otherwise

we fix τ ij−1 as any delay such that vS′j−1
+
∑i

h=0 τ
h
j−1 ∈ rij−1 and vS′j−1

+
∑i

h=0 τ
h
j−1 ≤ τj−1.

Let us prove by induction over i that for all 0 ≤ i < nj−1, (`γij−1
, vij−1)

τ ij−1−−−→ ε−→ (`γi+1
j−1
, vi+1
j−1)

is a transition of A and (vi+1
j−1, vS′j−1

+
∑i

h=0 τ
h
j−1) ∈ Cγi+1

j−1
.

First of all, we initialize thanks to the assumption (v0
j−1, vS′j−1

) ∈ Cγ0j−1
.

Let us fix 0 ≤ i < nj−1 and assume that (vij−1 + τ ij−1, vS′j−1
+
∑i

h=0 τ
h
j−1) ∈ Cγij−1

. Hence

(vij−1 + τ ij−1, vS′j−1
+
∑i+1

h=0 τ
h
j−1) ∈ Cγij−1

. Then, we can conclude about the inductive step in
the same way as in the previous step for aj’s.

We obtain that it is a sequence of transitions of A and that (v
nj−1

j−1 , vS′j−1
+
∑nj−1−1

h=0 τhj−1) ∈
C
γ
nj−1
j−1

, which implies that (v
nj−1

j−1 + τ
nj−1

j−1 , vS′j−1
+ τj−1) ∈ C

γ
nj−1
j−1

. �

3.3.4 Comparison with [KT09]

In Section 3.2, we compared our approach with existing methods in the restricted case where timed
automata neither have invariants nor ε-transitions. The determinization procedure of [BBBB09] does
not deal with invariants and ε-transitions. We therefore compare our extended approach only with the
over-approximation algorithm of [KT09].

66

BEYOND OVER-APPROXIMATION

The models in [KT09] are timed automata with silent transitions, and actions are classified with
respect to their urgency: eager, lazy or delayable. First of all, the authors propose an ε-closure com-
putation which does not terminate in general, and rely on the fact that termination can be ensured
by some abstraction. Second, the urgency in the model is not preserved by the over-approximation
construction: the resulting deterministic timed automaton only contains lazy transitions (intuitively
lazy over-approximates all kinds of urgency). Note that we classically decided to rather use invariants
to model urgency, but our approach could be adapted to the same model as in [KT09], and would
preserve urgency more often, the same way as we do for invariants. These observations underline the
benefits of our game-based approach for timed automata with invariants and ε-transitions compared
to existing work.

3.4 Beyond over-approximation

In the previous sections, we presented a game-based approach which yields a deterministic over-
approximation of a given timed automaton. Yet, we advocate that over-approximations are not always
appropriate, and, depending on the context, under-approximations or other approximations might be
more suitable. We therefore explain in this section how to adapt our framework in order to generate
deterministic under-approximations, and also combine over- and under-approximations.

3.4.1 Under-approximation

One motivation for building deterministic under-approximations of a regular timed language is that
one can decide whether the timed language is approximated provided that the ’largest’ language is
recognized by a deterministic timed automaton. Therefore, given A a non-deterministic timed au-
tomaton, for every deterministic under-approximation B, one can decide whether the approximation
is strict or not, that is whether the reverse inclusion L(A) ⊆ L(B) also holds. Contrary to what
happens for over-approximations, one would thus be able to detect if a losing strategy yet yields a
deterministic equivalent to the original timed automaton.

We now briefly explain how to modify the game construction, so that any strategy yields an under-
approximation, and any winning strategy provides a deterministic equivalent. When we aim at build-
ing an over-approximation, during the construction of the game, all litigious successors (i.e. configu-
rations marked ⊥) are built, possibly introducing more behaviors than in the original TA. In order to
obtain an under-approximation, the litigious successors are simply not constructed. Also, ε-transitions
and invariants are not more difficult to handle: (1) the ε-closure is under-approximated (by avoiding
to built configurations marked ⊥); (2) the invariant of a state is redefined as the union of all regions
such that the induced guard is included in the invariant of the location of some configuration marked
>; and (3) finally, the set Bad is defined as the set of states where either some litigious successor
existed (but was not built), or for which the invariant or the ε-closure has been under-approximated.
We do not give the complete details of this construction, since in the next subsection we present an
extension that subsumes both over-approximations and under-approximations.

3.4.2 Combining over- and under-approximation

Beyond over-approximations and under-approximations, combinations of both can be meaningful in
some contexts. Model-based testing is an example of such contexts. Given a non-deterministic timed
automaton A, it can be proved that a deterministic timed automaton B which over-approximates out-
puts and under-approximates inputs, preserves the conformance relation tioco. As a consequence, test

67

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

cases can be generated from B, as sound test cases for B remain sound for A. Details on the appli-
cation of deterministic approximations to the test generation from non-deterministic timed automata
models can be found in Chapter 4.

Let us now explain more generally how to combine over-approximations and under-approximations.
To this aim, we consider timed automata with a partitioned alphabet, Σ = Σ1 tΣ2, and introduce the
notion of (Σ1,Σ2)-refinement relation. Note that (Σ1,Σ2)-refinement is defined here only for a pair
of timed automata (A,A′) when A′ has no ε-transition.

First of all, let us introduce some notations to shorten the definition. For any timed word w, we
write s0

w
=⇒ s if there exists a run from s0 to s reading w. If s is left implicit, we write s0

w
=⇒, thus

meaning that there exists a state s such that s0
w
=⇒ s. We also use this convention for the transition

relation→.

Definition 3.5. Let A be a timed automaton and A′ be a timed automaton without ε-transitions over
the alphabet Σ = Σ1 t Σ2, and TA = (S, s0, SF , (R+ × (Σ∪{ε})),→A), TA′ = (S′, s′0, S

′
F , (R+ ×

Σ),→A′) their associated transition systems. We say that A (Σ1,Σ2)-refines A′ and write A � A′
if:

1. if s0
w
=⇒A

τ0−→A
ε−→A · · ·

τn−1−−−→A
ε−→A

τn−→A with τi ∈ R+ (0 ≤ i ≤ n), and s′0
w
=⇒A′ then

s′0
w
=⇒A′

τ−→A′ with τ =
∑n

i=0 τi;

2. if s0
w.(t,a2)
=====⇒A where a2 ∈ Σ2, and s′0

w
=⇒A′ then s′0

w.(t,a2)
=====⇒A′;

3. if s′0
w.(t,a1)
=====⇒A′ where a1 ∈ Σ1, and s0

w
=⇒A

τ0−→A
ε−→A · · ·

τn−1−−−→A
ε−→A

τn−→A with τi ∈ R+

(0 ≤ i ≤ n) and the accumulated delay of w is t−
∑n

i=0 τi, then s0
w.(t,a1)
=====⇒A.

Intuitively, the (Σ1,Σ2)-refinement is in the spirit of the alternating simulation from [AHKV98],
with timing aspects. Apart from time, the notable difference is that (Σ1,Σ2)-refinement is defined
at a language level and is not a binary relation between states. Roughly speaking, the link between
refinement and alternating simulation is the same as between language inclusion and simulation.

Let us explain the three properties of the definition. The first property specifies that if a given
word can be read in both timed automata and that a delay τ can be observed in A (through possible
ε-transitions, then such a delay τ can also be observed in A′. No ε-transitions are allowed in A′ for
readability, but a natural extension of this definition can be easily written allowing them. The second
property states that if a given word can be read in A and A′ can read this word except up to the last
action, and if this last action belongs to Σ2, then A′ has to be able to read the complete word. These
two properties thus express that A′ simulates A, on a language level for Σ2-actions and delays. Last,
the third requirement states the simulation of A′ by A on a language level for Σ1-actions.

Remark that even if there is no ε-transitions in A, the definition is not symmetric: A (Σ1,Σ2)-
refines A′ does not imply that A′ (Σ2,Σ1)-refines A, due to the way delays are taken care of. Our
targeted application to test selection is responsible for this choice. In particular, if Σ1 and Σ2 con-
sist respectively of the input and output alphabets, the (Σ1,Σ2)-refinement relation generalizes the
io-refinement relation between deterministic timed automata introduced in [DLL+10], which was in-
spired by the alternating simulation [AHKV98]. Then, the inverse relation (which we refer to as
generalized io-abstraction) still preserves the tioco conformance relation [KT09]: implementations
that conform to a specification also conform to any io-abstraction of this specification. As a conse-
quence soundness of test cases is preserved by io-refinement: a test suite which is sound for a given
specification is also sound for any io-refinement of the specification.

68

BEYOND OVER-APPROXIMATION

Our goal here is to combine over- and under-approximations in the construction of the game so
that any strategy for Determinizator yields a deterministic (Σ1,Σ2)-abstraction of the original au-
tomaton. The game construction is adapted: transitions over actions of Σ2 and invariants are over-
approximated, whereas transitions over actions of Σ1 are under-approximated. The definition of the
(Σ1,Σ2)-refinement imposes global, i.e. language-based, conditions. As a consequence, when per-
forming an over-approximation, information about configurations which are removed by an under-
approximation must be kept. Moreover, to deal with ε-transitions, the ε-closure should be over-
approximated before a Σ2-action, and under-approximated before a Σ1-action. As a consequence, the
structure of the states of Spoiler is enriched as follows. The set of configurations is replaced by a
pair of sets which are respectively the over-approximation of the set of configurations and the set of
configurations built after successive over- and under-approximations, depending on the moves leading
to its construction to which we applied the under-approximating ε-closure. The invariant associated
with a state of Spoiler is then defined in the same way as before, using the first set of configura-
tions (the over-approximation). Formally, given a state of Spoiler whose first set of configurations is
{(`j , Cj , bj , rj)}j , the invariant is defined as follows:

I =
⋃
{r′′ ∈ RegYM ′ | ∃j, r′′ ∈

−→rj ∧ [r′′ ∩ Cj]|X ∩ Inv(`j) 6= ∅}. (3.9)

The over-approximation of the invariants is compatible with under-approximations of some behav-
iors, since guards always are intersected with the original invariants, rather than the approximated
one, in the construction of the game. However, under-approximating invariants could hinder over-
approximations by constraining too much the guards.

Before giving the formal definition of the game, we introduce the two elementary successor op-
erators (one for over-approximation, the other for under-approximation) as well as the two ε-closure
operators. Given (`, C, b, r) a configuration such that r′ is a time-successor of r, we detail the com-
putation of elementary successors depending on a. If a ∈ Σ2, its elementary successors set by (r′, a)
and Y ′ is:

Succ+
e [r′, a, Y ′](`, C, b, r) =

{
(`′, C ′, b′, r′[Y ′←0]) |

∃` g,a,X′−−−−→ `′ ∈ E such that
[r′ ∩ C]|X ∩ g ∩ Inv(`) ∩ Inv(`′)[X′←0]−1 6= ∅
C ′ = up(r′, C, g, Inv(`), Inv(`′), X ′, Y ′)
b′ = b ∧ ([r′ ∩ C]|X ⊆ g)

(3.10)

Now, if a ∈ Σ1, its elementary successors set by (r′, a) and Y ′ is:

Succ−e [r′, a, Y ′](`, C, b, r) =
{

(`′, C ′, b′, r′[Y ′←0]) |

∃` g,a,X′−−−−→ `′ ∈ E such that
[r′ ∩ C]|X ⊆ g ∩ Inv(`) ∩ Inv(`′)[X′←0]−1

C ′ = up(r′, C, g, Inv(`), Inv(`′), X ′, Y ′)
b′ = b

(3.11)

In both definitions, up(r′, C, g, Inv(`), Inv(`′), X ′, Y ′) is the update of the relation C between
clocks in X and Y after the moves of the two players, that is after taking action a in r′, resetting
X ′ ⊆ X and Y ′ ⊆ Y , and forcing the satisfaction of g, Inv(`) and Inv(`′). The formal definition is
given in Equation (3.8) page 61.

69

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

Roughly, Succ+
e yields a set of configurations over-approximating the set of successor states in

A. Indeed, successor configurations are built as soon as D 6=∅ is satisfied. On the other side, Succ−e
under-approximates the set of states using the restrictive condition D⊆.

To formalize over- and under-approximated ε-closures of a set of configurations, we define ε-
closures of a single configuration. The closure of a set of configurations being the union of the closures
of the individual configurations. Given (`, C, b, r) a configuration, its ε-closures noted cl+ε (`, C, b, r)
and cl−ε (`, C, b, r), are the smallest fixpoints of the functionals

X 7→ (`, C, b, r) ∪
⋃

(`′, C′, b′, r′) ∈ X
r′′ ∈

−→
r′

Succ+
e [r′′, ε, ∅](`′, C ′, b′, r′), and (3.12)

X 7→ (`, C, b, r) ∪
⋃

(`′, C′, b′, r′) ∈ X
r′′ ∈

−→
r′

Succ−e [r′′, ε, ∅](`′, C ′, b′, r′), respectively. (3.13)

We are now in the position to provide the formal definition of the game.

Definition 3.6. Let A = (L, `0, F,Σ, X,M,E, Inv) be a timed automaton and (k,M ′) resources.
We let M = max(M,M ′), and Y a set of k clocks. The game associated with A and (k,M ′) is
GA,(k,M ′) = (V, v0,Act, δ,Bad) where:

• V is a finite set of vertices, partitioned into VS (vertices of Spoiler) and VD (vertices of Deter-
minizator). VS ⊆ (2L×RelM(X∪Y)×{>,⊥}×RegY

M′)2 × IM ′(Y) and VD ⊆ VS × RegYM ′ × Σ,

• v0 = ((cl+ε , cl−ε)({(`0,
∧
z,z′∈X∪Y z − z′ = 0,>, {0})}), I0) with I0 the invariant from Equa-

tion (3.9), is the initial vertex and belongs to player Spoiler;

• Act is the set of possible actions partitioned into ActS = RegYM ′ × Σ and ActD = 2Y ;

• δ = δS ∪ δD is the transition relation with δS and δD defined as follows.

– δS ⊆ VS × ActS × VD is the set of edges of the form vS
(r′,a)−−−→ (vS , (r

′, a)) for vS =
((E1, E2), I) and

∗ if a ∈ Σ1 and ∃(`, C,>, r) ∈ E2 such that r′ ∈ −→r and one of the two following
conditions is satisfied

· ∃` g,a,X′−−−−→ `′ ∈ E such that D⊆ is satisfied, i.e. [r′ ∩ C]|X ⊆ g ∩ Inv(`) ∩
Inv(`′)[X′←0]−1 ,

· ∀(`, C, b, r) ∈ E1, ∃` g,a,X′−−−−→ `′ ∈ E such that the condition
D⊆ is satisfied, i.e. [r′ ∩ C]|X ⊆ g ∩ Inv(`) ∩ Inv(`′)[X′←0]−1; or

∗ if a ∈ Σ2 and ∃(`, C, b, r) ∈ E1 such that r′ ∈ −→r and D 6=∅ is satisfied, i.e. ∃` g,a,X′−−−−→
`′ ∈ E s.t. [r′ ∩ C]|X ∩ g ∩ Inv(`) ∩ Inv(`′)[X′←0]−1 6= ∅;

– δD ⊆ VD × ActD × VS is the set of edges of the form vD
(Y ′)−−→ ((E ′1, E ′2), I′) for vD =

(((E1, E2), I), (r′, a1)) and

70

BEYOND OVER-APPROXIMATION

∗ if a ∈ Σ1 and the target state satisfies the following conditions:
E ′1 = cl+ε (∪γ∈E1Succ+

e [r′, a, Y ′](γ)), E ′2 = cl−ε (∪γ∈E2Succ−e [r′, a, Y ′](γ)) and I′ is
defined above in Equation (3.9); or
∗ if a ∈ Σ2 and the target state satisfies the following conditions:
E ′1 = cl+ε (∪γ∈E1Succ+

e [r′, a, Y ′](γ)), E ′2 = cl−ε (∪γ∈E1Succ+
e [r′, a, Y ′](γ)) and I′ is

defined above in Equation (3.9);

• Bad = {(({(`j , Cj ,⊥, rj)}j , E2), I)}
blab ∪ {(({(`j , Cj , bj , rj)}j , E2), I) | ∀h

(
(∀j, rj ∈ −→rh)⇒ (`h ∈ F ⇒ bh = ⊥)

)
blab ∧ (∃i, `i ∈ F)}
blab ∪ {((E1, E2), I) | ∃s ∈ E1, a ∈ Σ1, r

′ and Y ′ s.t. Succ+
e [r′, a, Y ′](s) 6= ∅

blab ∧ ((E1, E2), I)
(r′,a)−−−→}

is the set of bad states.

In words, the possible moves of the players are defined as follows. Given vS = ((E1, E2), I) ∈
VS a state of Spoiler and (r′, a) one of his moves, the successor state is defined as a state vD =
(vS , (r

′, a)) ∈ VD. Note that vD is built only if a condition depending on a is satisfied:

• if a ∈ Σ1, then one wants to under-approximate the behaviors. To force the under-approximation,
vD is defined only if, either there is a configuration marked > in E2 from which a can be fired
without approximation, or from all the configurations in E1, a can be fired.

• when a ∈ Σ2, the goal is to over-approximate, thus vD is built if there is at least one configura-
tion in E1 from which a can be fired.

Given vD = (vS , (r
′, a)) ∈ VD a state of Determinizator and Y ′ ⊆ Y one of its moves, the

successor state is v′S = ((E ′1, E ′2), I′) ∈ VS such that E ′1 is the over-approximation of successor
configurations of E1, and E ′2 is the set of successor configurations obtained by successive over-
approximations and under-approximations (depending on the actions). In particular, the ε-closure
of E ′1 is over-approximated whereas the ε-closure of E ′2 is under-approximated.

Last, in order to preserve exactness of winning strategies for Determinizator, the set Bad is ex-
tended: states obtained before an under-approximation, that is from which some behaviors are cut,
are added to Bad. More precisely, any state of Spoiler vS containing a configuration (`, C, b, r) in
the over-approximating set of configurations such that, for (r′, a1) and Y ′ moves of the two players
Succ+

e [r′, a1, Y
′](`, C, b, r) is not empty whereas the successor is not built, is in Bad.

Under all these modifications of the game, the following proposition holds:

Proposition 3.4. LetA be a timed automaton over the alphabet Σ = Σ1tΣ2, and (k,M ′) resources.
For every strategy σ of Determinizator in GA,(k,M ′), Aut(σ) is a deterministic timed automaton over
resources (k,M ′) and satisfies A � Aut(σ). Moreover, if σ is winning, then L(A) = L(Aut(σ)).

Proof. The difficult part of the proof concerns arbitrary strategies. Assuming σ is a strategy for
Determinizator in GA,(k,M ′), let us prove that Aut(σ) is a (Σ1,Σ2)-abstraction of A, that is, A �
Aut(σ). Let TA = (S, s0, SF , (R+ × (Σ∪{ε})),→A), TAut(σ) = (S′, S′0, S′F , (R+ × Σ),→Aut(σ)),
the respective timed transition systems associated with A and Aut(σ).

Recall the three properties that we have to prove:

1. if s0
w
=⇒A

τ0−→A
ε−→A · · ·

τn−1−−−→A
ε−→A

τn−→A with τi ∈ R+ (0 ≤ i ≤ n) and S′0
w
=⇒Aut(σ), then

S′0
w
=⇒Aut(σ)

τ−→Aut(σ) with τ =
∑n

i=0 τi;

71

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

2. if s0
w.(t,a2)
=====⇒A where a2 ∈ Σ2, and S′0

w
=⇒Aut(σ) then S′0

w.(t,a2)
=====⇒Aut(σ);

3. if S′0
w.(t,a1)
=====⇒Aut(σ) where a1 ∈ Σ1, and s0

w
=⇒A

τ0−→A
ε−→A · · ·

τn−1−−−→A
ε−→A

τn−→A with τi ∈ R+

(0 ≤ i ≤ n) and the accumulated delay of w is t−
∑n

i=0 τi, then s0
w.(t,a1)
=====⇒A.

Note that the proof of Theorem 3.2 on page 63 applies to prove the first and the second properties.
We define the same binary relationR ⊆ S × S′:

R =
{(

(`, v), ((E1, E2, I), v′)
)
| ∃(`, C, b, r) ∈ E1, (v, v′) ∈ C ∧ v′ ∈ −→r

}
.

By induction, s0
w
=⇒A s and S′0

w
=⇒Aut(σ) S′ imply (s, ((E1

S′ , IS′), vS′)) ∈ R assuming S′ =
(((E1

S′ , E2
S′), IS′), vS′). In words, the state estimate E1

S′ is exactly the contents of the state one would
have in the game for over-approximations only.

The heart of the proof thus concerns the third property. In fact, we prove a stronger property:

3′. if S′0
w.(t,a1)
=====⇒Aut(σ) where a1 ∈ Σ1, and s0

w
=⇒A then s0

w.(t,a1)
=====⇒A.

Indeed, we prove that if a timed word ending with an action in Σ1 can be read inA′ and its largest strict

prefix can be read in A, then the entire word can be read in A. Let us assume that S′0
w·(t,a1)
=====⇒Aut(σ)

with a1 ∈ Σ1, and that s0
w
=⇒A, and write S′ for the state of Aut(σ) such that S′0

w
=⇒Aut(σ) S

′.
Note that S′ is unique because Aut(σ) is deterministic. Writing S′ = (((E1

S′ , E2
S′), IS′), vS′), the a1-

transition from S′ corresponds to an edge (((E1
S′ , E2

S′), IS′), (r
′, a1, Y

′), v) of Aut(σ). Hence there
are two cases. Either (i) there exists (`, C,>, r) ∈ E2

S′ such that r′ ∈ −→r and there exists an edge

`
g,a,X′−−−−→ `′ in A such that condition D⊆ is satisfied, that is [r′ ∩C]|X ⊆ g ∩ Inv(`)∩ Inv(`′)[X′←0]−1 ;

Or (ii) for all (`, C, b, r) ∈ E1
S′ such that r′ ∈ −→r , there exists an edge `

g,a,X′−−−−→ `′ in A such that
condition D⊆ holds.

(i) In this case, the second part of the proof of Theorem 3.2 applies. One can thus build a path inA
along which it is possible to read w, ending in a state of the form (`, ṽ), such that (ṽ, vS′) ∈ C.
As a consequence, (ṽ + τ, vS′ + τ) ∈ C, where τ is the delay right before a1 in w(t, a1), and

thus vS′+τ ∈ r′. Since there exists `
g,a,X′−−−−→ `′ inA such that D⊆, (`, ṽ+τ)

a1−→A (`′, ṽ+τ|X′)

and in particular invariants of ` and `′ are satisfied. Hence s0
w·(t,a1)
=====⇒A (`′, ṽ + τ[X′←0]).

(ii) By assumption, S′0
w
=⇒Aut(σ) S

′ and s0
w
=⇒A s, then, as explained above, (s, ((E1

S′ , IS′), v
′
S)) ∈

R. Then, E1
S′ contains a configuration of the form (`, C, b, r) with s = (`, vs), and by (ii),

there exists an edge `
g,a,X′−−−−→ `′ ∈ E such that D⊆ is satisfied. As a consequence, by the same

reasoning as above, s0
w·(t,a1)
=====⇒A (`′, vs + τ[X′←0]).

We thus proved that A � Aut(σ).
Assume now that σ is winning. Thanks to the new definition of the set Bad, in this case we recover

the properties of the original method. Indeed, by definition of Bad, for all locations ((E1, E2), I) of
Aut(σ), on the one hand, (E1, I) is a state of the game built with only over-approximations (see
Section 3.3.2), which is not a bad state, and, on the other hand, this state has the same successor as in
the original game because of the inclusion{

((E1, E2), I) | ∃s ∈ E1, ∃a ∈ Σ1, ∃r′, ∃Y ′ s.t.

Succ+
e [r′, a, Y ′](s) 6= ∅ ∧ ((E1, E2), I)

(r′,a)−−−→
}
⊆ Bad.

72

IMPLEMENTATION OF A PROTOTYPE TOOL

Therefore the proof of Theorem 3.2 applies and L(A) = L(Aut(σ)). �

3.5 Implementation of a prototype tool

We implemented a prototype tool during a visit in the team of Kim G. Larsen at Aalborg University,
and in particular thanks to the help of Peter Bulychev. Currently, the implementations still has some
limitations, it does not deal with invariants and ε-transitions and it only searches for a winning strategy.
It allows to make some experiments over small examples, and in particular it has been used to compute
all deterministic timed automata illustrating our approach.

3.5.1 Using zones instead of regions

In the approach described in this thesis, in order to maximize the chances to exactly determinize a
timed automaton, the constructed deterministic timed automaton is split in regions. Unfortunately,
the number of regions is exponential in the number of clocks. Moreover, there may be a lot regions
which could be treated in the same way. For example, if the initial non-deterministic timed automaton
has only constants 1 and 100 in its guards, then it is very costly to use regions, whereas it does not
necessarily help for the determinization. More generally, if there are several clocks or large constants,
regions imply a real explosion of the number of transitions leaving a location, which is often useless.

To avoid to use regions which have an intractable nature and to obtain a more reasonable number
of transitions, we implemented an extension of the game approach to unions of regions, called zones.
The counterpart is that, in some cases, determinization is less precise. The extension to zones is simple
and the proof of the properties of the game can be done in the same way as for regions. The single
constraint over zones is to form a partition of the set of valuations over Y . In fact, if two distinct
zones intersect, the resulting timed automaton can be non-deterministic and if the set of zones does
not cover the set of valuations, some words can be forgotten. The first intuition could be that using
zones instead of regions decreases the number of possible moves for Spoiler. In fact, it rather forces
Determinizator to have the same answer to the different moves of Spoiler, by merging them in a single
move.

In our prototype, zones are induced by a set P of predicates over Y given as parameter with the
non-deterministic timed automaton, the set of clocks Y and the maximal constant M for the output
deterministic timed automaton. Each zone used as a move of Spoiler is the set of valuations satisfying
a conjunction of predicates or their negations. For the determinization of some timed automaton, we
cannot guess the optimized resources in general. Similarly, the selection of the best set of zones is a
real problem even if the observation of the initial non-deterministic timed automaton can help. In the
case where resources (Y,N, P) are not sufficient, that is there is no winning strategy for determiniza-
tor, the prototype yields deterministic under- and over-approximations constructed in the same way as
in the region-based algorithm.

3.5.2 Implementation of the prototype

Our prototype tool is implemented in Python. Zones are coded by Difference Bounded Matrices
(DBMs).

Definition 3.7 (Difference Bounded Matrix). A Difference Bounded Matrix over the set of n clocks
X is an (n+ 1)-square matrix of pairs (m,-) with -∈ {<,≤} and m ∈ Z ∪ {+∞}.

73

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

The semantics of a DBMM = (mi,j ,-i,j)0≤i,j≤n over a set of clocks {x1, x2, · · · , xn}, is the
zone defined by the constraint ∧0≤i,j≤nxi − xj -i,j mi,j with the convention x0 = 0.

Usual operations over DBMs are efficiently performed thanks to the Python binding for the UP-
PAAL DBM library [UDL].

Given a non-deterministic timed automaton and resources for the determinization, the game may
be huge. As a consequence, we try to avoid to construct all the states in the game. To do so, we
implemented the on-the-fly algorithm proposed in [LS98] for safety games.

The program is quite short, it contains 500 lines of code. It consists of the following classes:

• Configuration

• StateOfSpoiler

• StateOfDeterminizator

• GameOfDeterminization

Class Configuration Attributes of a Configuration are a location, a relation and a boolean marking.
Given a zone associated with this Configuration and a move of Spoiler (a zone and an action), the
function has_succ_ returns true if the move is allowed for Spoiler, and false otherwise. Moreover,
with these parameters together with the reset chosen by Determinizator, the function succs returns
the set of successor Configurations. This class is naturally used to define the states of Spoiler and
Determinizator.

Class StateOfSpoiler Attributes of this class are a name, a set of Configurations, a zone (DBM)
and three booleans: one indicating if the state is losing for Determinizator and two booleans used in
the game traversal, one (called willLose) which indicates if it is hopeless for Determinizator to win
from it, the other one (called inProgress) to indicate that the traversal from this state is in progress. A
StateOfSpoiler has naturally a function to decide whether a pair with a zone and an action constitutes
a possible move for Spoiler from this state.

Class StateOfDeterminizator Attributes of this class are a name, a StateOfSpoiler (the predeces-
sor), a zone and an action (the ones chosen by Spoiler), and as for StateOfSpoiler, there is a boolean
indicating if the state is losing and two booleans used in the game traversal. A StateOfDeterminizator
has a function to compute its successors of the game, some StateOfSpoiler’s.

Remark that a StateOfSpoiler v does not need a function to compute the successor because it is
simply a StateOfDeterminizator whose predecessor is v, moreover the action and the zone are the
label of the move leading to this state (the other attributes are neither the result of a computation).
On the other hand, a StateOfDeterminizator does not need a function to compute its possible moves,
because they are all allowed.

Class GameOfDeterminization This class contains the main function which builds the game on-the-
fly while searching for a winning strategy. Main attributes of this class are a set of StateOfSpoiler’s, a
set of StateOfDeterminizator’s, an initial StateOfSpoiler, tables assigning successors and predeces-
sors to each state, a table assigning to each StateOfDeterminizator a strategic move. The principle of
the algorithm can be understood independently on the definition of the game, simply keeping in mind
that we want to solve a finite turn-based safety game for player Determinizator. As a consequence, it

74

IMPLEMENTATION OF A PROTOTYPE TOOL

suffices to have one safe successor from StateOfDeterminizator to be safe, whereas it suffices to have
one unsafe successor from StateOfSpoiler to be unsafe. The program uses three main functions. Let
us explain their roles.

• is_safe

This function applies to a state v of the game either a StateOfDeterminizator, or a StateOfSpoiler.
If the marker willLose of the state is equal to true, then the function returns false. If the marker
inProgress is equal to true, then the function returns true, otherwise it builds the successors of
v.

If v is a StateOfSpoiler, then the function checks whether v has only safe successors, by calling
itself over each of the successors of v. If there is one unsafe successor then Determinizator
cannot win from v. The winning strategy that is built on-the-fly is then corrected by calling
repair_my_error(v).

If v is a StateOfDeterminizator, then the function calls has_a_safe_succ(v). If the result is
true, then the function returns true, otherwise it has to correct the strategy also by calling
repair_my_error(v).

• has_a_safe_succ

This function applies to a StateOfDeterminizator v. It searches a safe (or rather believed to be
safe) successor of v. If it finds one, then it updates the strategy with this choice and returns true,
otherwise it returns false.

• repair_my_error

This function applies to a state v of the game either a StateOfDeterminizator, or a StateOfSpoiler.

If v is a StateOfSpoiler, the function removes the moves of the strategy leading to v, and for
each predecessor vd, it searches a new safe move by calling has_a_safe_succ(vd).

If v is a StateOfDeterminizator, then the function calls itself over all its predecessors. Indeed,
every StateOfSpoiler which can lead to v is now known to be unsafe.

The initialization of the program consists in build the initial StateOfSpoiler v0 and the resolution is
performed calling is_safe(v0).

3.5.3 Execution of the program

Inputs and outputs of our implementation are in .xml and they are compatible with UPPAAL. We also
defined printing functions for the game in order to observe its structure. Figure 3.5.3 represents a part
of a huge game which has been built during our experimentations. States of Spoiler are rectangles
and states of Determinizator are circles. Bad states are colored in red. States in gray are the states
from which Spoiler can win. The algorithm which we implemented allows in particular to avoid the
exploration of useless states. The traversal of the game naturally stops on losing states, but it can also
stop on other states when there is no longer hope to win by visiting them. For example, on the top of
Figure 3.5.3, we can see that a rectangle is colored in gray because, from it, Spoiler can go in a state
of Determinizator which only leads to losing states. Hence, the other successor of this rectangle state
has not been explored.

75

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

Figure 3.16: Part of a game illustrating the on-the-fly construction of the game.

Experimentations For small examples such as the running example of the chapter, our implementa-
tion computes a determinisitic timed automaton in one seconde. In Figure 3.17, the timed automaton
on the right is our running example, drawn in UPPAAL in order to be in the format accepted by
our program. In the middle of the figure, the game built by our implementation which is drastically
smaller than the complete game represented in Figure 3.4 on page 48. Finally, the deterministic re-
sulting timed automaton obtain by our algorithm is the one presented in the chapter. It is also drawn
in UPPAAL, thanks to the format of our outputs.

Our implementation also answers in some seconds for quite large examples, provided that there is
a single clock. Indeed, experimentations for timed automata with two clocks become very costly. We
tried to apply the program to timed automata recognizing MITL formula. When there are two clocks
in the example and two clocks for the deterministic timed automaton, the response sometimes comes
after one hour of computation, whereas the determinism of the timed automaton is not very complex.
This is not surprising because of the doubly exponential complexity of the algorithm with respect to
the number of clocks. The main observation of these experimentations is that there is a blow up of
the number of states due to the blow up of the number of relations. In this way, the algorithm does,
in some sense, several times the same computation. Indeed, very similar states are built, from which
the exploration could probably be done only once. These experimentations thus help us to understand
more deeply the underlying problem of the determinization. In the future, we aim to imagine heuristics
to improve this implementation using our experimentations.

76

IMPLEMENTATION OF A PROTOTYPE TOOL

Figure 3.17: Input timed automaton, game and output timed automaton of our running example.

Conclusion

In this chapter, we proposed a game-based approach for the determinization of timed automata. Given
a timed automaton A (with ε-transitions and invariants) and resources (k,M), we build a finite turn-
based safety game between two players Spoiler and Determinizator, such that any strategy for Deter-
minizator yields a deterministic over-approximation of the language of A, and any winning strategy
provides a deterministic equivalent for A, in both cases, with k clocks and maximal constant M . We
also detail how to adapt the framework to generate deterministic under-approximations, or determin-
istic abstractions combining under- and over-approximations. A motivation for this generalization is
to tackle the problem of off-line model-based test generation from non-deterministic timed automata
specifications in the next chapter.
Our approach subsumes the two existing methods [KT09, BBBB09]. In comparison with the over-
approximation algorithm from [KT09], our game approach yields much more often a deterministic
equivalent. In particular, the game approach preserves deterministic timed automata (when sufficient
resources are provided), which is not the case for [KT09]. This comes from the fact that strategies can
be seen as a generalization of the skeletons of [KT09]: strategies are timed and adaptive, compared
to fixed finite-state skeletons. Another interesting point is that our method deals with urgency in a
finer way, preserving the invariants as much as possible, whereas the algorithm of [KT09] always
over-approximates the urgency status of the transitions as lazy.

Compared to the determinization procedure of [BBBB09], our approach deals with a richer model
of timed automata, including ε-transitions and invariants. Already without these extensions, any timed
automaton that can be determinized by [BBBB09], can also be determinized by our game-based ap-
proach. The class of automatically determinized timed automata is thus strictly increased, thanks to
a smoother treatment of relations between the original and the new clocks, and also due to a partial
treatment of language inclusion between distinct paths of the original automaton.

The (approximate) determinization of timed automata is a complex problem and the three above

77

A GAME APPROACH TO DETERMINIZE TIMED AUTOMATA

mentioned algorithms run in time doubly exponential in the size of the input. More precisely for
our approach, the number of locations of the resulting automaton is doubly exponential in its number
of clocks and in the number of clocks of A, and exponential in the number of locations of A. We
implemented a prototype tool during a visit in the team of Kim G. Larsen at Aalborg University and
in particular thanks to the help of Peter Bulychev. Given the difficulty of the problem, it would be of
interest to develop further this prototype by implementing some heuristics. We discuss some related
perspectives in the conclusion of the document.

78

Chapter 4

Application of the Game Approach to
Off-line Test Selection

Introduction

In Chapter 3, we introduced a game approach to determinize timed automata. Our algorithm always
yields a deterministic timed automaton, but this result can be an approximation. We presented several
possible approximations: over-approximation, under-approximation and a mix of them. The main
motivation for the latter is the application to off-line test selection which is developed in this chapter.

Conformance testing is the process of testing whether some implementation of a software system
behaves correctly with respect to its specification. In this testing framework, implementations are
considered as black boxes, i.e. the source code is unknown, only their interface with the environment
is known and used to interact with the tester. In formal model-based conformance testing, models
are used to describe testing artifacts (specifications, implementations, test cases, ...). Moreover, con-
formance is formally defined as a relation between implementations and specifications which reflects
what are the correct behaviors of the implementation with respect to those of the specification. Defin-
ing such a relation requires the hypothesis that the implementation behaves as a model. Test cases
with verdicts, which will be executed against the implementation in order to check conformance, are
generated automatically from the specification. Test generation algorithms should then ensure prop-
erties relating verdicts of executions of test cases with the conformance relation (e.g. soundness), thus
improving the quality of testing compared to manual writing of test cases.

For timed systems, model-based conformance testing has already been explored in the last decade,
with different models and conformance relations (see e.g. [ST08] for a survey), and various test gener-
ation algorithms (e.g. [NS03, BB05, KT09]). In this context, a very popular model is timed automata
with inputs and outputs (TAIOs), a variant of timed automata [AD94], in which the alphabet of observ-
able actions is partitioned into inputs and outputs. We consider here a very general model, partially
observable and non-deterministic TAIOs with invariants to model urgency. We resort to the tioco con-
formance relation defined for TAIOs [KT04], which is equivalent to the rtioco relation [LMN05]. This
relation compares the observable behaviors of timed systems, made of inputs, outputs and delays, re-
stricting attention to what happens after specification traces. Intuitively, an implementation conforms
to a specification if after any observable trace of the specification, outputs and delays observed on the
implementation after this trace are allowed by the specification.

One of the main difficulties encountered in test generation for partially observable, non-deterministic
TAIOs is determinization. In fact determinization is required in order to foresee the next enabled ac-

79

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

tions during execution, and thus to emit a correct verdict depending on whether actions observed on
the implementation are allowed by the specification model after the current observable trace. Un-
fortunately, as discussed in the introduction of this part, TAs (and thus TAIOs) are not determiniz-
able in general: the class of deterministic TAs is a strict subclass of TAs. Two different approaches
have been proposed for test generation from timed models, which induce different treatments of non-
determinism.

• In off-line test generation test cases are first generated as timed automata (or timed sequences,
or timed transition systems) and subsequently executed on the implementation. One advan-
tage is that test cases can be stored and further used e.g. for regression testing and serve for
documentation. However, due to the non-determinizability of TAIOs, the approach has often
been limited to deterministic or determinizable TAIOs [KJM04, NS03]. A notable exception
is [KT09] where the problem is solved by the use of an over-approximate determinization with
fixed resources which we reported in the latter chapter. Another one is [DLLN09] where win-
ning strategies of timed games are used as test cases.

• In on-line test generation, test cases are generated during their execution. Given a current
observed trace, enabled actions after this trace are computed from the specification model and,
either an allowed input is sent to the implementation, or a received output or an observed delay
is checked. This technique can be applied to any TAIO, as possible observable actions are
computed only along the current finite execution (the set of possible states of the specification
model after a finite trace, and their enabled actions are finitely representable and computable),
thus avoiding a complete determinization. On-line test generation is of particular interest to
rapidly discover errors, and can be applied to large and non-deterministic systems, but it may
sometimes be impracticable due to a lack of reactivity: the time needed to compute successor
states on-line may sometimes be incompatible with real-time constraints.

In this chapter, we propose to generate test cases off-line for the whole class of non-deterministic
TAIOs, in the formal framework of the tioco conformance theory. The determinization problem is
tackled thanks to the approximate determinization presented in Chapter 3, with fixed resources in the
spirit of [KT09]. Our approximate determinization method is more precise than [KT09] (see Chapter 3
for details), preserves the richness of our model by dealing with partial observability (ε-transitions)
and urgency (invariants), and is suitable to testing by a different treatment of inputs, outputs and
delays (mix of under- and over-approximations). Determinization is exact for known classes of deter-
minizable TAIOs (e.g. event-clock TAs, TAs with integer resets, strongly non-Zeno TAs) if resources
are sufficient. In the general case, determinization may over-approximate outputs and delays and
under-approximate inputs. More precisely, it produces a deterministic io-abstraction of the TAIO for
a particular io-refinement relation which generalizes the one of [DLL+10]. As a consequence, if test
cases are generated from the io-abstract deterministic TAIO, and are sound for this TAIO, they are
guaranteed to be sound for the original non-deterministic TAIO.

Behaviors of specifications to be tested are identified by means of test purposes. Test purposes
are often used in testing practice, and are particularly useful when one wants to focus testing on
particular behaviors, e.g. corresponding to requirements or suspected behaviors of the implementation.
In this chapter they are defined as open timed automata with inputs and outputs (OTAIOs), a model
generalizing TAIOs, allowing to precisely target some behaviors according to actions and clocks of
the specification as well as proper clocks. Then, in the same spirit as for the TGV tool in the untimed
case [JJ05], test selection is performed relying on a co-reachability analysis. Produced test cases are
TAIOs, while most approaches generate less elaborated test cases, timed traces or trees. In addition

80

A MODEL OF OPEN TIMED AUTOMATA WITH INPUTS / OUTPUTS

to soundness, when determinization is exact, we also prove an exhaustiveness property, and two other
properties on the adequacy of test case verdicts. To our knowledge, this work constitutes the most
general and advanced off-line test selection approach for TAIOs.

This chapter is based on the article [BJSK12], a journal version of the paper [BJSK11]. It is struc-
tured as follows. In the next section we introduce the model of OTAIOs, its semantics, some notations
and operations on this model and the model of TAIOs. Section 4.2 recalls the tioco conformance
theory for TAIOs, including properties of test cases relating conformance and verdicts, and introduces
an io-refinement relation which preserves tioco. In Section 4.3 we detail the test selection mechanism
using test purposes and prove some properties on generated test cases. Section 4.4 discusses some
issues related to test case execution and test purposes and some related work.

4.1 A model of open timed automata with inputs / outputs

In the context of model-based testing, timed automata have been extended to timed automata with in-
puts and outputs (TAIOs) whose sets of actions are partitioned into inputs, outputs and unobservable
actions. In this section, we further extend TAIOs by partitioning the set of clocks into proper clocks
(i.e., controlled by the automaton) and observed clocks (i.e, owned by some other automaton). The
resulting model of open timed automata with inputs/outputs (OTAIOs for short), allows one to de-
scribe observer timed automata that can test clock values from other automata. While the sub-model
of TAIOs (with only proper clocks) is sufficient for most testing artifacts (specifications, implemen-
tations, test cases) observed clocks of OTAIOs will be useful to express test purposes whose aim is to
focus on the timed behaviors of the specification. Invariants and ε-transitions are respectively used to
model urgency of some outputs and internal actions.

4.1.1 Timed automata with inputs/outputs

We start by introducing notations and useful definitions concerning TAIOs and OTAIOs. We write t
for the disjoint union of sets, and use it, when appropriate, to emphasize that sets are disjoint.

Definition 4.1 (OTAIO). An open timed automaton with inputs and outputs (OTAIO) is a tuple A =
(LA, `A0 ,Σ

A
? ,Σ

A
! ,Σ

A
τ , X

A
p , X

A
o ,M

A, InvA, EA) such that:

• LA is a finite set of locations, with `A0 ∈ LA the initial location,

• ΣA? , ΣA! and ΣAτ are disjoint finite alphabets of input actions (noted a?, b?, . . .), output actions
(noted a!, b!, . . .), and internal actions (noted τ1, τ2, . . .). We note ΣAobs = ΣA? t ΣA! for the
alphabet of observable actions, and ΣA = ΣA? t ΣA! t ΣAτ for the whole set of actions.

• XAp and XAo are disjoint finite sets of proper clocks and observed clocks, respectively. We note
XA = XAp tXAo for the whole set of clocks.

• MA ∈ N is the maximal constant of A, and we will refer to (|XA|,MA) as the resources of A,

• InvA : LA → IMA(XA) is a mapping which labels each location with anM -bounded invariant,

• EA ⊆ LA ×GMA(XA)×ΣA × 2X
A
p ×LA is a finite set of edges where guards are defined on

XA, but resets are restricted to proper clocks in XAp .

81

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

One of the reasons for introducing the OTAIO model is to have a uniform model (syntax and
semantics) that will be next specialized for particular testing artifacts. In particular, an OTAIO with
an empty set of observed clocks XAo is a classical TAIO, and will be the model for specifications,
implementations and test cases. The partition of actions reflects their roles in the testing context: the
tester cannot observe internal actions, but controls inputs and observes outputs (and delays). The set
of clocks is also partitioned into proper clocks, i.e.usual clocks controlled by the system itself through
resets, as opposed to observed clocks referring to proper clocks of another OTAIO (e.g. modeling the
system’s environment). These cannot be reset to avoid intrusiveness, but synchronization with them
in guards and invariants is allowed. This partition of clocks will be useful for test purposes which
can have, as observed clocks, some proper clocks of specifications, with the aim of selecting time
constrained behaviors of specifications to be tested.

`0

`1 `2 `3 `4

`5 `6 `7 `8

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 4.1: Specification A

Running example Figure 4.1 represents a TAIO for a specification A that will serve as a running
example in this paper. Its clocks are X = XAp = {x}, its maximal constant is MA = 2, it has a
single input ΣA? = {a}, a single output ΣA! = {b} and one internal action ΣAτ = {τ}. Informally, its
behavior is as follows. It may stay in the initial location `0 while x ≤ 1, and at x = 1, has the choice,
either to go to `1 with action τ , or go to `5 with action τ while resetting x. In `1, it may receive a and
move to `2 when x is between 1 and 2, and reset x. In `2 it may stay while x ≤ 1 and, either send b
and go to `3 at x = 0, or loop silently when x = 1 while resetting x. This means that b can be sent at
any integer delay after entering `2. In `3 it may stay while x ≤ 1 and move to `4 when sending b. In
`5, one can move to `6 before x = 1 by receiving a and resetting x. Due to invariants x = 0 in `6 and
`7, the subsequent behavior consists in the immediate transmission of two b’s.

4.1.2 The semantics of OTAIOs

LetA = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , X

A
o ,M

A, InvA, EA) be an OTAIO. The semantics ofA is a timed
transition system T A = (SA, sA0 ,Γ

A,→A) where

• SA = LA × RXA≥0 is the set of states i.e.pairs (`, v) consisting in a location and a valuation of
clocks;

• sA0 = (`A0 , 0) ∈ SA is the initial state;

• ΓA = R≥0 t EA × 2X
A
o is the set of transition labels consisting in either a delay δ or a pair

(e,X ′o) formed by an edge e ∈ E and a set X ′o ⊆ XAo of observed clocks;

• the transition relation→A⊆ SA × ΓA × SA is the smallest set of the following moves:

82

A MODEL OF OPEN TIMED AUTOMATA WITH INPUTS / OUTPUTS

– Discrete moves: (`, v)
(e,X′o)−→A (`′, v′) whenever there exists e = (`, g, a,X ′p, `

′) ∈ EA such
that v |= g∧InvA(`),X ′o ⊆ XAo is an arbitrary subset of observed clocks, v′ = v[X′ptX′o←0]

and v′ |= InvA(`′). Note that X ′o is unconstrained as observed clocks are not controlled
by A but by a peer OTAIO.

– Time elapse: (`, v)
δ−→A (`, v + δ) for δ ∈ R≥0 if v + δ |= InvA(`).

The semantics of OTAIOs generalizes the usual semantics of TAIOs. The difference lies in the
treatment of the additional observed clocks as the evolution of those clocks is controlled by a peer
OTAIO. The observed clocks evolve at the same speed as the proper clocks, thus continuous moves
are simply extended to proper and observed clocks. For discrete moves however, resets of observed
clocks are uncontrolled, thus all possible resets have to be considered.

Let us now fix some vocabulary which can differ from the rest of the document. Indeed, in the
testing context, we consider that all the locations are accepting. Runs are note introduced as readers of
timed words, but as executions of a systems. We also define sequences and traces of runs, two levels
of abstraction of runs.

A partial run of A is a finite sequence of subsequent moves in (SA × ΓA)∗.SA. For example

% = s0
δ1−→A s′0

(e1,X1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk. The sum of delays in % is noted time(%).

A run is a partial run starting in sA0 . A state s is reachable if there exists a run leading to s. A state s
is co-reachable from a set S′ ⊆ SA if there is a partial run from s to a state in S′. We note reach(A)
the set of reachable states and coreach(A, S′) the set of states co-reachable from S′.

A (partial) sequence is a projection of a (partial) run where states are forgotten, and discrete
transitions are abstracted to actions and proper resets which are grouped with observed resets. As an
example, the sequence corresponding to a run

% = s0
δ1−→A s′0

(e1,X1
o)−→A s1 · · · sk−1

δk−→A s′k−1

(ek,X
k
o)−→A sk

is
µ = δ1.(a1, X

1
p tX1

o) · · · δk.(ak, Xk
p tXk

o)

where ei = (`i, gi, ai, X
i
p, `
′
i) for all i ∈ [1, k]. We then note s0

µ−→A sk. We write s0
µ−→A if there

exists sk such that s0
µ−→A sk. We note Seq(A) ⊆ (R≥0 t (ΣA× 2X

A
))∗ (respectively pSeq(A)) the

set of sequences (resp. partial sequences) of A. For a sequence µ, time(µ) denotes the sum of delays
in µ.

For a (partial) sequence µ ∈ pSeq(A), Trace(µ) ∈ (R≥0 t ΣAobs)
∗.R≥0 denotes the observable

behavior obtained by erasing internal actions and summing delays between observable ones. It is
defined inductively as follows:

• Trace(ε) = 0,

• Trace(δ1 . . . δk) = Σk
i=1δi,

• Trace(δ1 . . . δk.(τ,X
′).µ) = Trace((Σk

i=1δi).µ),

• Trace(δ1 . . . δk.(a,X
′).µ) = (Σk

i=1δi).a.T race(µ) if a ∈ ΣAobs.

For example Trace(1.(τ,X1).2.(a,X2).2.(τ,X3)) = 3.a.2 and Trace(1.(τ,X1).2.(a,X2)) = 3.a.0.
When a trace ends by a 0-delay, we sometimes omit it and write e.g. 3.a for 3.a.0.

83

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

When concatenating two traces, the last delay of the first trace and the initial delay of the second
one must be added up as follows: if σ1 = δ1.a1. · · · an.δn+1 and σ2 = δ′1.a

′
1. · · · a′m.δ′m+1 then

σ1.σ2 = δ1.a1. · · · an.(δn+1 + δ′1).a′1. · · · a′m.δ′m+1. Concatenation allows one to define the notion
of prefix. Given a trace σ, σ1 is a prefix of σ if there exists some σ2 with σ = σ1.σ2. Under this
definition, 1.a.1 is a prefix of 1.a.2.b.

For a run % projecting onto a sequence µ, we also write Trace(%) for Trace(µ). The set of traces
of runs of A is denoted by Traces(A) ⊆ (R≥0 t ΣAobs)

∗.R≥0
1.

Two OTAIOs are said equivalent if they have the same sets of traces.
Let σ ∈ (R≥0 t ΣAobs)

∗.R≥0 be a trace, and s ∈ SA be a state,

• A after σ = {s ∈ SA | ∃µ ∈ Seq(A), sA0
µ−→A s∧ Trace(µ) = σ} denotes the set of states

where A can stay after observing the trace σ.

• elapse(s) = {t ∈ R≥0 | ∃µ ∈ (R≥0 t (ΣAτ × 2X
A

))∗, s
µ−→A ∧ time(µ) = t} is the set of

enabled delays in s with no observable action.

• out(s) = {a ∈ ΣA! | ∃X ⊆ XA, s
(a,X)−→A} ∪ elapse(s) (and in(s) = {a ∈ ΣA? | ∃X ⊆

XA, s
(a,X)−→A}) for the set of outputs and delays (respectively inputs) that can be observed from

s. For S′ ⊆ SA, out(S′) =
⋃
s∈S′ out(s) and in(S′) =

⋃
s∈S′ in(s).

Using these last definitions, we will later describe the set of possible outputs and delays after the trace
σ by out(A after σ).

Notice that all notions introduced for OTAIOs apply to the subclass of TAIOs.

4.1.3 Properties and operations

A TAIO A is deterministic (and called a DTAIO) whenever for any σ ∈ Traces(A),A after σ is a
singleton2. A TAIO A is determinizable if there exists an equivalent DTAIO.

An OTAIOA is said complete if in every location `, InvA(`) = true and for every action a ∈ ΣA,
the disjunction of all guards of transitions leaving ` and labeled by a is true. This entails that
Seq(A) ↓XAp = (R≥0 t (ΣA × 2X

A
o))∗, where ↓XAp is the projection that removes resets of proper

clocks in XAp . This means that A is universal for all the behaviors of its environment.
An OTAIO A is input-complete in a state s ∈ reach(A), if in(s) = ΣA? . An OTAIO A is

input-complete if it is input-complete in all its reachable states.
An OTAIO A is non-blocking if ∀s ∈ reach(A),∀t ∈ R≥0, ∃µ ∈ pSeq(A) ∩ (R≥0 t ((ΣA! t

ΣAτ) × 2X
A

))∗, time(µ) = t ∧ s µ→A. This means that it never blocks the evolution of time, waiting
for an input.

For modeling the behavior of composed systems, in particular for modeling the execution of test
cases on implementations, we introduce the classical parallel product. This operation consists in the
synchronization of two TAIOs on complementary observable actions (e.g. a!, the emission of a and
a? its reception) and induces the intersection of the sets of traces. It is only defined for compatible
TAIOs, i.e. Ai = (Li, `i0,Σ

i
?,Σ

i
!,Σ

i
τ , X

i
p,M

i, Invi, Ei) for i = 1, 2 such that Σ1
! = Σ2

?, Σ1
? = Σ2

! ,
Σ1
τ ∩ Σ2

τ = ∅ and X1
p ∩X2

p = ∅.

1Notice that formally, a trace always ends with a delay, which can be 0. This technical detail is useful later to define
verdicts as soon as possible without waiting for a hypothetical next action.

2Determinism is only defined (and used in the sequel) for TAIOs. For OTAIOs, the right definition would consider the
projection of A after σ which forgets values of observed clocks, as these introduce “environmental” non-determinism.

84

A MODEL OF OPEN TIMED AUTOMATA WITH INPUTS / OUTPUTS

Definition 4.2 (Parallel product). The parallel product of two compatible TAIOsAi = (Li, `i0,Σ
i
?,Σ

i
!,

Σi
τ , X

i
p,M

i, Invi, Ei) i = 1, 2 is a TAIO A1‖A2 = (L, `0,Σ?,Σ!,Στ , Xp,M, Inv, E) where:

• L = L1 × L2, `0 = (`10, `
2
0),

• Σ? = Σ1
?, Σ! = Σ1

! and Στ = Σ1
τ t Σ2

τ

• Xp = X1
p tX2

p

• M = max(M 1,M 2)

• ∀(`1, `2) ∈ L, Inv((`1, `2)) = Inv(`1) ∧ Inv(`2)

• E is the smallest relation such that:

– for a ∈ Σ1
?tΣ1

! , if (`1, g1, a,X ′1p , `
′1) ∈ E1 and (`2, g2, a,X ′2p , `

′2) ∈ E2 then ((`1, `2), g1∧
g2, a,X ′1p ∪X ′2p , (`′1, `′2)) ∈ E, i.e.complementary actions synchronize, corresponding to
a communication;

– for τ1 ∈ Σ1
τ , `2 ∈ L2, if (`1, g1, τ1, X

′1
p , `
′1) ∈ E1 then ((`1, `2), g1, τ1, X

′1
p , (`

′1, `2)) ∈ E,
i.e.internal actions of A1 progress independently;

– for τ2 ∈ Σ2
τ , `1 ∈ L1, if (`2, g2, τ2, X

′2
p , `
′2) ∈ E2 then ((`1, `2), g2, τ2, X

′2
p , (`

1, `′2)) ∈ E,
i.e. internal actions of A2 progress independently.

By the definition of the transition relation E of A1‖A2, TAIOs synchronize exactly on comple-
mentary observable actions and time, and evolve independently on internal actions. As a consequence,
the following equality on traces holds:

Traces(A1‖A2) = Traces(A1) ∩ Traces(A2) (4.1)

Notice that the definition is not absolutely symmetrical, as the direction (input/output) of actions
of the product is chosen with respect toA1. The technical reason is that, in the execution of a test case
on an implementation, we will need to keep the directions of actions of the implementation.

y ≤ 1

y ≤ 1

A1

X1
p = {y}

y ≥ 1, a?, {y}

y ≥
1, c?

y ≤ 1, b!

x ≤ 1

A2

X2
p = {x}

x = 1, a!, {x}

x ≥ 1, b?

x ≥
1, c!

x ≤ 1

y ≤ 1

y ≤ 1

A = A1‖A2

Xp = {x, y}

y ≥ 1 ∧ x = 1, a?, {x, y}

y ≤ 1 ∧ x ≥ 1, b!

Figure 4.2: Example of a parallel product A = A1‖A2.

85

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

The Figure 4.2 gives a very simple illustration of the parallel product. The intersection of the sets
of traces is clear. Indeed, the parallel product recognizes exactly all prefixes of the trace 1.a.1.b.

We now define a product operation on OTAIOs which extends the classical product of TAs, with
a particular attention to observed clocks. This product is used later in the paper, to model the action
of a test purpose which observes the clocks of a specification.

Definition 4.3 (Product). LetAi = (Li, `i0,Σ?,Σ!,Στ , X
i
p, X

i
o,M

i, Invi, Ei), i = 1, 2, be two OTAIOs
with same alphabets and disjoint sets of proper clocks (X1

p ∩ X2
p = ∅). Their product is the OTAIO

A1 ×A2 = (L, `0,Σ?,Σ!,Στ , Xp, Xo,M, Inv, E) where:

• L = L1 × L2;

• `0 = (`10, `
2
0);

• Xp = X1
p tX2

p, Xo = (X1
o ∪X2

o) \Xp;

• M = max(M 1,M 2);

• ∀(`1, `2) ∈ L, Inv((`1, `2)) = Inv1(`1) ∧ Inv2(`2);

• ((`1, `2), g1 ∧ g2, a,X ′1p tX ′2p , (`′1, `′2)) ∈ E if (`i, gi, a,X ′ip , `
′i) ∈ Ei, i=1,2.

Intuitively, A1 and A2 synchronize on both time and common actions (including internal ones3).
A2 may observe proper clocks of A1 using its observed clocks X1

p ∩ X2
o , and vice versa. The set of

proper clocks ofA1×A2 is the union of proper clocks ofA1 and A2, and observed clocks ofA1×A2

are observed clocks of any OTAIO which are not proper. For example, the OTAIO in Figure 4.8
represents the product of the TAIO A in Figure 4.1 and the OTAIO T P of Figure 4.7.

A1

X1
p = {z}, X1

o = {x, y}

z = 1 ∧ y ≥ 1 ∧ x ≤ 1, a?, {z}

z ≤ 1 ∧ y ≥ 1 ∧ x = 2, b!

A2

X2
p = {x}, X2

o = {y, z}

x = 1, a?, {x}

y ≥ 1, b!

A = A1 ×A2

Xp = {x, z}, Xo = {y}

z = 1 ∧ y ≥ 1 ∧ x = 1, a?, {x, z}

z ≤ 1 ∧ y ≥ 1 ∧ x = 2, b!

Figure 4.3: Example of a product A = A1 ×A2.

Contrary to the parallel product, the set of traces of the product of two OTAIOs is not the inter-
section of the sets of traces of these TAIOs, as illustrated by the following example.

3Synchronizing internal actions allows for more precision in test selection. This justifies to have a set of internal actions
in the TAIO model.

86

CONFORMANCE TESTING THEORY

Illustration of the product Figure 4.3 artificially illustrates the notion of product of two OTAIOs.
One can see that 1.a?.1.b! is a trace of A1 and A2 but is not a trace of A = A1 ×A2. Indeed, in A1,
1.a?.1.b! is the trace of a sequence where x is not reset at the first action. Unfortunately, the clock x
is observed by A1 but is a proper clock of A2 which resets it at the first action. As a consequence,
1.a?.1.b! cannot be a trace of the product A1 × A2. In fact, the second edge in A can never be fired,
since clocks z and x agree on their values and cannot be simultaneously smaller than 1 and equal to 2.

On the other hand, sequences are more adapted to express the underlying operation. To compare
the sets of sequences of A1 × A2 with the sets of sequences of its factors, we introduce an operation
that lifts the sets of clocks of factors to the set of clocks of the product: for A1 defined on (X1

p, X
1
o),

and X1
p ∩ X2

p = ∅, A1 ↑(X2
p ,X

2
o) denotes an automaton identical to A1 but defined on (X1

p, X
2
p ∪

X1
o ∪X2

o \X1
p). The effect on the semantics is to duplicate moves of A1 with unconstrained resets in

(X2
p ∪X2

o) \ (X1
p ∪X1

o), so thatA1↑(X2
p ,X

2
o) strongly bisimulatesA1. The equivalence just consists in

ignoring values of added clocks which do not interfere in the guards. Similarly A2↑(X1
p ,X

1
o) is defined

on (X2
p, X

1
p ∪X2

o ∪X1
o \X2

p). BothA1↑X2
p ,X

2
o andA2↑X1

p ,X
1
o have sequences in (R≥0 t (ΣAτ × (X1

p ∪
X2
p∪X1

o∪X2
o)))

∗. They synchronize on both delays and common actions with their resets. The effect
of the product is to restrict the respective environments (observed clocks) by imposing the resets of
the peer TAIO. The sequences of the product are then characterized by

Seq(A1 ×A2) = Seq(A1↑(X2
p ,X

2
o)) ∩ Seq(A2↑(X1

p ,X
1
o)) (4.2)

meaning that the product of OTAIOs is the adequate operation for intersecting sets of sequences.
An OTAIO equipped with a set of states F ⊆ SA can play the role of an acceptor. A run is

accepted in F if it ends in F . SeqF (A) denotes the set of sequences of accepted runs and TracesF (A)
the set of their traces. By abuse of notation, if L is a subset of locations in LA, we note SeqL(A) for
Seq

L×RXA≥0

(A) and similarly for TracesL(A). Note that for the product A1 × A2, if F 1 and F 2 are

subsets of states of A1 and A2 respectively, additionally to (4.2), the following equality holds:

SeqF 1×F 2(A1 ×A2) = SeqF 1(A1↑(X2
p ,X

2
o)) ∩ SeqF 2(A2↑(X1

p ,X
1
o)). (4.3)

4.2 Conformance testing theory

In this section, we recall the conformance theory for timed automata based on the conformance re-
lation tioco [KT09] that formally defines the set of correct implementations of a given TAIO speci-
fication. tioco is a natural extension of the ioco relation of Tretmans [Tre96] to timed systems. We
then define test cases, formalize their executions, verdicts and expected properties relating verdicts to
conformance. Finally, we introduce a refinement relation between TAIOs that preserves tioco, and
will be useful in proving test case properties.

4.2.1 The tioco conformance theory

We consider that the specification is given as a (possibly non-deterministic) TAIO A. The implemen-
tation is a black box, unknown except for its alphabet of observable actions, which is the same as the
one of A. As usual, in order to formally reason about conformance, we assume that the implementa-
tion can be modeled by an (unknown) TAIO.

Definition 4.4 (Implementation). Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, InvA, EA) be a specifi-

cation TAIO. An implementation of A is an input-complete and non-blocking TAIO I = (LI, `I0,Σ?,

87

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

Σ!, ΣIτ , X
I
p , ∅,MI, InvI, EI) with same observable alphabet as A (ΣI? = ΣA? and ΣI! = ΣA!). I(A)

denotes the set of possible implementations of A.

The requirements that an implementation is input-complete and non-blocking will ensure that the
execution of a test case on I does not block before verdicts are emitted.

Among the possible implementations in I(A), the conformance relation tioco (for timed input-
output conformance) [KT09] formally defines which ones conform to A, naturally extending the
classical ioco relation of Tretmans [Tre96] to timed systems.

Definition 4.5 (Conformance relation). Let A be a TAIO representing the specification and I ∈
I(A) be an implementation of A. We say that I conforms to A and write I tioco A if ∀σ ∈
Traces(A), out(I after σ) ⊆ out(A after σ).

Note that tioco is equivalent to the rtioco relation that was defined independently in [LMN05]
(see [ST08]). Intuitively, I conforms toA if after any timed trace enabled inA, every output or delay
of I is specified in A. This means that I may accept more inputs than A, but is authorized to send
less outputs, or send them during a more restricted time interval.

Illustration of the notion of conformance relation Figure 4.4 represents a specificationA and two
possible implementations I1 and I2. Note that I1 and I2 should be input-complete, but for simplicity
of figures, we omit some inputs and consider that missing inputs loop to the current location. It is
easy to see that I1 conforms to A. Indeed, it accepts more inputs, which is allowed (after the trace
ε, I1 can receive a and d while A only accepts a), and emits the output b during a more restricted
interval of time (out(I1 after a.2) = [0,∞) is included in out(A after a.2) = [0,∞) t {b}).
On the other hand I2 does not conform to A for two reasons: I2 may send a new output c and may
send b during a larger time interval (e.g. out(I2 after a.1) = [0,∞) t {b, c} is not included in
out(A after a.1) = [0,∞)).

A

a?, {x}

2 ≤ x ≤ 8, b!

{x}

I1

{x}

a?, {x}

4 ≤ x ≤ 5, b!

d?

I2

{x}

a?, {x}

1 ≤x ≤ 5, b! c!

Figure 4.4: Example of a specification A and two implementations I1 and I2.

In practice, conformance is checked by test cases run on implementations. In our setting, we
define test cases as deterministic TAIOs equipped with verdicts defined by a partition of states.

Definition 4.6 (Test suite, test case). Given a specification TAIO A, a test suite is a set of test cases,
where a test case is a pair (T C,Verdicts) consisting of:

• a deterministic TAIO T C = (LT C, `T C0 ,ΣT C? ,ΣT C! , ∅, XT Cp , ∅,MT C, InvT C, ET C),

• a partition Verdicts of the set of states ST C = None t Inconc t Pass t Fail. States outside
None are called verdict states.

88

CONFORMANCE TESTING THEORY

We also require that

• ΣT C? = ΣA! and ΣT C! = ΣA? ,

• T C is non-blocking, (e.g. InvT C(`) = true for all ` ∈ LT C),

• T C is input-complete in all None states, meaning that it is ready to receive any input from the
implementation before reaching a verdict.

In the following, for simplicity we will sometimes abuse notations and simply write T C for
(T C,Verdicts). Let us give some intuition about the different verdicts of test cases. Fail states are
those where the test case rejects an implementation. The intention is thus to detect a non-conformance.
Pass and Inconc states are linked to test purposes (see Section 4.3): the intention is that Pass states
should be those where no non-conformance has been detected and the test purpose is satisfied, whereas
Inconc states should be those states where no non-conformance has been detected, but the test pur-
pose cannot be satisfied anymore. None states are all other states. We insist on the fact that those
are intentional characterizations of the verdicts. Properties of test cases defined later specify whether
these intentions are satisfied by test cases. We will see that it is not always the case for all properties.

The execution of a test case T C ∈ Test(A) on an implementation I ∈ I(A) is modeled by the
parallel product I‖T C, which entails that Traces(I‖T C) = Traces(I) ∩ Traces(T C). The facts that
T C is input-complete (in None states) and non-blocking while I is input-complete (in all states) and
non-blocking ensure that no deadlock occurs before a verdict is reached.

We say that the verdict of an execution of trace σ ∈ Traces(T C), noted Verdict(σ, T C), is
Pass, Fail, Inconc or None if T C after σ is included in the corresponding states set 4. We write
I fails T C if some execution σ of I‖T C leads T C to a Fail state, i.e.when TracesFail(T C) ∩
Traces(I) 6= ∅, which means that there exists σ ∈ Traces(I)∩Traces(T C) such that Verdict(σ, T C)
= Fail. Notice that this is only a possibility to reach the Fail verdict among the infinite set of
executions of I‖T C. Hitting one of these executions is not ensured both because of the lack of
control of T C on I and of timing constraints imposed by these executions.

We now introduce soundness, a crucial property ensured by our test generation method. We
also introduce exhaustiveness and strictness that will be ensured when determinization is exact (see
Section 4.3).

Definition 4.7 (Test suite soundness, exhaustiveness and strictness). A test suite T S for A is:

• sound if ∀I ∈ I(A), ∀T C ∈ T S , I fails T C ⇒ ¬(I tioco A),

• exhaustive if ∀I ∈ I(A), ¬(I tioco A)⇒ ∃T C ∈ T S , I fails T C,

• strict if ∀I ∈ I(A), ∀T C ∈ T S,¬(I‖T C tioco A)⇒ I fails T C.

Intuitively, soundness means that no conformant implementation can be rejected by the test suite,
i.e.any failure of a test case during its execution characterizes a non-conformance. Conversely, ex-
haustiveness means that every non-conformant implementation may be rejected by the test suite. Re-
member that the definition of I fails T C indicates only a possibility of reject. Finally, strictness
means that non-conformance is detected once it occurs. In fact, ¬(I‖T C tioco A) means that there
is a trace common to T C and I which does not conform to A. The universal quantification on I and
T C implies that any such trace will fail T C. In particular, this implies that failure will be detected as
soon as it occurs.

4Note that TC being deterministic, T C after σ is a singleton.

89

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

`1

`2

`PassT C

`Fail

`Inc

!a, {x}

x ≤ 8
?b, ?c

?b, ?c

x > 8
?b

x > 8
?c

None = {`1} × R≥0 ∪ {`2} × [0, 8]
Inconc = {`Inc, `2} × (8,∞)
Pass = {`Pass} × R≥0

Fail = {`Fail} × R≥0

T S = {T C}

Figure 4.5: Example of a sound but not strict test suite for the specification A (Figure 4.4).

Illustration of the notion of soundness Figure 4.5 represents a test suite composed of a single test
case T C for the specification A of the Figure 4.4. Indeed, T C is a TAIO which is input-complete in
the None states. T S is sound because the Fail states of T C are reached only when a conformance
error occurs, e.g. on trace 1.b. However, this test case can observe non-conformant traces without
detecting them, hence T S is not strict. For example, 1.a.1.b, 1.a.1.c and 1.a.9.c are non-conformant
traces that do not imply a Fail verdict. These traces are e.g. traces of I2 (Figure 4.4) which should
allow to detect that ¬(I2 tiocoA).

4.2.2 Refinement preserving tioco

In the previous chapter, on page 68, we introduce a refinement relation for two-alphabet timed au-
tomata. In this chapter, we use this refinement with the partition input-output of the alphabet. In the
testing context, we called it io-refinement relation and give an equivalent definition based on traces.
Informally A io-refines B if A specifies more inputs and allows less outputs and delays. As a con-
sequence, if A and B are specifications, A is more restrictive than B with respect to conformance.
We thus prove that io-abstraction (the inverse relation) preserves tioco: if I conforms to A, it also
conforms to any io-abstraction B of A. This will ensure that soundness of test cases is preserved by
the approximate determinization defined in Chapter 3.

Definition 4.8. Let A and B be two TAIOs with same input and output alphabets, we say that A
io-refines B (or B io-abstracts A) and note A � B if

(i) ∀σ ∈ Traces(B), out(A after σ) ⊆ out(B after σ) and,

(ii) ∀σ ∈ Traces(A), in(B after σ) ⊆ in(A after σ).

If B has no ε-transition, this definition is equivalent to the definition of the refinement relation
for two-alphabet timed automata fixing the first alphabet as the set of the inputs and the second one
as the set of outputs. The second property of this definition is equivalent to the last property of the

(Σ1,Σ2)-refinement. Indeed, recall the considered property: if s′0
w.(t,a1)
=====⇒B where a1 ∈ Σ1, and

s0
w
=⇒A

τ0−→A
ε−→A · · ·

τn−1−−−→A
ε−→A

τn−→A with τi ∈ R+ (0 ≤ i ≤ n) and the accumulated delay of w is

t−
∑n

i=0 τi then s0
w.(t,a1)
=====⇒A. Such a property can be expressed in term of traces to obtain the above

definition. Indeed, notting σ.τ.a1 for the sequence of delays and observable actions corresponding

to this word w.(t, a1), s′0
w.(t,a1)
=====⇒B implies that the trace σ.τ is a trace of B and if a1 is an input,

then a1 ∈ in(B after σ.τ). then the condition over A means that σ.τ is also a trace of A and the
conclusion means that a1 ∈ in(A after σ.τ). The out function returns enable output actions and

90

CONFORMANCE TESTING THEORY

delays, the first property of this definition is thus equivalent to the conjunction of both first properties
of the (Σ1,Σ2)-refinement.

As we will see below, � is a preorder relation. Moreover, as condition (ii) is always satisfied if A
is input-complete, for I ∈ I(A), I tioco A is equivalent to I � A. By transitivity of �, it follows
that io-refinement preserves conformance (see Proposition 4.1).

Lemma 4.1. The io-refinement � is a preorder relation.

Proof. The relation � is trivially reflexive and we prove that it is transitive.
Suppose that A � B and B � C. By definition of � we have:

∀σ ∈ Traces(B), out(A after σ) ⊆ out(B after σ) (1)

∀σ ∈ Traces(A), in(B after σ) ⊆ in(A after σ) (2) and

∀σ ∈ Traces(C), out(B after σ) ⊆ out(C after σ) (3)

∀σ ∈ Traces(B), in(C after σ) ⊆ in(B after σ) (4)

We want to prove that A � C thus that

∀σ ∈ Traces(C), out(A after σ) ⊆ out(C after σ) (5)

∀σ ∈ Traces(A), in(C after σ) ⊆ in(A after σ) (6)

In order to prove (5), let σ ∈ Traces(C), and examine the two cases:

• If σ ∈ Traces(B) ∩ Traces(C) then (1) and (3) imply out(A after σ) ⊆ out(B after σ)
and out(B after σ) ⊆ out(C after σ). Thus out(A after σ) ⊆ out(C after σ) and
we are done.

• If σ ∈ Traces(C) \ Traces(B), there exist σ′, σ′′ ∈ (Σobs t R≥0)
∗ and a ∈ Σobs t R≥0 such

that σ = σ′.a.σ′′ with σ′ ∈ Traces(B) ∩ Traces(C) and σ′.a ∈ Traces(C) \ Traces(B). As
B � C, by (4) we get that a ∈ Σ! t R≥0. But as A � B, and σ′ ∈ Traces(B), the condition (1)
induces that out(A after σ′) ⊆ out(B after σ′), and then σ′.a ∈ Traces(C) \ Traces(A).
We deduce that out(A after σ′.a) = ∅ and thus out(A after σ) = ∅ ⊆ out(C after σ).

The proof of (6) is similar. �

Proposition 4.1. If A � B then ∀I ∈ I(A) (= I(B)), I tioco A ⇒ I tioco B.

Proof. This proposition is a direct consequence of the transitivity of �. In fact when I is input-
complete, by definition ∀σ ∈ Traces(I), in(I after σ) = Σ?, thus condition (ii) of � trivially
holds: ∀σ ∈ Traces(I), in(A after σ) ⊆ in(I after σ). Thus I tiocoA (which is defined by
∀σ ∈ Traces(A), out(I after σ) ⊆ out(A after σ)) is equivalent to I � A. Now suppose
A � B and I tiocoA then the transitivity of � gives I tiocoB. �

Remark 4.1. Unfortunately, the converse of Proposition 4.1 is in general false, already in the untimed
case. This is illustrated in Figure 4.6. It is clear that the automatonA accepts all implementations. B
also accepts all implementations as, from the conformance point of view, when a specification does not
specify an input after a trace, this is equivalent to specifying this input and then to accept the universal
language on Σobs. Thus I tioco A ⇒ I tioco B. However ¬(A � B) as in(B after ε) = {a}
but in(A after ε) = ∅. Notice that this example also works for the untimed case in the ioco
conformance theory.

91

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

A

Σ!

B

Σ!

a?

Σ!

Figure 4.6: Counter-example to converse of Proposition 4.1.

As a corollary of Proposition 4.1, we get that io-refinement preserves soundness of test suites:

Corollary 4.1. If A � B then any sound test suite for B is also sound for A.

Proof. Let T S be a sound test suite for B. By definition, for any I ∈ I(B), for any T C ∈ T S ,
I fails T C ⇒ ¬(I tioco B). As we have A � B, by Proposition 4.1, we obtain ¬(I tioco B) ⇒
¬(I tioco A) which implies that for any I ∈ I(B), for any T C ∈ T S , I fails T C ⇒ ¬(I tioco A).
Thus T S is also sound for A. �

In the sequel, this corollary will justify our methodology: fromA a non-deterministic TAIO, build
a deterministic io-abstraction B ofA, then any test case generated from B and sound is also sound for
A.

4.3 Off-line test case generation

In this section, we describe the off-line generation of test cases from timed automata specifications
and test purposes. We first define test purposes, their role in test generation and their formalization
as OTAIOs. We then detail the process of off-line test selection guided by test purposes, which uses
the approximate determinization just defined. We also prove properties of generated test cases with
respect to conformance and test purposes.

4.3.1 Test purposes

In testing practice, especially when test cases are generated manually, each test case has a particular
objective, informally described by a sentence called test purpose. In formal test generation, test pur-
poses should be formal models interpreted as means to select behaviors to be tested, either focusing
on usual behaviors, or on suspected errors in implementations [JJ05], thus typically reachability prop-
erties. They complement other selection mechanisms such as coverage methods [ZHM97] which,
contrary to test purposes, are most often based on syntactical criteria rather than semantic aspects.
Moreover, the set of goals covering a given criterion (e.g. states, transitions, etc) may be translated
into a set of test purposes, each test purpose focusing on one such goal.

As test purposes are selectors of behaviors, a natural way to formalize them is to use a logical
formula characterizing a set of behaviors or an automaton accepting those behaviors. In this work we
choose to describe test purposes as OTAIOs equipped with accepting states. The motivation is to use
a model close to the specification model, easing the description of targeted specification behaviors.
The following definition formalizes test purposes, and some alternatives are discussed in Section 4.4.

Definition 4.9 (Test purpose). LetA = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, InvA, EA) be a TAIO spec-

ification. A test purpose for A is a pair (T P,AcceptT P) where:

• T P = (LT P , `T P0 ,ΣA? ,Σ
A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , InvT P , ET P) is a complete OTAIO (in par-

ticular InvT P (`) = true for any ` ∈ LT P) with XT Po = XAp (T P observes proper clocks ofA)
and XT Pp ∩XAp = ∅,

92

OFF-LINE TEST CASE GENERATION

• AcceptT P ⊆ LT P is a subset of trap locations.

In the following, we will sometimes abuse notations and use T P instead of (T P,AcceptT P).
During the test generation process, test purposes are synchronized with the specification, and together
with their Accept locations, they will play the role of acceptors of timed behaviors. They are non-
intrusive in order not to constrain behaviors of the specification. This explains why they are complete,
thus allowing all actions in all locations, and are not constrained by invariants. They observe behaviors
of specifications by synchronizing with their actions (inputs, outputs and internal actions) and their
proper clocks (by the definition of the product (Definition 4.3), observed clocks of T P are proper
clocks of A, which mean that T P does not reset those clocks). However, in order to add some
flexibility in the description of timed behaviors, they may have their own proper clocks.

`′0 `′1 `′2 `′3 Acc

`′4

x = 1, τ x < 1, a? b! b!

othw othw othw othw

ΣT P

ΣT P

Figure 4.7: Test purpose T P .

Running example Figure 4.7 represents a test purpose T P for the specification A of Figure 4.1.
This one has no proper clock and observes the unique clock x of A. It accepts sequences where τ
occurs at x = 1, followed by an input a at x < 1 (thus focusing on the lower branch of A where x is
reset), and two subsequent b’s. The label othw (for otherwise) on a transition is an abbreviation for
the complement of specified transitions leaving the same location. For example in location `′1, othw
stands for {(true, τ), (true, b!), (x ≥ 1, a?)}.

4.3.2 Principle of test generation

Given a specification TAIO A and a test purpose (T P,AcceptT P), the aim is to build a sound and,
if possible strict test case (T C,Verdicts) focusing on behaviors accepted by T P . As T P accepts
sequences of A, but test cases observe timed traces, the intention is that T C should deliver Pass
verdicts on traces of sequences ofA accepted by T P in AcceptT P . This property is formalized by the
following definition:

Definition 4.10. A test suite T S for A and T P is said to be precise if for any test case T C in
T S , for any timed observation σ in Traces(T C), Verdict(σ, T C) = Pass if and only if σ ∈
Traces(Seq(A↑(XT Pp ,XT Po)) ∩ SeqAcceptT P (T P)).

Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, InvA, EA) be the specification TAIO, and T P =

(LT P , `T P0 ,ΣA? ,Σ
A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , InvT P , ET P) be a test purpose forA, with its set AcceptT P

of accepting locations. The generation of a test case T C from A and T P proceeds in several steps.
First, sequences of A accepted by T P are identified by the computation of the product P of those
OTAIOs. Then a determinization step is necessary to characterize conformant traces as well as traces
of accepted sequences. Then the resulting deterministic TAIO DP is transformed into a test case
TAIO T C′ with verdicts assigned to states. Finally, the test case T C is obtained by a selection step
which tries to avoid some Inconc verdicts. The different steps of the test generation process from A
and T P are detailed in the following paragraphs.

93

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

Computation of the product:

First, the product P = A×T P is built (see Definition 4.3 for the definition of the product), associated
with the set of marked locations AcceptP = LA×AcceptT P . Let P = (LP , `P0 ,Σ

A
? ,Σ

A
! ,Σ

A
τ , X

P
p , X

P
o ,

MP , InvP , EP). As XT Po = XAp , we get XPo = ∅ and XPp = XAp tXT Pp , thus P is in fact a TAIO.
The effect of the product is to unfold A and to mark locations of the product by AcceptP , so that

sequences ofA accepted by T P are identified. As T P is complete, Seq(T P) ↓XT Pp = (R≥0×(ΣT P×
2X
T P
o))∗, thus, by the properties of the product (see equation 4.2), Seq(P) ↓XT Pp = Seq(A) i.e.the

sequences of the product after removing resets of proper clocks of T P are the sequences of A. As a
consequence Traces(P) = Traces(A), which entails that P andA define the same sets of conformant
implementations.

Considering accepted sequences of the product P , by equation 4.3 we get the following equality
SeqAcceptP (P) = Seq(A↑(XT Pp ,XT Po))∩SeqAcceptT P (T P), which induces the desired characterization

of accepted traces: TracesAcceptP (P) = Traces(Seq(A↑(XT Pp ,XT Po)) ∩ SeqAcceptT P (T P)).
Writing pref(T) for the set of prefixes of traces in a set of traces T , we note RTraces(A, T P) =

Traces(A)\pref(TracesAcceptP (P)) for the set of traces ofAwhich are not prefixes of accepted traces
of P . In the sequel, the principle of test selection will be to try to select traces in TracesAcceptP (P)
(and assign to them the Pass verdict) and to try to avoid or at least detect (with an Inconc verdict)
those traces in RTraces(A, T P), as these traces cannot be prefixes of traces of sequences satisfying
the test purpose.

Running example Figure 4.8 represents the product P for the specification A in Figure 4.1 and the
test purpose T P in Figure 4.7. As T P describes one branch of A, the product is very simple in this
case, e.g. intersection of guards are trivial. The only difference with A is the tagging with AcceptP .

`0`
′
0

`1`
′
1 `2`

′
4 `3`

′
4 `4`

′
4

`5`
′
1 `6`

′
2 `7`

′
3 `8Acc

x ≤ 1

x ≤ 1 x ≤ 1

x = 0 x = 0

x = 1, τ
1 < x < 2, a?, {x} x = 0, b! b!

x = 1, τ, {x}

x = 1, τ, {x}
x < 1, a?, {x} b! b!

Figure 4.8: Product P = A× T P .

Approximate determinization of P into DP:

We now want to transform P into a deterministic TAIO DP such that P � DP , which by Propo-
sition 4.1 will entail that implementations conformant to P (thus to A) are still conformant to DP .
If P is already deterministic, we simply take DP = P . Otherwise, our game approach for the
deteminization of timed automata is used (see the previous chapter for definitions and useful exten-
sions). It is adapted to the context of testing for building a deterministic io-abstraction and it deals
with invariants and internal actions. Indeed, as seen in Section 4.2, the io-refinement is simply the
(Σ1,Σ2)-refinement where Σ1 and Σ2 are respectively the set of inputs and the set of outputs. The
correctness of the determinization step is thus based on the following corollary of Proposition 3.4.

94

OFF-LINE TEST CASE GENERATION

Corollary 4.1. Let A be a TA, and k,MB ∈ N. For any strategy Π of Determinizator in GA,(k,MB),
B = Aut(Π) is a deterministic timed automaton over resources (k,MB) which io-abstractsA. More-
over, if Π is winning, then Traces(A) = Traces(B).

Then, the user fixes some resources (k,MDP), then a deterministic io-abstraction DP of P with
resources (k,MDP) is computed thanks to our game approach. DP is equipped with the set of marked
locations AcceptDP consisting of locations in LDP containing some configuration whose location is
in AcceptP . As a consequence traces of DP which are traces of sequences accepted by P in AcceptP

are accepted by DP in AcceptDP , formally Traces(DP) ∩ Traces(SeqAcceptP (P)) = Traces(DP) ∩
TracesAcceptP (P) ⊆ TracesAcceptDP (DP). This means that extra accepted traces may be added due
to over-approximations, some traces may be lost (including accepted ones) by under-approximations,
but if the under-approximation preserves some traces that are accepted in P , these are still accepted
in DP . If the determinization is exact (or P is already deterministic), of course we get more precise
relations between the traces and accepted traces of P andDP , namely Traces(DP) = Traces(P) and
TracesAcceptDP (DP) = TracesAcceptP (P).

Running example Figure 4.9 partially represents the game GP,(1,2) for the TAIO P of Figure 4.8
where, for readability reasons, some behaviors not co-reachable from AcceptDP (dotted green states)
are omitted. A strategy Π for Determinizator is represented by bold arrows. Π is not winning (the
unsafe configuration, in gray, is unavoidable from the initial state), and in fact an approximation is
performed. DP , represented in Figure 4.10 is simply obtained from GP,(1,2) and the strategy Π by
merging transitions of Spoiler and those of Determinizator in the strategy.

Generating T C′ from DP:

The next step consists in building a test case (T C′,Verdicts) from DP . The main point is the com-
putation of verdicts. Pass verdicts are simply defined from AcceptDP . Fail verdicts that should detect
unexpected outputs and delays, rely on a complementation. The difficult part is the computation of
Inconc states which should detect when AcceptDP is not reachable (or equivalently None states, those
states where AcceptDP is still reachable) and thus relies on an analysis of the co-reachability to lo-
cations AcceptDP . Another interesting point is the treatment of invariants. First T C′ will have no
invariants (which ensures that it is non-blocking). Second, invariants in DP are shifted to guards in
T C′ and in the definition of Fail so that test cases check that the urgency specified in A is satisfied by
I.

The test case constructed from DP = (LDP , `DP0 ,ΣDP? ,ΣDP! , ∅, XDPp , ∅,MDP , InvDP , EDP) and
AcceptDP is the pair (T C′,Verdicts) where:

• T C′ = (LT C
′
, `T C

′
0 ,ΣT C

′
? ,ΣT C

′
! , ∅, XT C′p , ∅,MT C′ , InvT C

′
, ET C

′
) is the TAIO such that:

– LT C
′

= LDP t {`Fail} where `Fail is a new location;

– `T C
′

0 = `DP0 is the initial location;

– ΣT C
′

? = ΣDP! = ΣA! and ΣT C
′

! = ΣDP? = ΣA? , i.e.input/output alphabets are mirrored in
order to reflect the opposite role of actions in the synchronization of T C′ and I;

– XT C
′

p = XDPp and XT C′o = XDPo = ∅;

– MT C′ = MDP ;

– InvT C
′
(`) = true for any ` ∈ LT C′ ;

95

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

(`0`
′
0, x− y = 0,>) {0}

(`1`
′
1, x− y = 0,>) {1}

(`5`
′
1, x− y = −1,>) {1}

(`6`
′
2, x− y = 0,>) {0}

(`6`
′
2, x− y = 0,>) {0}

(`2`
′
4, x− y = 0,>) {0}

(`2`
′
4, x− y = −1,>) {1}

(`2`
′
4, x− y = −2,>) {2}

(`2`
′
4, x− y < −2,⊥) (2,∞)

(`7`
′
3, x− y = 0,>) {0}

(`3`
′
4, x− y = 0,>) {0}

(`8Acc, x− y = 0,>) {0}
(`4`

′
4, x− y = 0,>) {0}

(`7`
′
3, x− y = 0,>) {0}

(`8Acc, x− y = 0,>) {0}

true,>

true,⊥

true,>

true,>

y ≤ 1,>

y = 0,>

y = 0,>

(`6`
′
2, x− y = −1,>) {1}

(`7`
′
3, x− y = −1,>) {1}

(`8Acc, x− y = −1,>) {1}

y ≤ 1,>

true,>

y ≤ 1,>

(`4`
′
4, 0 < x− y < 1,>) {0}

(`4`
′
4, x− y = 0,>) (0, 1)

(`4`
′
4, x− y = 1,>) {0}

(`4`
′
4, x− y = 0,>) {1}

true,>

true,>

true,>

true,>

y = 1, a?
{y}

∅
1 <

y <
2, a?

{y}

∅

y
=

1,
b!

y
=

2,
b!

y
>

2
,b!

y
=

0, b!

y
=

0, b!

{y}

∅

{y}

∅

0 < y < 1, b!

y
=

1,
b!

y = 0, b!

y = 0, b!

{y}

{y}

∅

∅

y = 1, b!

y = 1, b!

{y}

{y}

∅

∅

{y}

∅

{y}

∅

Figure 4.9: Game GP,(1,2).

`”0

`”1

`′′11

`′′12

`′′13

`”2

`′′21

`′′22

Accept1

`”3 `”4

y ≤ 1

y = 0 y = 0

Accept2

y = 1, a?, {y}
y = 0, b!, {y} y = 0, b!, {y}

1 <
y <

2, a?
, {y}

y = 0, b!, {y} y = 0, b!, {y}

y = 1, b!

y = 2, b!

y > 2, b!
0 < y < 1,

b!, {y} y = 1, b!, {y}

Figure 4.10: Deterministic automaton DP = Aut(Π).

96

OFF-LINE TEST CASE GENERATION

– ET C
′

= EDPInv t E`Fail
where

EDPInv = {(`, g ∧ InvDP(`), a,X ′, `′) | (`, g, a,X ′, `′) ∈ EDP} and

E`Fail =

{
(`, ḡ ∧ InvDP(`), a,XT C

′
p , `Fail)

∣∣∣∣ ` ∈ LDP , a ∈ ΣDP!

and ḡ = ¬
∨

(`,g,a,X′,`′)∈EDP g

}
• Verdicts is the partition of SDP defined as follows:

– Pass =
⋃
`∈AcceptDP ({`} × InvDP(`)),

– None = coreach(DP,Pass) \ Pass,

– Fail = {`Fail} × RXT C
′

≥0 t {(`,¬InvDP(`))|` ∈ LDP};
– Inconc = SDP \ (Pass t Fail t None),

The important points to understand in the construction of T C′ are the completion to Fail and the
computation of None, which, together with Pass, define Inconc by complementation.

For the completion to Fail, the idea is to detect unspecified outputs and delays with respect toDP .
Remember that outputs of DP are inputs of T C′. Moreover, authorized delays in DP are defined by
invariants, but remember that test cases have no invariants (they are true in all locations). First,
all states in (`,¬InvDP(`)), ` ∈ LDP , i.e.states where the invariant runs out, are put into Fail which
reflects the counterpart in T C′ of the urgency in DP . Then, in each location `, the invariant InvDP(`)
inDP is removed and shifted to guards of all transitions leaving ` in T C′, as defined in EDPI . Second,
in any location `, for each input a ∈ ΣT C

′
? = ΣDP! , a transition leading to `Fail is added, labeled with

a, and whose guard is the conjunction of Inv(`) with the negation of the disjunction of all guards of
transitions labeled by a and leaving ` (thus true if no a-action leaves `), as defined in E`Fail . It is
then easy to see that T C′ is input-complete in all states.

The computation of None is based on an analysis of the co-reachability to Pass. None contains all
states co-reachable from locations in Pass. Notice that the set of states coreach(DP,Pass), and thus
None, can be computed symbolically as usual in the region graph of DP , or more efficiently using
zones.

Running example Figure 4.11 represents the test case T C′ obtained from DP . For readability
reasons, we did not represent transitions inE`Fail

, except the one leaving `”0. In fact these are removed
in the next selection phase as they are only fireable from states where a verdict has already been issued.
The rectangles attached to locations represent the verdicts in these locations when clock y progresses
between 0 and 2, and after 2: dotted green for Pass, black for None, blue grid for Inconc and
crosshatched red for Fail. For example, in `”2, the verdict is initially None, becomes Inconc if no b
is received immediately, and even Fail if no b is received before one time unit. Notice that in order
to reach a Pass verdict, one should initially send a after one and strictly before two time units, and
expect to receive two consecutive b’s immediately after.

Selection of T C:

So far, the construction of T C′ determines Verdicts, but does not perform any selection of behaviors.
A last step consists in trying to control the behavior of T C′ in order to avoid Inconc states (thus stay in
pref(TracesAcceptP (P))), because reaching Inconc means that Pass is unreachable, thus T P cannot
be satisfied anymore. To this aim, guards of transitions of T C′ are refined in the final test case T C in
two complementary ways. First, transitions leaving a verdict state (Fail, Inconc or Pass) are useless,

97

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

`”0

`”1

`′′11

`′′12

`′′13

`”2

`′′21

`′′22

Accept1

`Fail

`”3 `”4 Accept2

Fail = {`Fail} × R≥0 ∪ {`”3, `”4} × (0,∞) ∪ {`”2} × (1,∞)

Inconc = {`”0} × [2,∞) ∪ {`”2} × (0, 1] ∪ {`”1, `”11, `”12, `”13, `”21, `”22} × (0,∞)

Pass = {Accept1,Accept2} × R≥0

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 <
y <

2, a!
, {y}

y = 0, b?, {y} y = 0, b?, {y}

y = 1, b?

y = 2, b?

y > 2, b?
0 < y < 1,

b!, {y} y = 1, b!, {y}

Figure 4.11: Test case T C′ with verdicts

because the test case execution stops when a verdict is issued. Thus for each transition, the guard is
intersected with the predicate characterizing the set of valuations associated with None in the source
location. This does not change the verdict of traces. Second, transitions arriving in Inconc states
and carrying outputs can be avoided (outputs are controlled by the test case), thus for any transition
labeled by an output, the guard is intersected with the predicate characterizing None and Pass states
in the target location (i.e. states that are not in Inconc, as Fail cannot be reached by an output). The
effect is to suppress some traces leading to Inconc states. All in all, traces in T C are exactly those of
T C′ that traverse only None states (except for the last state), and do not end in Inconc with an output.
This selection does not impact on the properties of test suites (soundness, strictness, precision and
exhaustiveness) as will be seen later.

Running example Figure 4.12 represents the test case obtained after this selection phase. One
can notice that locations `”11, `”12, `”13 and `”21, `”22 have been removed since they can only be
reached from Inconc states, thus a verdict will have been emitted before reaching those locations.
The avoidance of Inconc verdicts by outputs cannot be observed on this example. However, with a
small modification of A consisting in adding initially the reception of an a before one time unit, and
not followed by two b’s but e.g. one c, the resulting transition labeled with (0 ≤ y < 1, a!) in T C′
could be cut, producing the same T C.

Remark 4.1. Notice that in the example, falling into Inconc in `”0 could be avoided by adding the
invariant y < 2, with the effect of forcing to output a. More generally, invariants can be added
to locations by rendering outputs urgent in order to avoid Inconc, while taking care of keeping test
cases non-blocking, i.e. by ensuring that an output can be done just before the invariant becomes
false. More precisely, I(`) is the projection of None on ` if Inconc is reachable by letting time elapse
and it preserves the non-blocking property, true otherwise.

Complexity

Let us discuss the complexity of the construction of T C from DP . Note that the size of TAIO
T C is linear in the size of DP but the difficulty lies in the computation of Verdicts. Computing

98

OFF-LINE TEST CASE GENERATION

`”0

`”1 `”2 Accept1

`Fail

`”3 `”4 Accept2

Fail = {`Fail} × R≥0 ∪ {`”3, `”4} × (0,∞) ∪ {`”2} × (1,∞)

Inconc = {`”0} × [2,∞) ∪ {`”2} × (0, 1] ∪ {`”1} × (0,∞)

Pass = {Accept1,Accept2} × R≥0

y = 1, a!, {y}
y = 0, b?, {y} y = 0, b?, {y}

y ≥ 0, b?

1 <
y <

2, a!
, {y}

y = 0, b?, {y} y = 0, b?, {y}

Figure 4.12: Final test case T C after selection

Pass is immediate. The set coreach(Pass) can be computed in polynomial time (more precisely in
O(|LDP |.|XDP |.|MDP |)). To explain this, observe that guards in the TAIO DP are regions and with
each location ` is associated an initial region r` such that guards of transitions leaving ` are time suc-
cessors of r`. Thus during the computation of coreach(Pass), for each location `, one only needs
to consider these O(|XDP |.|MDP |) different regions in order to determine the latest time-successor
rmax
` of r` which is co-reachable from Pass. Then None states with location ` are exactly those within

regions that are time-predecessors of rmax
` . For the same reason (number of possible guards outgoing

a given location) E`Fail
can be computed in polynomial time. Last the Fail verdicts in locations (ex-

cept for `Fail) are computed in linear time by complementing the invariants in DP . The test selection
can be done by inspecting all transitions: a transition is removed if either the source state is a verdict
state, or it corresponds to an output action and the successor are Inconc states. This last step thus
only requires linear time. To conclude, the overall complexity of construction of T C from DP is
polynomial.

4.3.3 Test suite properties

We have presented the different steps for the generation of a TAIO test case from a TAIO specification
and an OTAIO test purpose. The following results express their properties.

Theorem 4.1. Any test case T C built by the procedure is sound for A. Moreover, if DP is an exact
approximation of P (i.e.Traces(DP) = Traces(P)), the test case T C is also strict and precise for A
and T P .

The proof is detailed below, but we first give some intuition. As a preamble, notice that, as ex-
plained in the paragraph on test selection, traces of T C′ are not affected by the construction of T C. In
particular, the transitions considered in the proof are identical in T C and T C′. Soundness comes from
the construction of E`Fail

in T C and preservation of soundness by the approximate determinization
DP of P given by Corollary 4.1. When DP is an exact determinization of P , DP and P have same
traces, which also equal traces of A since T P is complete. Strictness then comes from the fact that
DP andA have the same non-conformant traces, which are captured by the definition ofE`Fail in T C.
Precision comes from TracesAcceptDP (DP) = TracesAcceptP (P) and from the definition of Pass.

When DP is not exact however, there is a risk that some behaviors allowed in DP are not in P ,
thus some non-conformant behaviors are not detected, even if they are executed by T C. Similarly,
some Pass verdicts may be produced for non-accepted or even non-conformant behaviors. However,

99

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

if a trace in TracesAcceptP (P) is present in T C and observed during testing, a Pass verdict will be
delivered. In other words, precision is not always satisfied, but the “only if” direction of precision
(Definition 4.10) is satisfied.

Proof. Soundness: To prove soundness, we need to show that for any I ∈ I(A), I fails T C implies
¬(I tiocoA).

Assuming that I fails T C, there exists a trace σ ∈ Traces(I) ∩ TracesFail(T C). By the con-
struction of the set Fail in T C, there are two cases: either σ leads to a location (`,¬(Inv(`)) in DP ,
or σ leads to a state with location `Fail. In the first case, σ = σ′.δ where σ′ ∈ Traces(DP) and δ > 0
violates the invariant in the location of DP after σ′, and in the second case, by the construction
of E`Fail , σ = σ′.a where σ′ ∈ Traces(DP) and a ∈ ΣDP! is unspecified in DP after σ′. In both
cases, by definition, this means that ¬(I tiocoDP), which proves that T C is sound for DP . Now, as
DP is an io-abstraction of P (i.e. P � DP), by Corollary 4.1 this entails that T C is sound for P .
Finally, we have Traces(P) = Traces(A), which trivially implies that A � P , and thus that T C is
also sound for A.

Strictness: For strictness, in the case whereDP is an exact approximation of P , we need to prove
that for any I ∈ I(A), ¬(I‖T C tiocoA) implies that I fails T C. Suppose that ¬(I‖T C tiocoA).
By definition, there exists a trace σ ∈ Traces(A) and a ∈ out(I‖T C after σ) such that a /∈
out(A after σ). Since DP is an exact approximation of P , we have the equalities Traces(DP) =
Traces(P) = Traces(A), thus σ ∈ Traces(DP) and a /∈ out(DP after σ). By construction of
Fail in T C, it follows that σ.a ∈ TracesFail(T C) which, together with σ.a ∈ Traces(I), implies that
I fails T C. Thus T C is strict.

Precision: To prove precision, in the case of exact determinization, we have to show that for any
trace σ, Verdict(σ, T C) = Pass ⇐⇒ σ ∈ Traces(SeqAcceptT P (T P) ∩ Seq(A)). The definition of
Pass =

⋃
`∈AcceptDP ({`}×InvDP(`)) in T C implies that a Pass verdict is produced for σ exactly when

σ ∈ TracesAcceptDP (DP) which equals TracesAcceptP (P) = Traces(SeqAcceptT P (T P) ∩ Seq(A))
when DP is exact. �

Running example The test case T C of Figure 4.12 comes from an approximate determinization.
However, the approximation comes after reaching Inconc states. More precisely, in the gray state of
the game in Figure 4.9, the approximation starts in the time interval (2,∞). This state corresponds to
location `”1 in T C where the verdict is Inconc as soon as a non null delay is observed. The test case
is thus strict and precise, despite the over-approximation in the determinization phase.

In the following, we prove an exhaustiveness property of our test generation method when deter-
minization is exact. For technical reasons, we need to restrict to a sub-class of TAIOs defined below.
We discuss this restriction later.

Definition 4.11. We say that an OTAIO A is repeatedly observable if from any state of A, there is a
future observable transition, i.e. ∀s ∈ SA, there exists µ such that s

µ−→ and Trace(µ) /∈ R≥0.

Theorem 4.2 (Exhaustiveness). Let A be a repeatedly observable TAIO which can be exactly deter-
minized by our approach. Then the set of test cases that can be generated from A by our method is
exhaustive.

Proof. Let A = (LA, `A0 ,Σ
A
? ,Σ

A
! ,Σ

A
τ , X

A
p , ∅,MA, InvA, EA) be the TAIO specification, and I =

(LI, `I0,Σ
A
? ,Σ

A
! ,Σ

I
τ , X

I
p , ∅,MI, InvI, EI) any non-conformant implementation in I(A). The idea is

100

OFF-LINE TEST CASE GENERATION

now to prove that fromA and I, one can build a test purpose T P such that the test case T C built from
A and T P may detect this non-conformance, i.e. I fails T C.

By definition of ¬(I tioco A), there exists σ ∈ Traces(A) and a ∈ ΣA! t R≥0 such that a ∈
out(I after σ) but a /∈ out(A after σ). Since A is repeatedly observable, there also exists
δ ∈ R≥0 and b ∈ ΣAobs such that σ.δ.b ∈ Traces(A).

As A can be determinized exactly by our approach, there must exist some resources (k,M) and a
strategy Π for Determinizator in the game GA,(k,M) such that Traces(Aut(Π)) = Traces(A).

From the non-conformant implementation I, a test purpose (T P,AcceptT P) can be built, with
T P = (LT P , `T P0 ,ΣA? ,Σ

A
! ,Σ

A
τ , X

T P
p , XT Po ,MT P , InvT P , ET P), XT Pp = XIp tXAut(Π) and XT Po =

∅, and σ.δ.b ∈ TracesAcceptT P but none of its prefixes is in TracesAcceptT P . The construction of T P
relies on the region graph of I‖Aut(Π). First a TAIO T P ′ is built which recognizes exactly the traces
read along the path corresponding to σ in the region graph of I‖Aut(Π), followed by a transition b
with the guard corresponding to the one in Aut(Π). In particular it recognizes the trace σ.δ.b. The
test purpose (T P,AcceptT P) is then built such that T P accepts in its states AcceptT P the traces of
T P ′. Note that T P should be complete for Σ, thus locations of T P ′ should be completed by adding
loops without resets for all actions in Στ , and adding, for all observable actions, transitions to a trap
location guarded with negations of their guards in T P ′.

Now consider our test generation method applied to T P and A. First P = A × T P is built,
and we consider the game GA,(k′,M ′) with k′ = k + |XT Pp | and M ′ = max(M,MT P). One can
then define a strategy Π′ composed of the strategy Π for the k first clocks, and following the resets
of T P (which is deterministic) for the other clocks corresponding to those in XT Pp . The construc-
tion of (DP,AcceptDP) following the strategy Π′ thus ensures that Traces(DP) = Traces(P) and
TracesAcceptDP (DP) = TracesAcceptP (P).

Finally, let T C be the test case built from DP . Observe that T C after σ.δ.b ⊆ Pass, but
T C after σ.δ 6⊆ Pass. As a consequence, T C after σ ⊆ None. Moreover we have a /∈
out(A after σ), hence σ.a ∈ TracesFail(T C) and as σ.a ∈ Traces(I), we can conclude that
I fails T C. �

Discussion:

The hypothesis that A is repeatedly observable is in fact not restrictive for a TAIO that is determiniz-
able by our approach. Indeed, such a TAIO can be transformed into a repeatedly observable one with
same conformant implementations, by first determinizing it, and then completing it as follows. In all
locations, a transition labeled by an input is added, which goes to a trap state looping for all outputs,
and is guarded by the negation of the union of guards of transitions for this input in the deterministic
automaton.

When A cannot be determinized exactly, the risk is that some non-conformance may be unde-
tectable. However, the theorem can be generalized to non-determinizable automata with no resets on
internal action. Indeed, in this case, in the game with resources (k,M), where k is the length of the
finite non-conformant trace σ.a, the strategy consisting in resetting a new clock at each observable ac-
tion allows to remain exact until the observation of non-conformance (see remark after Theorem 4.1).
The proof of theorem 4.2 can be adapted using this strategy.

101

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

4.4 Discussion and related work

Alternative definitions of test purposes

The definition of test purposes depends on the semantic level at which behaviors to be tested are
described (e.g. sequences, traces). This induces a trade-off between the precision of the description of
behaviors, and the cost of producing test suites. In this work, test purposes recognize timed sequences
of the specification A, by a synchronization with actions and observed clocks. They also have their
own proper clocks for additional precision. The advantage is a fine tuning of selection. The price to be
paid is that, for each test purpose, the whole sequence of operations, including determinization which
may be costly, must be done. An alternative is to define test purposes recognizing timed traces rather
than timed sequences. In this case, selection should be performed on a deterministic io-abstraction B
of A obtained by an approximate determinization of A. Then, test purposes should not refer to A’s
clocks as these are lost by the approximate determinization. Test purposes should then either observe
B’s clocks, and thus be defined after determinization, or use only proper clocks in order not to depend
on B, at the price of further restricting the expressive power of test purposes. In both cases, test
purposes should preferably be deterministic in order to avoid a supplementary determinization after
the product with B. The main advantage of these approaches is that the specification is determinized
only once, which reduces the cost of producing a test suite. However, the expressive power of test
purposes is reduced.

Test execution

Once test cases are selected, it remains to execute them on a real implementation. As a test case is a
TAIO, and not a simple timed trace, a number of decisions still need to be taken at each state of the
test case: (1) whether to wait for a certain delay, or to receive an input or to send an output (2) which
output to send, in case there is a choice. It is clear that different choices may lead to different behaviors
and verdicts. Some of these choices can be made either randomly (e.g. choosing a random time delay,
choosing between outputs, etc), or can be pre-established according to user-defined strategies. One
such policy is to apply a technique similar to the control approach of [DLLN09] whose goal is to
avoid RTraces(A, T P).

Moreover, the tester’s time observation capabilities are limited in practice: testers only dispose
of a finite-precision digital clock (a counter) and cannot distinguish among observations which elude
their clock precision. Our framework may take this limitation into account. In [KT09] assumptions
on the tester’s digital clock are explicitly modeled as a special TAIO called Tick, synchronized with
the specification before test generation, then relying to the untimed case. We could imagine to use
such a Tick automaton differently, by synchronizing it with the resulting test case after generation.

Related work

As mentioned in the introduction, off-line test selection is in general restricted to deterministic au-
tomata or known classes of determinizable timed automata. An exception is the work of [KT09]
which relies on an over-approximate determinization. Compared to this work, our approximate deter-
minization is more precise (it is exact in more cases), it copes with outputs and inputs using over- and
under-approximations, and preserves urgency in test cases as much as possible. Another exception
is the work of [DLLN09], where the authors propose a game approach whose effect can be under-
stood as a way to completely avoid RTraces(A, T P), with the possible risk of missing some or even

102

DISCUSSION AND RELATED WORK

all traces in pref(TracesAcceptP (P)). Our selection, which allows to lose this game and produce an
Inconc verdict when this happens, is both more liberal and closer to usual practice.

In several related works [KCL98, END03], test purposes are used for test case selection from
TAIOs. In all these works, test purposes only have proper clocks, thus cannot observe clocks of the
specification.

It should be noticed that selection by test purposes can be used for test selection with respect to
coverage criteria [ZHM97]. Those coverage criteria define a set of elements (generally syntactic ones)
to be covered (e.g. locations, transitions, branches, etc). Each element can then be translated into a
test purpose, the produced test suite covering the given criteria.

Conclusion

In this chapter, we proposed an application of our game approach for the determinization of timed
automata, which is a contribution in itself. We presented a complete formalization for the automatic
off-line generation of test cases from non-deterministic timed automata with inputs and outputs. The
model of TAIOs is general enough to take into account non-determinism, partial observation and
urgency. One main contribution is the ability to tackle non-deterministic specifications, thanks to
our game approach for the determinization. Another main contribution is the selection of test cases
with expressive test purposes described as OTAIOs having the ability to precisely select behaviors
to be tested, based on clocks and actions of the specification as well as proper clocks. Test cases
are generated as TAIOs using a symbolic co-reachability analysis of the observable behaviors of the
specification guided by the test purpose.

103

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

104

Conclusion

In this part, we presented a game approach for the determinization of timed automata. Timed automata
are not determinizable in general, hence if we do not manage to build a deterministic equivalent, we
construct an approximate determinization trying to minimize the approximation. We thus combine
features of two existing approaches: a pseudo algorithm for the exact determinization [BBBB09] and
an algorithm which yields a deterministic over-approximation [KT09]. The underlying problem of
the determinization of timed automata is that resets can be different along two runs reading the same
word. Then, our goal is to find a good reset policy for the clocks of the deterministic timed automaton
in order to preserve all the clock information which is needed. To do so, we naturally proposed to build
a game. Our approach deals with invariants and ε-transitions, and can moreover provide abstractions
combining under- and over-approximations. We improved both existing approaches, determinizing
strictly more timed automata, yielding finer approximations and dealing with richer models.

The determinization is fundamental in verification and in particular for model-based testing. We
presented how to use our determinization technique to generate sound test cases from specifications
given as non-deterministic timed automata. More precisely, the specification model that we consider,
includes partial observability (modeled by ε-transitions) and urgency (modeled by invariants). We
proposed a general formal setting. In particular, we introduced an extension of timed automata which
are able to observe the clocks of other timed automata. This model allowed us to define fine test
purposes to select sets of sequences (traces labeled with resets) instead of only sets of traces. Our
approach for the determinization combining under- and over-approximation is then suitable to treat
differently inputs and outputs. As a consequence, even if the determinization is approximate, the
generated test cases are sound for the original specification.

105

APPLICATION OF THE GAME APPROACH TO OFF-LINE TEST SELECTION

106

Part IV

Frequencies in Timed Automata

107

Introduction

In this part, we are interested in refinements of the verification process, considering some quantities
such as costs along runs. Moreover, the size of the part of the language which satisfies a property; or
the probability for a run to satisfy a property, can be a more interesting information than an answer "no,
the model does not satisfy the property". Recently, a huge effort has been made to add quantitative
aspects in the verification of timed automata. Several quantitative notions have thus been introduced
and studied in timed automata. In this part, we propose to study the proportion of time elapsed in
accepting locations along infinite runs. This quantity is called the frequency of a run and could model,
for example, the failure rate in the long run.

Quantities in timed automata The notions of volume and entropy of timed languages have been
defined and several methods to compute them have been developed [AD09a, AD09b, AD10]. This
allows either to quantify the growth rate of a timed language, considering longer and longer timed
words read by a timed automaton, or read along a symbolic path of a timed automaton. The importance
of a symbolic path can thus be weighted with respect to the other behaviors of the timed automaton.
Another way to express the importance of a symbolic path is to use probabilities. A probabilistic
semantics for timed automata has been introduced and studied in [BBB+08, BBBM08]. The non-
determinism over the enabled moves and over the delays is resolved, in a fair way, using probability
distributions. Then, one can decide, in one-clock timed automata, whether the probability to satisfy an
ω-regular property, satisfies a threshold condition for a rational threshold. For example, one can check
properties of the form "the probability to visit infinitely often a given location, is greater than 1

3". The
approach is based on an algorithm which allows to compute the probability to satisfy the property if it
is a rational number, and to approximate it up to a given precision otherwise. However the techniques
do not extend to timed automata with several clocks, mainly because of some convergence phenomena
between clocks, which appear when two clocks are allowed. Remark that there are other models which
combine probabilities and timing aspects such as continuous probabilistic timed automata [KNSS02]
or stochastic Petri nets [Mol82].

In a dual way, quantities can also be associated directly with runs. Thus, costs have naturally been
put on both transitions and locations to extend the model of timed automata [ATP01, BFH+01]. The
cost of a delay d in a location whose associated cost is c is d ∗ c. The cost for a run is then the sum
of the costs of the delays added to the sum of the costs of the edges fired. Another model, combining
two kinds of costs, called respectively costs and rewards, has been studied in [BBL08]. The runs are
infinite and the value associated to each run, called ratio, is the limit inf of the ratio of the sum of
costs over the sum of rewards. The three above-mentioned papers address the problem of optimal
scheduling. More precisely, in each of these works, one looks for a run with the smallest cost or ratio.

109

Quantities on two dimensions Quantities can thus be considered in timed automata on two dimen-
sions. They can be used as measures of the importance of some behaviors. For example, it may allow
to identify some marginal phenomena in timed automata which could be neglected in the model-
checking of a property. On the other hand, quantities can be directly assigned to runs. Then, it allows
to define quantitative languages, either considering languages where each word has a value reflecting
"how much" it belongs to the language, or by considering languages containing all the words whose
value is, for example, greater than a threshold.

Quantitative untimed languages: mean-payoff condition In the untimed framework, quantitative
languages generalize classical languages, by assigning a real number to each word. They can be
defined thanks to a variety of models such as weighted automata [Sch61], lattice automata [KL07]
or quantitative structures [CCH+05]. We focus on weighted automata because this model is similar
to an untimed version of the model of timed automata with frequencies. One can consider finite or
infinite words and assign the result of functions such as the maximal or minimal weight along a run,
the sum of weights, the limit sup, the limit inf, the mean payoff (or limit average) or a discounted
sum. The properties of such languages are studied in [CDH08]. The different functions can model
a lot of problems. For example, the maximal weight can represent a peak power consumption and
the sum can model a quantity of energy. The discounted sum models the fact that the later a failure
happens, the less important it is [dAHM03]. The mean-payoff function have widely been studied for
games [EM79] where two players have to respectively minimize and maximize some means over the
costs. It can model the failure rate in the long run putting weights 1 on failure states and 0 on the
others. In this part we aim at proposing a timed version of such a model, hence we are particularly
interested by mean-payoff automata on which there is a focus in [CDE+10]. Mean-payoff automata
are weighted automata that assign to each infinite run the long-run average of the transition weights.
This proportion may not converge, which is why mean-payoff automata are said LimSupAvg- or
LimInfAvg-automata depending on the cluster point which is chosen in case of non-convergence. The
value associated with a wordw is then the supremum of the values assigned to runs readingw. One can
thus consider quantitative problems such as the existence of a word whose value is greater than a fixed
threshold, which is a quantitative variant of the traditional emptiness problem. The main contribution
of [CDE+10] is to present a class of quantitative languages defined by a subclass of mean-payoff
automata which is closed under max the quantitative analogue of union, min the quantitative analogue
to intersection, sum and numerical complement (all values are multiplied by −1). This class, noted C
here, is inductively defined as follows: deterministic (LimSupAvg- or LimInfAvg-) automata are in C
and if A1 and A2 belong to C then the max, the min and the sum of A1 and A2 are in C.

Contribution: new semantics for infinite runs in timed automata The usual acceptance condition
for infinite runs in timed automata is the Büchi semantics, where a run is accepted if it visits infinitely
often accepting locations. In particular, a run visiting accepting locations extremely rarely and/or for
a very small duration will be accepted. However, accepting locations could model either states of a
system in which we avoid to stay, for example corresponding to inactivity of machines, or states in
which staying is beneficial, for example corresponding to an optimal productivity. In such contexts,
the Büchi semantics does not seem to be suitable and it appears important to consider the quantity of
time elapsed in a subset of particular locations. Depending on the context, it would thus be interesting
to weight the acceptance of a run, taking into account the frequency of accepting locations.

In this part, we propose to consider timed automata with frequencies. The intuition is that we
assign to each infinite run the value computed as the proportion of time elapsed in accepting locations

110

along the run. If this proportion does not converge, we arbitrarily take the limit sup. The frequency
is similar to the mean-payoff function in weighted automata, and in particular, naturally models the
failure rate in the long run.

Thanks to this quantity, one can define a first semantics simply considering as accepted, those
runs whose frequency is positive. This is the frequency-based acceptance condition which is the
closest to the Büchi acceptance. Nevertheless, the relative expressivenesses of these semantics are
not comparable. More generally, one can use frequency-based constraints, of the form "greater than
a threshold", as acceptance conditions and define quantitative languages. The model investigated
in [CDE+10] can be seen as an untime version of ours. Difficulties to perform language operations
come from weights, and time would not really change the problem. We prefer to focus on the study of
the set of frequencies of the runs in a timed automaton with the aim to decide language problems. The
emptiness problem, for instance, corresponds to the question "Does there exist a run whose frequency
is greater than 1

2?". The universality problem is much harder. We prove, by a reduction from the
universality problem for finite words in timed automata, that it is non-primitive recursive for one-
clock timed automata, and undecidable in general, even for positive frequency condition.

The corner-point abstraction to abstract timing aspects with rewards The region abstraction is
not suitable to study the notion of frequencies in a timed automaton because the timing information
is removed by the abstraction. However, a refinement of the region abstraction has been introduced
in [BBL08], which allows to preserve some information about time elapsing along runs. This corner-
point abstraction is central in our study of the set of frequencies in timed automata.

The article [BBL08] proposes an algorithm to find an optimal scheduling for timed automata
with both costs and rewards. More precisely, the model is timed automata equipped with cost and
reward functions associating with each location and each edge a cost and a reward. The semantics
is a transition system with costs and rewards. The cost and the reward of a discrete transition are
simply the cost and the reward of the corresponding edge. In a location whose cost and reward are
respectively c and r, the cost and the reward of a delay transition of d time units are respectively
c.d and r.d. The ratio of a run is then the limit sup of the ratios of the accumulated costs over the
accumulated rewards.

Then, the goal is to find a run with optimal ratio (minimum) or an optimal family (i.e. a sequence
of runs whose ratios tend to the infimum) if there is no optimal run. To do so, the authors introduce
the corner-point abstraction, an extension of the region automaton storing time information. Regions
are associated with one of their extremal points, called corners. Roughly, dense-time transitions in
the timed automaton are abstracted by discrete-time transitions with integer values corresponding to
rewards. For example, assuming a single clock x, the successor of the region 0 < x < 1 associated
with the corner x = 0 is the region 0 < x < 1 with the corner x = 1. Such a transition corresponds
to an abstract time (or reward) 1. However, the successor of 0 < x < 1 with the corner x = 1 is the
region x = 1 with its unique corner x = 1. This transition has reward 0. Moreover, costs 1 are put on
transitions with rewards 1 and for which the sources locations are accepting. Costs and rewards are
thus translated in the abstraction in a natural way. The problem then reduces to finding a cycle with
minimal ratio in the corner-point abstraction, and try to mimic it in the timed automaton. Imprecisions
in the lifting potentially lead to the construction of an optimal family rather that an optimal run.

Contribution: frequencies in one-clock timed automata Adding quantitative aspects to timed
automata often comes with a cost in terms of decidability and complexity. All along this part, we are
looking for reasonable restrictions on the timing behaviors of the system to get positive results about

111

the computation of the set of frequencies in a timed automaton, or at least of its bounds.

• General framework The general framework consists in adapting the corner-point abstraction
of [BBL08] to the study of frequencies. The abstraction of dense-time transitions by discrete-
time transitions allows one to derive a notion of abstract frequency (called ratio) for the runs
in the corner-point abstraction. We thus study the set of ratios in this simpler model. Then,
the goal is to find sufficiently tight relations between runs in the timed automaton and runs
in its corner-point abstraction, in order to translate results from the abstraction to the timed
automaton. The model of [BBL08] is a generalization of timed automata with frequencies. Our
goal is to extend the existing results developing stronger links between timed automata and their
corner-point abstractions.

• Techniques for one-clock timed automata We first develop techniques over one-clock timed
automata, a restrictive model which is already expressive, but have relatively simple timed
behaviors. Under this restriction, we are able to deal with Zeno runs, whereas frequencies of
Zeno runs have very different properties from the non-Zeno case. Indeed, if the accumulated
delay along a run is not bounded, finite prefixes can be neglected in the computation of the
proportion of time elapsed in accepting locations, in the same way as the first elements of a
sequence can be neglected to compute the limit. In other words, the divergence of time allows to
forget finite prefixes whatever their length. Note that in [BBL08], timed automata are assumed
to be strongly non-Zeno (i.e. there is no Zeno run).

• Convergence phenomena Unfortunately, techniques used for one-clock timed automata do not
extend to two-clock timed automata. Nevertheless, the examples illustrating these limitations
share a common character: automata contain cycles along which some convergence phenomena
are forced. More precisely, there are convergences between clocks’ values over all runs which
iterate endlessly such a cycle. This observation led us to a restriction to timed automata without
such convergences, which is realistic from an implementability point of view, because they
would need unbounded precision for clocks to be observed. A way to detect these convergences
along a cycle has been introduced in [BA11] to characterize timed automata whose entropy is
positive.

The notion of forgetfulness [BA11] In [BA11], other quantitative aspects are studied: volume and
entropy of timed languages. The volume of a timed language Ln, of timed words of length n, is
naturally defined as the sum over the untimed words w, of length n, of the volumes of the polyhedra
in Rn corresponding to the possible sequences of delays associated to w in Ln. Roughly, the volume
of languages read in a timed automaton restricted to words of length n grows exponentially with n.
The entropy of the language of a timed automaton is thus defined as the exponential rate. Some timed
automata have a degenerated entropy −∞ (due to punctual guards for example). The paper presents
a characterization of timed automata whose language has a non-degenerated (positive) entropy.

The solution is more important to us than the problem solved, and represents a notable progress
in the understanding of the convergence phenomena along infinite runs in timed automata. Indeed,
the famous notion of zenoness does not cover all the convergence cases. For example, along a cycle,
delays in a fixed location can be forced to be smaller and smaller, as first exhibited in [CHR02]. These
convergences produce a degenerated entropy. It is proved in [BA11] that a timed automaton has a
positive entropy if and only if it contains a reachable cycle without such convergences. Such a cycle
is said to be forgetful, because delays at a given moment only limitedly impact over future delays, and
will be "forgotten". A way to decide whether a cycle is forgetful, is thus proposed.

112

In particular, our examples of timed automata with several clocks for which the techniques for one-
clock timed automata do not apply, contain non-forgetful cycles. Non-forgetfulness in timed automata
thus makes some approaches to compute the set of frequencies unfeasible. This is the motivation to
firstly consider only timed automata with a single clock where convergence phenomena are restricted
to zenoness. Thanks to forgetfulness, the extension to timed automata with several clocks is then
possible. We introduce a weaker notion of forgetfulness in order to obtain a class of timed automata
for which we can compute the set of frequencies, and whose membership is decidable.

Note that this assumption has been recently used for the synthesis of robust controllers [SBMR13].
Moreover, convergence phenomena seem also to be a cause for the limitation to one-clock stochastic
timed automata [BBB+08].

Contribution: extension to timed automata with several clocks In a second phase of our ap-
proach, we then propose to compute the set of the frequencies in timed automata excluding conver-
gences, that is in timed automata which are strongly non-Zeno and whose all cycles are forgetful.
The membership problem for this class is still an open problem, but we extend the result to strongly
non-Zeno timed automata whose simple cycles and their powers (i.e. multiple concatenations with
themselves) are forgetful, and prove the decidability of the membership problem for this class using
the corner-point abstraction.

As for one-clock timed automata, the approach is based on the corner-point abstraction. We prove
that the set of ratios in the corner-point abstraction is equal to the set of frequencies in the timed
automaton. To do so, we develop technical lemmas which use forgetfulness to lift runs of the corner-
point in the timed automaton improving the precision along the run. Intuitively, valuations along a run
in the timed automaton are closer and closer to corners along a run in the abstraction. The precision
can increase rapidly enough to obtain a run in the timed automaton whose frequency is equal to the
ratio of the run in the corner-point abstraction. This is in particular due to the divergence of the
accumulated delays along the runs, by assumption. Indeed, it allows to forget the imprecisions in the
finite prefixes in the same way as the first element of a sequence does not impact on the cluster points.
Our result improves the results of [BBL08], allowing, for example, to ensure the construction of an
optimal run (and not only optimal family) assuming the forgetfulness of simple cycles.

Outline This part is structured as follows. Chapter 5 is devoted to the formal definition of the main
notions used in the other sections, such as frequency, corner-point abstraction and forgetfulness. Chap-
ters 6 and 7 deal respectively with one-clock timed automata and strongly non-Zeno timed automata
whose cycles are forgetful. Finally, the last chapter starts drawing the consequences for the complex-
ity of the emptiness problem and the universality problem in the case of deterministic timed automata.
Then it presents the undecidability of the universality problem in general, and the decidability for the
particular case of one-clock timed automata for Zeno runs.

113

114

Chapter 5

Preliminaries: Frequencies, Corner-Point
Abstraction and Forgetfulness

Introduction

We propose new semantics for timed automata based on the proportion of time spent in critical states
(called the frequency). Contrary to probabilities or volumes [AD09a, AD09b, AD10] that assign a
value to sets of behaviors of a timed automaton, the notion of frequency associates a real value (in
[0, 1]) with each execution of the system. More precisely, the frequency of a run is the proportion
of time which is elapsed in accepting locations. It can thus be used in a language-theoretic approach
to define quantitative languages associated with a timed automaton, or boolean languages based on
quantitative criteria e.g., one can consider the set of timed words for which there is an execution of
frequency greater than a threshold λ.

In order to study the set of possible frequencies in a timed automaton we use a refinement of the
region abstraction called the corner-point abstraction [BBL08]. The idea is to consider each region
together with one of its extremal points to add an abstraction of the time along executions. Extremal
points, called corners, can be seen as abstract valuations, and rewards can be put over the transitions
going from a corner to another one, abstracting the time elapsing. Thanks to this notion of abstract
time, we define an abstraction of the frequency for the execution in the corner-point abstraction, called
ratio, as the proportion of rewards in accepting states.

Adding quantitative aspects to timed automata often comes with a cost (in terms of decidability
and complexity), and it is often required to restrict the timing behaviors of the system to get some com-
putability results.The tradeoff between expressivity and tractability leads us, in a first step, to restrict
to one-clock timed automata. Unfortunately, techniques developed for one-clock timed automata, do
not extend to timed automata with two clocks or more. Indeed, some convergence phenomena can
appear and make the study of frequencies more complex. These convergences are not realistic from
an implementability point of view, because they would require an infinite precision of the clocks to be
observed. Then, in order to deal with timed automata with several clocks, we consider timed automata
without such phenomena. To do so, we define in this chapter the notions of forgetfulness and ape-
riodicity to characterize timed automata without convergences. The first notion of forgetfulness had
been introduced in [BA11] to characterize cycles without such phenomena, thanks to the orbit graph
abstraction. We propose a finer definition, based on the corner-point abstraction itself, which is more
adapted to our study, and we compare both definitions.

This chapter is devoted to the presentation of four central notions used in the sequel of the part:

115

PRELIMINARIES

the frequency, a frequency-based semantics, the corner-point abstraction and forgetfulness. More pre-
cisely, we first introduce the notion of frequency of a run in a timed automaton, and illustrate it by
examples. Section 5.2 is devoted to the definition of a frequency-based semantics, and its comparison
with the usual Büchi semantics. Section 5.3 is structured as follows. We present the corner-point
abstraction, together with the notion of ratio which abstracts frequencies. Then, we give some prelim-
inary results about the computation of the infimum and the supremum values of ratios in the corner-
point abstraction. Finally, in Section 5.4, we use the corner-point abstraction to define subclasses of
forgetful timed automata.

5.1 Frequencies in timed automata

We consider timed automata in which runs are infinite and, for simplicity, delays are necessarily
positive. Results do extend to timed automata allowing zero delays, but case inspections would be
even more tedious in this broader framework.

Let us define the central notion of frequency as the proportion of time elapsed in accepting location
along a run.

Definition 5.1 (Frequency). GivenA = (L,L0, F,Σ, X,E) a timed automaton and % = (`0, v0)
τ0,a0−−−→

(`1, v1)
τ1,a1−−−→ (`2, v2) · · · an infinite run of A, the frequency of F along %, denoted freqA(%), is de-

fined as:

lim sup
n→∞

∑
{i≤n|`i∈F} τi∑

i≤n τi
.

Note that the limit may not exist. We choose limit sup to have existence of value, but limit inf
would be as relevant.

`0 `1 `2

0<x<1,a,{x}

0<x<1,a

x=1,a,{x}

Figure 5.1: A timed automaton to illustrate the notion of frequency.

Illustration of the notion of frequency. Let us consider the timed automaton of Figure 5.1, whose
only accepting location is `1 (accepting locations are colored in gray), to illustrate the notion of fre-
quency. Let %1, %2 and %3 be three runs defined as follows:

%1 = (`0, 0)
1,a−−→ (`1, 0)

(1
3
,a
−−→ (`2, 0)

1
3
,a
−−→ (`1,

1
3)
)ω

%2 = (`0, 0)
1,a−−→ (`1, 0)

(1

2k
,a

−−−→ (`2, 0)
1

2k
,a

−−−→ (`1,
1
2k

)
)
k≥1

%3 = (`0, 0)
1,a−−→ (`1, 0)

((1
3
,a
−−→ (`2, 0)

1
6
,a
−−→ (`1,

1
6)
)222k (1

6
,a
−−→ (`2, 0)

1
3
,a
−−→ (`1,

1
3)
)222k+1)

k≥1
.

• Run %1 ends by alternating delays one third in both locations of the cycle. The accumulated
time along this run diverges, hence whatever the length of the prefix (`0, 0)

1,a−−→ (`1, 0), it is

116

FREQUENCIES IN TIMED AUTOMATA

neglected in the computation of the frequency. Indeed, it can be expressed under the following

form: lim supk→∞
C+k∗ 1

3

D+k∗ 2
3

. The frequency is thus 1
2 .

• Run %2 ends by alternating the same delay in both locations of the cycle, nevertheless, its fre-
quency is not 1

2 . Indeed, the convergence of the time along the run forces to take into account
the prefix. The run starts with a delay 1 in a non-accepting location before the infinite suffix
where delays are the same in accepting and non-accepting locations and whose accumulated
delay is 2. The frequency is thus 0+1

1+2 = 1
3 .

• Run %3 ends by alternating phases where the proportion of time elapsed in accepting loca-
tions are different. The length of the phases grows doubly exponentially which implies the
non-convergence of the proportion of time elapsed in the accepting location. Indeed, in the
first phase, the proportion of time elapsed in the accepting location is 2

3 and in the second
phase, it is 1

3 . Let us prove that 2
3 is a cluster point of the sequence of the proportions of

time elapsed in the accepting location along %3. To do so, consider the sequence (hk)k≥1

of the proportions at the moment where one goes from the first phase to the second one.

hk =

(∑k−1
i=1

22
2i

3
+ 22

2i+1

6

)
+ 22

2k

3

1+

(∑k−1
i=1

22
2i

2
+ 22

2i+1

2

)
+ 22

2k

2

≥
1
6

(∑2k−1
i=1 22

i
)

+ 22
2k

3

1+ 1
2(
∑2k−1
i=1 22i)+ 22

2k

2

≥
22

2k−1

6
+ 22

2k

3

1+222k−1+ 22
2k

2

≥
1

22
2k−1 +2

6

22
2k + 6

22
2k−1 +3

Moreover, hk ≤ 2
3 for all k, then 2

3 is a cluster point of the sequence of the proportions of time
elapsed in the accepting location along %3. In the same way with the other switch of phase, one
can prove that 1

3 is also a cluster point. The sequence is clearly upper-bounded by 2
3 , hence it is

the largest cluster point. As a consequence, the frequency of %3 is 2
3 .

In the sequel, given a timed automaton A, we aim at computing the set of frequencies of the
infinite runs of A. To do so, we sometimes distinguish the Zeno and non-Zeno runs of A.

Notation 5.1. b

• Freq(A) denotes the set of frequencies of infinite runs of A;

• FreqZ(A) denotes the set of frequencies of Zeno runs of A;

• FreqnZ(A) denotes the set of frequencies of non-Zeno runs of A;

For example, Figure 5.2 represents a timed automaton A with F = {`1}, such that Freq(A) =
FreqnZ(A) = [0, 1[. Indeed, there is no Zeno run in A and there is an underlying constraint along
the cycle which ensures that delays elapsed in the accepting location are decreasing. This implies that
frequencies of an infinite run in A is of the form 1− ε with ε ∈]0, 1].

Given a timed automaton, one can build a timed automaton having only region guards while
preserving the set of frequencies. In fact, we need to extend the guards with diagonal constraints of
the form x − y ∼ c where x, y ∈ X , c ∈ N and ∼∈ {<,≤,=,≥, >}, but both models are known to
be equivalent [Bou09]. In the sequel, timed automata are thus assumed to be "split in regions", that
is all guards are regions, and all the transitions can be fired. Moreover, in order to take into account
that zero delays are not allowed in the semantics, transitions with a constraint of the form x = 0 are
removed and transitions with a punctual constraint (of the form x = c) are changed to one targeted at
the time-successor (with constraint x > c) if x is not reset.

117

PRELIMINARIES

`0 `1 `2
0<x<1,a,{y}

0<x<1,a,{x}

y=1,a,{y}

Figure 5.2: A timed automaton A to illustrate the different sets of frequencies.

`0 `1
Σ,{x}

x≤1,ΣΣ

(a) A1.

`0 `1
x≥1,Σ

ΣΣ

(b) A2.

Figure 5.3: Examples for the comparison between universality problems.

5.2 Frequency-based semantics

In this section, we define frequency-based acceptances for timed automata, the emptiness and univer-
sality problems and we compare the positive-frequency acceptance to the Büchi acceptance.

5.2.1 Frequencies and timed automata

Definition 5.2 (Acceptances and languages). b

• A timed wordw is said accepted byAwith positive frequency if there exists a run % which reads
w and such that freqA(%) is positive.

• The positive-frequency language ofA, notedL>0(A), is the set of timed words that are accepted
with positive frequency by A.

• A timed word w is said accepted by A under]λ, a frequency-based constraint with] ∈ {<,>
,≤,≥} and λ ∈ [0, 1], if there exists a run % which reads w and such that freqA(%)]λ.

• The language under]λ of A, noted L]λ, is the set of timed words that are accepted with this
constraint by A.

In this part, we focus on the study of the set of frequencies of runs in a timed automaton, with the
motivation to decide classical language problems.

Definition 5.3 (Emptiness problem). The emptiness problem asks, given a timed automaton A and a
frequency-based constraint]λ, whether L]λ is empty.

Definition 5.4 (Universality problem and variants). The universality problem for infinite (resp. non-
Zeno, Zeno) timed words asks, given a timed automatonA over the alphabet Σ and a frequency-based
constraint]λ, whether all (resp. all non-Zeno, all Zeno) timed word belong to L]λ.

Let us explain why the universality problems with positive-frequency acceptance are not compara-
ble when considering Zeno timed words or non-Zeno timed words. Both timed automata of Figure 5.3
illustrate this. The timed automaton A1 is universal for Zeno timed words but is not non-Zeno timed
words. Indeed, A1 does not accept (a, 2n)n≥1. In the same way, A2 is not universal for Zeno timed
words, whereas it is for non-Zeno timed words Indeed, A2 does not accept (a,

∑n
i=2

1
2i

)n≥1.

118

FREQUENCY-BASED SEMANTICS

`0 `1

x=1,a,{x}
x=1,b,{x}

x=1,a,{x}

(a) Expressiveness.

`0 `1

Σ

Σ

(b) Universality (non-Zeno).

`0 `1
Σ

Σ

(c) Universality (Zeno).

Figure 5.4: Automata for the comparison with the usual semantics.

5.2.2 A brief comparison with the usual semantics

The usual semantics for timed automata considers a Büchi acceptance condition. We naturally explore
differences between this usual semantics, and the closest one we introduced, that is the positive-
frequency acceptance. The expressiveness of timed automata under those acceptance conditions is
not comparable, as witnessed by the automaton represented in Figure 5.4(a): on the one hand, its
positive-frequency language is not timed-regular (i.e. accepted by a timed automaton with a standard
Büchi acceptance condition), and on the other hand, its Büchi language cannot be recognized by a
timed automaton with a positive-frequency acceptance condition.

Indeed, the language LB accepted with the Büchi semantics contains, for all N ∈ N, the word
wN whose untimed word is a.bN+1.a.a.b2(N+1).a.a.....bk(N+1).a.a.... and delays are exactly one time
unit between each action. Let us assume that there exists a timed automaton accepting LB with the
positive-frequency acceptance, and let N be the number of its locations. Then, there necessarily is
a reachable cycle in this automaton with an accepted location and only b as action for the edges,
otherwise, the frequency of wN would be 0. As a consequence, the timed automaton can accept a
timed word with a finite number of a’s, simply iterating infinitely this cycle.

On the other side, the language L>0 accepted with positive frequency contains, for all N ∈ N,
the word w′N whose untimed word is a.bN+1.a.a.bN+1.a.a.....bN+1.a.a.... and delays are exactly one
time unit between each action. Let us assume that there exists a timed automaton accepting L>0

with the Büchi acceptance, and let N be the number of its locations. Then, each factor bN+1, is read
through a cycle in this automaton with only b as action for the edges. Then, iterating these cycles, one
obtain that a word w”N whose untimed word is a.bn0 .a.a.bn1 .a.a.....bnk .a.a...., delays are exactly
one time unit between each action, and such that for all k ∈ N, nk > k(N + 1), is also accepted. But
this timed word does not belong to L>0.

Beyond their relative expressivity, one can wonder how the notions of universality under Büchi
semantics and positive frequency semantics compare. On the one hand, clearly enough, a (non-Zeno-
)universal timed automaton with a positive-frequency acceptance condition is (non-Zeno-)universal
for the classical Büchi-acceptance. The timed automaton of Figure 5.4(b) is a counterexample to the
converse. For instance, let us consider the word alternating delays 1 and delays 1

2n with n the number
of transitions already fired. The accumulated delay in the accepting location is bounded when the
accumulated delay in non-accepting locations is not. The frequency is thus equal to 0. Then this word
is not accepted for the positive frequency semantics, whereas this timed automaton is clearly universal
for the Büchi semantics. On the other hand, a Zeno-universal timed automaton under the classical
semantics is necessarily Zeno-universal under the positive-frequency acceptance condition, but the
automaton depicted in Figure 5.4(c) shows that the converse does not hold. Indeed, the accumulated
delay along any Zeno run is finite, then it is sufficient to visit only one accepting location to have a
positive frequency, whereas this does not suffice to satisfy the Büchi condition.

119

PRELIMINARIES

5.2.3 A particular case of double-priced timed automata

Timed automata with frequencies can be seen as a particular case of double-priced timed automata
of [BBL08]. Let us recall the definition of double-priced timed automata in order to formalize this
idea. Note that we added action labels over edges. It does not impact on the results of [BBL08] which
only consider costs and ratios of runs.

Definition 5.5 (Double-priced timed automata). A double-priced timed automaton over a set of clocks
X is a tuple (L,L0,Σ, E, c, r), where L is a finite set of locations, `0 is the initial location, E ⊆
L×GM (X)×Σ× 2X ×L is the set of edges, and c, r : (L∪E)→ Z assign price-rates to locations
and prices to edges.

The semantics of a double-priced timed automaton is a double-priced transition system (S, s0,→
, cost, reward) over X , where S = L × RX+ , s0 = (`0, 0

X), and→ is defined as follows: for every
state (`, v) ∈ S,

• for every τ ∈ R+, ((`, v), τ, (`, v + τ)) ∈→ (written (`, v)
τ−→ (`, v + τ) for short);

• for every edge (`, g,X ′, `′), ((`, v), (`′, v′)) ∈→ if v |= g and v′ = v[X′←0] (written (`, v) −→
(`, v) for short);.

Moreover, cost and reward are respectively defined for these transitions as follows:

• cost((`, v), τ, (`, v + τ)) = c(`) ∗ τ and reward((`, v), τ, (`, v + τ)) = r(`) ∗ τ ;

• cost((`, v), g,X ′, (`′, v′)) = c(`, g,X ′, `′) and reward((`, v), (`′, v′)) = r(`, g,X ′, `′).

A run is an infinite sequence of consecutive moves. Without loss of generality, one can assume that
a run alternates delays and discrete transitions and for readability, we write (`, v)

τ,a−−→ (`, v′′) for
(`, v)

τ−→ (`, v′)
a−→ (`, v′′) and the cost (resp. reward) of the double transition is simple the sum of the

costs (resp. rewards) of both transitions. The ratio of a run is the ratio of the accumulated costs over
the accumulated rewards along the run.

Definition 5.6 (Ratio). Given A = (L,L0, E, c, r) a timed automaton and % = (`0, v0)
τ0,a0−−−→

(`1, v1)
τ1,a1−−−→ (`2, v2) · · · an infinite run of A, the ratio of %, denoted Rat(%), is defined as:

lim sup
n→∞

∑
i≤n cost((`i, vi)

τi,ai−−−→ (`i+1, vi+1))∑
i≤n reward((`i, vi)

τi,ai−−−→ (`i+1, vi+1))
.

This notion is similar to the frequency of a run in timed automata. More precisely, timed au-
tomata with frequencies are a particular case of double-priced timed automata. Indeed, given a timed
automaton with frequencies A = (L,L0, F,Σ, X,M,E), one can build a double-priced automaton
A′ = (L,L0,Σ, E, c, r) with the same set of runs and such that the frequency of any run in A is
equal to its ratio in A′. To do so, we just have to define c and r taking into account F . Costs and
rewards over edges are useless to compute frequencies, we then set them to 0. For locations, we
simply put rewards 1 everywhere and costs 1 over the locations of F and 0 otherwise. As a conse-
quence, in the definition of the ratio, cost((`i, vi)

τi,ai−−−→ (`i+1, vi+1)) = τi if `i belongs to F and
cost((`i, vi)

τi,ai−−−→ (`i+1, vi+1)) = 0 otherwise; and reward((`i, vi)
τi,ai−−−→ (`i+1, vi+1)) = τi for every

location. We thus obtain freqA(()%) = Rat(()%) for every %.
In the sequel, we thus use some results of [BBL08] for timed automata with frequencies. As

in [BBL08], we use the corner-point abstraction to study ratios of runs in a simpler model.

120

THE CORNER-POINT ABSTRACTION

5.3 The corner-point abstraction

In this section, we present the corner-point abstraction [BBL08] which allows to abstract time in a
finer way than in the region abstraction and thus to define the notion of ratio of a run in the corner-
point abstraction similarly to frequency in the timed automaton. This yields a simpler model to study
in order to obtain information about the frequencies in the timed automaton itself. Finally, we give
an expression of the set of ratios of runs in the corner-point abstraction whose accumulated abstract
delays diverge.

5.3.1 Definition and examples

Let A = (L,L0, F,Σ, X,M,E) be a timed automaton. The corner-point abstraction is a refinement
of the region abstraction, where each state is composed of a region with one of its extremal points.
Recall that a region R′ is a time-successor of a region R if there exists v ∈ R and t ∈ R+ such that
v + t ∈ R′ and R′ 6= R. The set of the time-successors of a region is naturally ordered, let us define
the mapping timeSucc : RegA → RegA which associates with any region, its first time-successor.
The particular case of the region {⊥X} where all the clocks are larger than M is fixed as follows :
timeSucc({⊥X}) = {⊥X}.

Moreover, given a region R, α ∈ (N≤M ∪ ⊥)X is a corner of X if for all clock x such that
R|{x} ⊆ [0,M], α(x) is in the closure of R|{x} for the usual topology over R, and for all clock x
such that R|{x} =]M,+∞[, α(x) = ⊥. Thus, an A-pointed region (pointed region for short) is a pair
(R,α) where R is a region and α a corner of R. The set of A-pointed regions is written Reg•A. The
operations defined on the valuations of a set of clocks are extended in a natural way to the corners,
with the convention that M + 1 = ⊥ and ⊥ + 1 = ⊥. Then timeSucc, the function giving the
immediate time successor can be extended to pointed regions:

timeSucc(R,α) =

{
(R,α+ 1) if α+ 1 is a corner of R
(timeSucc(R), α′) otherwise

where ∀x, α′(x) = α(x) if x is bounded in timeSucc(R) and otherwise α′(x) = ⊥.

Using this mapping, the construction of the corner-point abstraction is very similar to the usual region
automaton.

Definition 5.7 (Corner-point abstraction). The corner-point abstraction of A (corner-point of A for
short) is the finite automaton Acp = (Lcp, L0,cp, Fcp,Σcp, Ecp) where Lcp = L× Reg•A is the set of
states, L0,cp = L0 × {({0}, 0)} is the set of initial states, Fcp = F × Reg•A is the set of accepting
states, Σcp = Σ ∪ {ε}, and Ecp ⊆ Lcp × Σcp × Lcp is the finite set of edges defined as the union of
discrete transitions and idling transitions:

• discrete transitions: (`, (R,α))
a−→ (`′, (R′, α′)) if there exists a transition `

g,a,X′−−−−→ `′ in A,
such that R = g1 and (R′, α′) = (R[X′←0], α[X′←0]),

• idling transitions: (`, (R,α))
ε−→ (`, (R′, α′)) if (R′, α′) = timeSucc(R,α).

In particular, as a consequence of ⊥+ 1 = ⊥, there is an idling loop on each state whose pointed
region is ((M,+∞)X ,⊥X). For example, Figure 5.5 represents the corner-point abstraction of the
timed automaton in Figure 5.1 where we use the following convention to represent pointed regions:

1Recall that guard of timed automata are assumed to be regions.

121

PRELIMINARIES

`0,{0}, • `0,(0,1), •— `0,(0,1), —• `0,{1}, • `0,(1,∞), ⊥

`1,{0}, • `1,(0,1), •— `1,(0,1), —• `1,{1}, • `1,(1,∞), ⊥

`2,{0}, • `2,(0,1), •— `2,(0,1), —• `2,{1}, • `2,(1,∞), ⊥

ε,0/1

ε,1/1

ε,0/1

ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,0/1 ε,0/0

ε,0/0 ε,1/1

ε,0/0 ε,0/1
a,0/0 a,0/0

a,0/0

a,0/0 a,0/0

Figure 5.5: The corner-point abstraction Acp of A represented Figure 5.1.

• (k, k + 1), •— represents ((k, k + 1), k),

• (k, k + 1), —• represents ((k, k + 1), k + 1),

• {k}, • represents ({k}, k).

In the sequel, we use the natural extension of this convention with two clocks.
We are now able to link runs of a timed automaton and runs in its corner-point abstraction by

the projection. A run in a timed automaton admits a natural projection in the region automaton. In
the corner-point abstraction, several runs may correspond to a run in the timed automaton. This is
due to the possibility, in the abstraction to choose to stay in the first corner of the region or to go
to the second one before firing a discrete transition. For instance in the corner-point abstraction of
Figure 5.5, to read a from (`1, (0, 1)), one can choose between corners 0 and 1, whatever the run
which is abstracted. As a consequence, we define the projection of a run as the set of all its possible
abstraction in the corner-point abstraction.

One can distinguish two types of idling transitions, the transitions which change the current region,
but not the current corner and the transitions which do not change the current region, but change the
corner. Informally, they respectively correspond to abstract delays 0 and 1 considering corners as
kinds of abstract valuations. Let us define formally the notion of abstract valuations along runs in the
corner-point abstraction. The idea is to count the number of idling transitions which do not change
the current region since the last resets of the clocks.

Definition 5.8 (Abstract valuation). Let π = (`0, {0X}, •)
b0−→ (`1, R1, α1)

b1−→ · · · a run in a
corner-point abstraction of a timed automaton. The i-th abstract valuation π[i] : X → NX along π is
defined as follows: π[i](x) is the number of idling transitions of the form (`, R, α)

ε−→ (`, R, α + 1)
between the i+ 1-th discrete transition and the previous reset of x.

Note that if the clock x in the pointed region (Ri, αi) before the i + 1-th discrete transition is
bounded, then π[i](x) = αi(x). This notion simply allows to obtain a finer notion of projection.
Indeed, we thus avoid to project runs with a delay of 3000 time units in an unbounded regions over the
same runs than the same run with a delay 3 instead of 3000. We are going to link the abstract valuations
along runs in the corner-point abstraction with valuations along runs in the timed automaton, noted
%[i] and defined as the sum of the valuation of the i + 1-th state of % and the i + 1-th delay. In other

122

THE CORNER-POINT ABSTRACTION

words, we consider the valuations just before reading actions. Formally, given % = (`0, v0)
τ0,a0−−−→

(`1, v1)
τ1,a1−−−→ · · · , %[n] = vn + τn. Let us now define the projection of a run.

Definition 5.9 (Projection). The projection of a (finite or infinite) run % = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→
· · · of A, denoted by Proj(%), is the set of runs π of Acp such that for all i ∈ N, the i + 1-th discrete
transition goes from a state (`i, R(%[i]), α) to a state (`i+1, R(vi+1), α′) and for all clocks x ∈ X ,
the number π[i](x) has to be equal to b%[i](x)c or d%[i](x)e.

Let us illustrate these two notions over the beginning of run %1 of the timed automaton of Fig-

ure 5.1. Recall that %1 = (`0, 0)
1,a−−→ (`1, 0)

1
3
,a
−−→ (`2, 0)

1
3
,a
−−→ (`1,

1
3)

1
3
,a
−−→ · · · . Then π =

(`0, {0}, •)
ε−→ (`0, (0, 1), •—)

ε−→ (`0, (0, 1), —•)
ε−→ (`0, {1}, •)

a−→ (`1, {0}, •)
ε−→

(`1, (0, 1), •—)
a−→ (`2, {0}, •)

ε−→ (`2, (0, 1), •—)
a−→ (`1, (0, 1), •—)

ε−→ (`1, (0, 1), —•) is a
prefix of some runs belonging to Proj(%1). Indeed, the first discrete transition along π is (`0, {1}, •)
a−→ (`1, {0}, •). This transition is fired from a state with the right location `0 with the region x = 1
which clearly contains the valuation %[0] defined by %[0](x) = 1, and the target region {0} also con-
tains the corresponding valuation v1 defined by v1(x) = 0 inA. The abstract valuation π[0] is defined
by π[0](x) = 1 because there is a single idling transition before the discrete transition, which does
not change the current region. Hence, it satisfies the constraint (π[0](x) = b1c = 1 or π[0](x) =
d1e = 1). Let us now consider the second discrete transition (`1, (0, 1), •—)

a−→ (`2, {0}, •).
Region (0, 1) contains the valuation %[1] defined by %[1](x) = 1

3 . Moreover, clock x has been reset
at the last discrete transition and there is no idling transition not changing the current region between
both discrete transitions, then π[1](x) = 0. In particular, the constraint (π[1](x) = b1

3c = 0 or
π[1](x) = d1

3e = 1) is satisfied.
Remark that in A all infinite runs admit the same projection: the set of all the runs which do not

reach a region ⊥ (otherwise discrete transitions are no more enabled).
We saw how to project runs of timed automata in corner-point abstraction, now we introduce a

notion which can be seen as a way to quantify, in a sense, the distance between a run in a timed
automaton and a run of its projection. Roughly, we say that a run in the timed automaton A mimics a
run of its projection up to ε if the valuations along the run in A are ε-close to the abstract valuations
along the run in the corner-point abstraction.

Definition 5.10 (Mimicking). Given ε > 0, we say that a (finite or infinite) run % of A mimics up to
ε > 0 a (finite or infinite) run π in Proj(%) if, for all indices i, the i-th discrete transition of π goes
from a state (`i, R(%[i]), α) such that, for all clock x ∈ X , |%[i](x)− π[i](x)| < ε.

This notion is very important in the rest of the part. It is the key to lift results on the corner-point
abstraction to the original timed automaton by building precise mimicking runs of the runs of the
corner-point abstraction.

In the sequel we often consider cycles of the graph of A (cycles of A for short), that is some
sequences `0e0`1e1 · · · en−1`n = `0 such that for all 0 ≤ i ≤ n − 1 the edge ei goes from `i to `i+1

in A. Similarly to runs, we define the projection of a cycle C of A, denoted by Proj(C). If C is a
simple cycle with no region ⊥X , Proj(C) is the subgraph of Acp covered by the projection of any
finite run of A along C. For example, the projection of the cycle of the timed automaton Figure 5.1 is
the subgraph of its corner-point abstraction whose edges are drawn with double arrows on Figure 5.5.
If C is a simple cycle with some regions ⊥X , we simply add the idling loops associated with each
state of the form (`, {⊥X},⊥X). To define the projection of a cycle C which is not simple, we first
unfold the timed automaton A to obtain an equivalent simple cycle. For example, the projection of

123

PRELIMINARIES

`1,(0,1), •— `1,(0,1), —•

`2,{0}, • `2,(0,1), •— `2,(0,1), —•

`′1,(0,1), •— `′1,(0,1), —•

`′2,{0}, • `′2,(0,1), •— `′2,(0,1), —•

ε,1/1

ε,0/0 ε,0/1

a,0/0 a,0/0

a,0/0 a,0/0

ε,1/1

ε,0/0 ε,0/1
a,0/0

a,0/0a,0/0 a,0/0

Figure 5.6: Illustration of the projection of a cycle.

the cycle constituted of two iterations of the cycle of the timed automaton Figure 5.1 is represented in
Figure 5.6.

5.3.2 Ratios in the corner-point abstraction

In the corner-point abstraction, the idling transitions which do not change the current region corre-
spond to the elapsing of one time unit. These abstract delays are used to abstract the frequencies in a
timed automaton by ratios in its corner-point abstraction. To do so, the corner-point is equipped with
costs and rewards as follows:

• the reward of a transition is 1 if it is of the form (`, R, α)
ε−→ (`, R, α′), and 0 otherwise;

• the cost of a transition is 1 if its reward is 1 and the location ` is accepting, and 0 otherwise.

Note that in particular, the loops on the states whose region is {⊥X} have reward 1. The accumulated
rewards correspond to the abstract time elapses and accumulated costs corresponds to abstract time
elapses in accepting locations. In Figure 5.5, costs and rewards are written over the edges as follows:
cost / reward. We use the same convention along runs in the sequel. Thanks to these costs and rewards,
the ratio of an infinite run of the corner-point can be defined, similarly to the frequency in the timed
automaton.

124

THE CORNER-POINT ABSTRACTION

Definition 5.11 (Ratio). Given Acp = (Lcp, L0,cp, Fcp,Σcp, Ecp) a corner-point abstraction of a

timed automaton and π = (`0, {0X}, •)
b0,c0/d0−−−−−→ (`1, R1, α1)

b1,c1/d1−−−−−→ · · · an infinite run of Acp,
the ratio of F along %, denoted Rat(π), is defined as:

lim sup
n→∞

∑
{i≤n} ci∑
i≤n di

.

An infinite run in the corner-point is said reward-converging (resp. reward-diverging) if the accu-
mulated reward is finite (resp. infinite). This notion is close to zenoness of runs in timed automata.
Yet some Zeno runs may be projected to reward-diverging runs in the corner-point abstraction and, the
other way around, non-Zeno runs can be projected to reward-converging runs. For example, the run
whose delays along the cycle of Figure 5.1 are all 0.2 can be projected to the run iterating the cycle of
the corner-point in Figure 5.5 with only zero rewards.

Notation 5.2. b

• Rat(Acp) denotes the set of ratios of infinite runs of Acp;

• Ratr−c(Acp) denotes the set of ratios of reward-converging runs of Acp;

• Ratr−d(Acp) denotes the set of ratios of reward-diverging runs of Acp;

We also say reward-diverging for a cycle ofAcp whose accumulated reward is positive and reward-
converging otherwise.

5.3.3 Set of ratios in the corner-point abstraction

We defined ratios in the corner-point abstraction. In this section, we make the connection with fre-
quencies in the original timed automaton, thus seeing ratios as abstractions of frequencies. The goal
is to use this simpler model to obtain results about the frequencies in the timed automaton. In this sec-
tion, we precisely characterize Ratr−d(Acp), the set of ratios of reward-diverging runs of the corner-
point.

Theorem 5.1. Let {C1, · · · , Ck} be the set of reachable strongly connected components (SCC for
short) of Acp. Then, Ratr−d(Acp) = ∪1≤i≤k[mi,Mi] where mi (resp. Mi) is the minimal (resp.
maximal) ratio for a reward-diverging cycle in Ci.

As an infinite run necessarily ends in a single SCC, Theorem 5.1 is a straightforward consequence
of the following lemma.

Lemma B. Let Ci be an SCC ofAcp. IfRi denotes the set of ratios of reward-diverging simple cycles
in Ci, then the set of ratios of reward-diverging runs of Acp ending in Ci is the interval [mi,Mi],
where mi = min(Ri) and Mi = max(Ri).

The idea of the proof is that, in Ci, the i-th SCC of Acp, values mi and Mi are reached by ratios
of lasso runs simply iterating respectively two cycles of ratios mi and Mi in Ci. Then, the intuition is
that one can reach all the other values of the interval [mi,Mi] by alternating both cycles with suitable
proportions.

125

PRELIMINARIES

le M=αM/βMαm/βm=m

(a) Case 1

le le M=αM/βMαm/βm=m

(b) Case 2

Figure 5.7: The two possible cases.

Proof. Let π be a reward-diverging run of Acp. We associate with π the SCC Cπ of Acp where π
ends up in. First observe that the influence of the prefix leading to Cπ is negligible in the computation
of the ratio because π is reward-diverging. Precisely, the ratio of the prefix of length n (for n large
enough) is of the form:

Rat(π|n) =
ppref + Pn
qpref +Qn

where ppref /qpref is the ratio of the shortest prefix of π leading to Cπ. The sequence Qn diverges
when n tends to infinity because π is reward-diverging. Hence limn→∞ Rat(π|n) = limn→∞

Pn
Qn

. As
a consequence, without loss of generality, we assume that Acp is restricted to Cπ and π starts in some
state of Cπ.

Observe now that reward-converging cycles in Acp necessarily have rewards (and hence costs) 0,
and thus do not contribute to the ratio Rat(π). Hence we can assume without loss of generality that π
does not visit reward-converging cycles. In the same way as in the proof of [BBL08, Prop. 4], we can
decompose π into (reward-diverging) cycles and derive that Rat(π) lies between m = min(RCπ) and
M = max(RCπ). Note that the extremal values (m and M) are obtained by a run reaching a cycle
with extremal ratio, and iterating it forever.

Let us now show that any value in the interval [m,M] is the ratio of some run in Acp which ends
up in the SCC Cπ. The arguments are inspired by [CDE+10]. Given λ ∈ (0, 1), we explain how
to build a run with ratio rλ = (1 − λ)m + λM . To do so, for (an) ∈ (Q ∩ (m,M))N a sequence
of rational numbers converging to rλ, we build an run π such that |Rat(π|f(n)) − an| < 1

n for some
increasing function f ∈ NN.

Case 1. We first assume for simplicity that in Cπ two cycles of respective ratio m and M share a
state, as depicted in Figure 5.7(a), and prove a stronger result: we build a run π such that Rat(π|f(n)) =
an. Since two cycles, one of minimal ratio, and the other of maximal ratio share a common state, it
suffices to explain how to combine these two cycles to obtain ratio rλ.

Assume a0 = p0/q0 with (p0, q0) ∈ N2. Let us show how to build a finite run π of ratio ra0 =
(1 − p0/q0)m + (p0/q0)M . Assume m = αm/βm where αm is the cost of the cycle, and βm its
reward, and similarly M = αM/βM . Taking (q0 − p0)βM times the cycle of ratio m and then p0βm
times the cycle of ratioM yields an finite run π0 with the desired property (this will be π|f(0)). Indeed:

(
(q0 − p0)βM

)
αm +

(
p0βm

)
αM(

(q0 − p0)βM
)
βm +

(
p0βm

)
βM

=
(q0 − p0)βMαm + p0βmαM

q0βMβm
=
q0 − p0

q0
m+

p0

q0
M = ra0 .

To build an infinite run with ratio rλ, we incrementally build prefixes π|f(n) (which will be π|f(n)) of
ratio ran , starting with π0, as depicted in the picture below.

126

THE CORNER-POINT ABSTRACTION

.m∗.M∗ m∗.M∗ m∗.M∗ m∗.M∗

π1, (Rat(π1) = ra1)

π0, (Rat(π0) = ra0)

π2, (Rat(π2) = ra2)

π3, (Rat(π3) = ra3)

Run π|f(n+1) has π|f(n) as prefix, then iterates the cycle of minimal ratio, and finally iterates the
cycle of maximal ratio in order to compensate ran and reach ratio ran+1 . We assume an = pn/qn with
(pn, qn) ∈ N2. In π|f(n+1) the number of iterations of the cycle of ratio m (resp. the cycle of ratio
M) is globally bn+1(qn+1 − pn+1)βM (resp. bn+1pn+1βm) for some bn+1 ∈ N>0. This construction
ensures that rλ is an accumulation point of the set of ratios for the prefixes π|f(n). Moreover, since each
path fragment starts with iterations of the cycle of minimal ratio first, rλ is the largest accumulation
point of the sequence of the ratios of prefixes after each cycle. The sequence of the ratios of prefixes
is sketched below. The oscillations during a cycle become negligible when the length of the run
increases. In the picture below, they are represented by shorter and shorter wavelets.

ra0

ra1

ra2
ra3

ra4

Case 2 In the general case, in the SCC Cπ ofAcp the cycles with minimal and maximal ratios do not
necessarily share a common state: two finite runs connect the two cycles, as represented on Fig 5.7(b).
We fix two cycles of minimal and maximal ratios, and two finite paths πmM and πMm that connect
those cycles in Cπ. Similarly to the first case, we show how to build a sequence of finite runs (π|f(n))

such that each run is the a prefix of the following run and with |Rat(π|f(n)) − ran | < 1
n , and prove

that the influence of the finite paths linking the cycles is negligible when n tends to infinity. The run
π|f(n+1) is defined as the concatenation of π|f(n) with πMm then iterations of the cycle of minimal
ratio m then πmM and ending with iterations of the cycle with maximal ratio M . If p̃ and q̃ are
respectively the cost and the reward of πmM and πMm together, then the ratio of π|f(n+1) is:

Rat(π|f(n+1)) =
bn+1(qn+1 − pn+1)βMαm + bn+1pan+1βmαM + (n+ 1)p̃

bn+1(qn+1 − pn+1)βMβm + bn+1pan+1βmβM + (n+ 1)q̃

Since this value tends to ran+1 when bn+1 tends to infinity, bn+1 can be chosen such that |Rat(π|f(n+1))−
ran+1 | < 1/(n+1). This way, limn→∞ Rat(π|f(n)) agrees with limn→∞ ran , that is limn→∞ Rat(π|f(n)) =
rλ. The function f is defined by ‘f(n) is the length of π|f(n)’. The run π such that, for all n, π|f(n) is
a prefix of π is unique and have ratio rλ. �

We thus have a nice expression of the set of ratios of reward-diverging runs in the corner-point
abstraction. This set can thus be computed simply inspecting simple cycles of the corner-point ab-
straction. Unfortunately, we do not have such a general result for the set of ratios of reward-converging
runs. As a consequence, we only study bounds of the set of ratios or use restrictions such as forget-
fulness.

127

PRELIMINARIES

If we only consider bounds of the set, it is not necessary to consider strongly connected component
and there exists a non-deterministic procedure to compute them in logarithmic space in the size of the
corner-point abstraction.

Corollary 5.1 (Corollary of Theorem 5.1). b

• IfA has a single clock, there exists a non-deterministic procedure computing inf(Ratr−d(Acp))
and sup(Ratr−d(Acp)) in logarithmic space in the size of A.

• Otherwise, there exists a procedure computing inf(Ratr−d(Acp)) and sup(Ratr−d(Acp)) in
polynomial space in the size of A.

Proof. IfA has a single clock, then there are 2 ∗ (M + 1) regions. Hence, the size of the corner-point
abstraction is linear in the size of A. Then, a reward-diverging cycle can be guessed and its ratio can
be computed in logarithmic space.

Moreover, given a one-clock timed automaton A and a value r ∈ [0, 1], the problem asking
whether there exists a reward-diverging cycle with a ratio smaller than r, is in co-NLOGSPACE,
which is equal to NLOGSPACE.

As a consequence, a non-deterministic procedure can guess the minimal (resp. maximal) reward-
diverging cycle and compute its ratio and then check that it is optimal, all in logarithmic space.

IfA has several clocks, then the number of regions is exponential in the number of clocks. Hence,
the size of the corner-point abstraction is exponential in the size of A. The same reasoning as for
one-clock timed automata also applies for timed automata with several clocks. The complexity is thus
polynomial. As a consequence of the Theorem of Savitch, there exists a deterministic procedure in
polynomial space which computes inf(Ratr−d(Acp)) and sup(Ratr−d(Acp)). �

5.4 Forgetfulness

Forgetfulness was originally defined in [BA11] using the orbit graph [Pur00]. We choose here to give
an alternative notion of forgetfulness based on the corner-point abstraction, which is less succinct, but
which is useful for computing frequencies. The forgetfulness is used in the rest of the part to define
a large class of timed automata for which we can compute the set of frequencies. More precisely, it
permits to detect convergences of clocks in timed automata.

5.4.1 Forgetfulness and aperiodicity

Definition 5.12 (forgetfulness). l

• A cycle C of A is forgetful if Proj(C) is strongly connected in Acp;

• A timed automaton is forgetful if all its simple cycles are forgetful;

• A timed automaton is strongly forgetful if all its cycles are forgetful.

Intuitively, forgetful cycles are cycles where some choices of current delays cannot impact forever
on the future delays. These cycles can forget previous delays in their long term behaviors. Figure 5.2
represents a timed automaton, inspired by [CHR02], that is not forgetful. Indeed, the projection of the
single cycle of this timed automaton is the subgraph with bold edges in its corner-point represented in
Figure 5.8, which is clearly not strongly connected. In the location `1, clock x converges to 1 along

128

FORGETFULNESS

`0,{0}, r
`0,((0,1)2,{x}={y}), ��r

`0,((0,1)2,{x}={y}), ��
r
`1,((0,1)2,{x}>{y}), ��r

`1,((0,1)2,{x}>{y}), ��
r

`1,((0,1)2,{x}>{y}), ��r

`1,(0,1)×{0}, r

`1,(0,1)×{0}, r
`2,{0}×(0,1),

r

`2,{0}×(0,1), r
`2,((0,1)2,{y}>{x}), ��r

`2,((0,1)2,{y}>{x}), ��
r

`2,((0,1)2,{y}>{x}), ��
r

`2,(0,1)×{1}, r

`2,(0,1)×{1}, r

ε

ε
a

a
ε

a

ε

ε
εa

ε
ε

a

a

εε

a

Figure 5.8: Corner-point of the timed automaton from Figure 5.2.

iterations of the cycle. If we visit the state (`0,
1
2), then state (`0,

1
3) is no longer reachable. In fact,

if from location `1 an a is read with x close to 0, it becomes impossible to read an a with x close to
1 in the future. More precisely, delays in `1 are smaller and smaller. From a state (`1, (ε0, 0)), after
a delay ε with 0 < ε < 1 − ε0, one reads a, then the delay ε′ elapsed in `2 is necessarily 1 − ε,
thus the state reached reading a is (`1, (1 − ε, 0)) and the next delay ε′′ has to satisfy the constraint
ε > ε′′ > 0. This is linked with the fact that state (`0, (0, 1)× {0}, 0{x,y}) is not reachable from state
(`0, (0, 1) × {0}, 0{x,y}) in the corner-point abstraction. On the contrary, in forgetful cycle, all the
corners are always reachable from the other ones. It roughly corresponds to the fact that with enough
iterations, one can go closer than any corner of the region. One can, in a sense, forget that we have
been close to another corner. Note that in Figure 5.8, we did not draw the edges labeled by ε which
lead to states from which no discrete transition can be fired in the future.

The strong forgetfulness assumption is stronger than forgetfulness because the condition concerns
all the cycles instead of only simple cycles. The concatenation of two forgetful cycles may be not
forgetful, even if examples of forgetful timed automata that we built are degenerated as discussed
above. They concern cycles which seem to be periodic, visiting alternatively one corner and the other
one. The concatenation of such a cycle with itself is then not forgetful, because it visits the same
corner at each iteration. We then define the notion of aperiodicity of a forgetful cycle and forgetful
aperiodic timed automata. This notion will allow to relax strong forgetfulness in the sequel.

Definition 5.13 (aperiodicity). l

• A forgetful cycle C in a timed automaton is aperiodic if for all k ∈ N, the cycle obtained by the
concatenation of k iterations of C is forgetful.

• A forgetful timed automaton is aperiodic if all its simple cycles are aperiodic;

Strong forgetfulness trivially implies aperiodicity, whereas forgetfulness does not. Indeed Fig-
ure 5.9 represents a timed automaton which is forgetful but periodic (i.e. not aperiodic). Its corner-
point abstraction illustrates the periodicity, for readability, we only represent the discrete transitions.
The cycle formed of two iterations of the simple cycle is not strongly connected, it has two distinct
connected components.

The projection of a forgetful cycle C in Acp is strongly connected, then given any state s of
Acp in Proj(C), there are some simple cycles containing s. Intuitively, such a cycle corresponds to a

129

PRELIMINARIES

`1
`2

`3

y=1,{y,z} x=1,{x,y}

z=1,{x,z}

`2,(0,1)×{0}×{0}, r`1,{0}×(0,1)×{0}, r
`1,{0}×(0,1)×{0}, r`3,{0}×{0}×(0,1), r`3,{0}×{0}×(0,1), r

`2,(0,1)×{0}×{0}, r
Figure 5.9: A forgetful and periodic timed automaton.

number of iterations of C in A. This is the number of non-consecutive occurrences of states sharing
the same location of A as s. For example, the cycle of the corner-point abstraction on Figure 5.9
corresponds to two iterations of the cycle of the timed automaton. Given a cycle D in Proj(C), let us
note numb(D) the number of iterations of C corresponding to D. Moreover, we write SC(Proj(C))
for the set of simple cycles of Proj(C). Thanks to these notations, we can characterize the aperiodicity
of a forgetful cycle by a notion of pseudo aperiodicity of its projection.

Proposition 5.1. A forgetful cycle C is aperiodic if and only if (∗) gcdD∈SC(Proj(C)) numb(D) = 1.

Proof of Proposition 5.1. Let us assume that (∗) is false, and prove that C is periodic. Let d 6= 1 be
the greatest common divisor defined in (∗). It implies, in particular, that for all states s of Acp in
Proj(C), there is a cycle (not necessarily simple) in Proj(C) containing s and corresponding to md
iterations of C for m ∈ N. The goal is to prove that the cycle Cd of A formed of d iterations of C is
not forgetful. Let us fix s = (`, R, α) and s′ = (`, R, α′), two states such that an iteration of C allows
to go from s to s′, that is there is a finite run in Proj(C) corresponding to a single iteration of C in A
(with the same correspondence as for cycles). If Cd is forgetful, then the projection of Cd is strongly
connected and thus there exists a finite run from s′ to s in Proj(C) corresponding to md iterations of
C in A with m ∈ N. Then, removing the cycles along this finite run, we obtain a finite cycle-free
run from s′ to s in Proj(C) corresponding to m′d iterations of C in A with m′ ≤ m. Hence, there
is a simple cycle containing s (and s′) and corresponding to m′d + 1 iterations of C in A, which
contradicts that d 6= 1.

On the other hand, let us assume that there is a set of pairs (si, di) such that for all i:

• si is a state of Acp in Proj(C),

• there is a simple cycle Di ∈ SC(Proj(C)) containing si with numb(D) = di,

• the greatest common divisor of di’s is 1.

Then we want to prove that, for all k, we can go from any state s = (`, R, α) to any state s′ =
(`, R, α′) of Acp in Proj(C) with a finite run corresponding to a number of iterations multiple of k.
Let us consider a finite run of Acp in Proj(C) corresponding to k′ iterations which visits all the si.
Thus, we can add k′′ iterations from these si such that k′ + k′′ = k′′′k for some k′′′ because the
greatest common divisor is 1. Therefore C is aperiodic. �

The characterization (∗) of aperiodicity can be effectively checked in the corner-point abstraction.
The notion of aperiodicity will be a key for the relaxation of strong forgetfulness (which we do not
know how to check) when expressing the set of frequencies in n-clock timed automata.

130

FORGETFULNESS

5.4.2 Comparison with the forgetfulness of [BA11]

Forgetfulness was introduced in [BA11] using the orbit graph abstraction. Roughly, the orbit graph of
a cycle looping over a region r in a timed automaton split in regions is the graph whose vertices are
the corners of r and there is an edge between two corners if it is possible to go from the source of the
edge to it target following the cycle (assuming that guards are closed). It looks like a quotient of the
projection in the corner-point abstraction of the cycle.

Let us recall the context of [BA11] to detail the comparison of both notions of forgetful cycle.
Timed automata are assumed to be split in regions and regions are open and bounded. The orbit graph
is then defined in the following way.

For a closed region r, let us denote by V (r) = {S1, ..., Sp} its vertices. Any point x in the region
is uniquely described by its barycentric coordinates λ1, · · · , λp, i.e. non-negative numbers such that
Σp
i=1λi = 1; x = Σp

i=1λiSi. Given two regions r and r′, we call orbit graph any graph G with
vertices V (r) t V (r′) if r and r′ are different and V (r) otherwise, and with edges going from V (r)
to V (r′). Informally, an edge from S to S′ means that the clock vector at the vertex S can reach the
clock vector at S′ along some transition or path. Orbit graphs compose in the natural way: for G1 on
regions r1 and r′1, and G2 on regions r2 and r′2, their product G = G1 · G2 is defined if r′1 = r2. In
this case, G is an orbit graph on r1 and r′2. There is an edge from S to S′′ in G if and only if there
exists S′ such that (S, S′) and (S′, S′′) are edges of G1 and G2 respectively. Whenever r′1 6= r2, we
put G1 · G2 equal to some special (absorbing) element 0. The set G of orbit graphs, augmented with
0 and a neutral element 1 has a structure of finite monoid.

An orbit graph G can be represented by its adjacency matrix M of size |V (r)|× |V (r′)|. Products
in the monoid of orbit graphs are easy to compute using matrices: M(G1 ·G2) = M(G1)⊗M(G2)
where the "product" ⊗ is defined by

(A⊗B)ij = max
k

min(Aik, Bkj).

There exists a natural morphism γ : E∗ → G from paths to orbit graphs defined as follows. For
a transition e between r and r′, we define the orbit graph γ(e) on r and r′ with edges {(S, S′) ∈
V (r) × V (r′)|∃t, S (e,t)−−→ S′}. For a path π = e1...en, we define γ(π) = γ(e1)...γ(en) (it will
be called the orbit graph of the path π). For the empty path we have γ(ε) = 1, and for any non-
consecutive path γ(π) = 0.

For example, the orbit graph of the cycle of the timed automaton from Figure 5.2, considering the
location `1 and the region ((0, 1)2, {x} > {y}) is represented in Figure 5.10. Note that its projection
in the corner-point abstraction is represented in Figure 5.8.

In [BA11], there are 4 equivalent characterizations of the forgetful cycles. The definition which is
easily compared with ours is the completeness of the orbit graph of this cycle.

In fact, by definition of the projection in the corner-point abstraction, the orbit graph of a cycle c
on a region r corresponding to the location ` can be computed from Proj(c). The vertices of r are the
corners of r. c being a cycle, γ(c) has only the vertices V (r). Thus, there is an edge from a vertex S
of r to a vertex S′ of r in γ(c) iff there is a path in Proj(c) from (`, r, S) to (`, r, S′) corresponding
to an iteration of c. Hence, c is forgetful in our sense if γ(c) is strongly-connected which is a weaker
condition than γ(c) is complete. As a consequence, our notion of forgetfulness is weaker than the
BA-forgetfulness.

Then, a cycle is also said aperiodic if all the k-compositions (there is an edge between two vertices
in the k-composition of a graph G if there is a path of length k in between them in G) of its orbit
graph are strongly-connected. In particular, Proposition 5.1 implies that if a cycle C is forgetful and

131

PRELIMINARIES

Figure 5.10: An orbit graph of the cycle of the timed automaton from Figure 5.2

aperiodic, then there exists k such that the k-composition of its orbit graph is complete. In other
words, the power k of C is BA-forgetful.

In the context of [BA11], one wants to decide whether a timed automaton contains one BA-
forgetful cycle, which is done by building the submonoïd of orbit graphs. The existence of a forgetful
aperiodic cycle is an equivalent condition. However, we need to work in timed automata with stronger
forgetfulness behaviors. Indeed, we are not searching a particular run or cycle, but we are studying the
set of the frequencies of all the runs in a timed automaton. Nevertheless, we would like to be able to
decide the forgetfulness condition that we are going to use for timed automata. That is the motivation
for these finer notions of forgetfulness.

132

Chapter 6

Frequencies in One-Clock Timed
Automata

Introduction

In Chapter 5, we first introduced the notion of frequency of an infinite run as the proportion of time
elapsed in accepting locations. Then, we presented the corner-point abstraction, its instrumentation
with costs and rewards, and an analogue to frequency in the corner-point abstraction, called ratio.

In this chapter, we show that the infimum and supremum values of frequencies in a given one-
clock timed automaton are exactly the infimum and supremum values of ratios in its corner-point
abstraction. To do so, we study the links between frequencies in a timed automaton and ratios in its
corner-point abstraction. Moreover, we present a way to decide whether these bounds are realizable
(i.e., whether they are minimum and maximum respectively) in the timed automaton. A motivation
to compute the bounds of the set of the frequencies and to study their realizability is to decide the
emptiness problem for languages defined by a threshold on the frequency.

Our restriction to one-clock timed automata is crucial since at several places the techniques em-
ployed do not extend to two clocks or more. Some counter-examples with two clocks illustrate this
restriction all along the presentation of the intermediate results in this chapter.

The rest of this chapter is structured as follows. We first present relations between runs in timed
automata and projections in their corner-point abstraction, and vice-versa. Second, we draw the con-
sequences about the possible frequencies by studying, in particular, the realizability of the bounds.

6.1 From A to Acp

In this section, we first expose how to build two runs in the projection in the corner-point abstraction
of any run % having respectively a smaller and a larger ratio than the frequency of %. The construction
is intuitive: we simply choose, along the abstraction, the largest possible abstract delays in non-
accepting locations and the smallest (resp. largest) delays in accepting locations. In a second phase,
we prove that runs of the corner-point abstraction can be mimicked in the timed automaton while
preserving the value of the ratio up to any ε > 0. Combining both results, we will derive that the
infimum and the maximum of the set of frequencies in a timed automaton are the same as for the set
of ratios in its corner-point abstraction.

133

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

6.1.1 Contraction and dilatation

We are going to show that given a run % of a timed automaton A, there exists a run in the projection
of %, whose ratio is smaller (resp. larger) than the frequency of %.

Proposition 6.1 (FromA toAcp). For every run % inA, there exist π and π′ inAcp that can effectively
be built and belong to Projcp(%) such that:

Rat(π) ≤ freqA(%) ≤ Rat(π′)and

they respectively minimizes and maximizes the ratio among runs in Projcp(%).

Such two runs of Acp can be effectively built from %, through the so-called contraction (resp.
dilatation) operations. Intuitively it consists in minimizing (resp. maximizing) the time elapsed in
F -locations. In this section, we first define formally these special projections and then prove that they
satisfy the expected property.

Definition of F -dilatation. Let % = (`0, 0)
τ0,a0−−−→ (`1, v1) · · · be a run ofA. We note e0, e1, · · · the

edges fired along %. We define the F -dilatation (or simply dilatation) of % as the run π = (`0, R
1
0 =

{0}, α1
0 = •) → (`0, R

2
0, α

2
0) → · · · → (`0, R

k0
0 , α

k0
0) → (`1, R

1
1, α

1
1) → · · · → (`1, R

k1
1 , α

k1
1) · · · ∈

Projcp(%) in Acp defined inductively as follows. Assume n transitions of % are reflected in π: π starts
with (`0, R

1
0, α

1
0) → · · · → (`0, R

k0
0 , α

k0
0) → (`1, R

1
1, α

1
1) → · · · → (`n, R

1
n, α

1
n) with vn ∈ R1

n and
α1
n a corner-point of R1

n.

• if vn + τn ≤M :

– if vn + τn ∈ R1
n = (c, c + 1), α1

n = •– and `n ∈ F , then we let time elapse as
much as possible and choose in Acp the portion of path (`n, R

1
n, •–) → (`n, R

1
n, –•) →

(`n+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the successor pointed region of (R1

n, –•) by
transition en.

– if vn + τn ∈ R1
n = (c, c + 1), α1

n = •– and `n /∈ F , we choose to fire en as soon as
possible by selecting the following portion of path: (`n, R

1
n, •–) → (`n+1, R

1
n+1, α

1
n+1)

where (R1
n+1, α

1
n+1) is the successor pointed region of (R1

n, •–) by transition en.

– if vn + τn ∈ R1
n = (c, c + 1) and α1

n = –• is the last corner of R1
n (that is the

second one), we need to immediately fire en in Acp and thus choose (`n, R
1
n, –•) →

(`n+1, R
1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the successor pointed region of (R1

n, –•) by
transition en.

– if vn + τn /∈ R1
n and `n /∈ F , we fire en as soon as possible, that is, we let time elapse

until region Rknn with vn + τn ∈ Rknn and its first corner-point αknn , and then fire en:
(`n, R

1
n, α

1
n)→ · · · → (`n, R

kn
n , α

kn
n)→ (`n+1, R

1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the

successor pointed region of (Rknn , α
kn
n) by transition en.

– if vn + τn /∈ R1
n and `n ∈ F , we fire en as late as possible, that is, we let time elapse

until region Rknn with vn + τn ∈ Rknn and its last corner-point αknn , and then fire en:
(`n, R

1
n, α

1
n)→ · · · → (`n, R

kn
n , α

kn
n)→ (`n+1, R

1
n+1, α

1
n+1) where (R1

n+1, α
1
n+1) is the

successor pointed region of (Rknn , α
kn
n) by transition en.

• if vn + τn > M :

134

FROM A TO ACP

– if R1
n 6= (M,+∞), we let time elapse until region (M,+∞) and add a delay, to re-

spect the definition of the projection in Acp, which depends on `n and then fire en:
(`n, R

1
n, α

1
n) → · · · → (`n, R

i
n, α

i
n) → (`n, (M,+∞),⊥)

(
→ (`n, (M,+∞),⊥)

)νn →
(`n+1, R

1
n+1, α

1
n+1) where νn =

{
dvn + τne −M if `n ∈ F
bvn + τnc −M if `n /∈ F

and (R1
n+1, α

1
n+1) is

the successor pointed region of ((M,+∞),⊥) by transition en.

– ifR1
n = (M,+∞), respecting the definition of the projection give two possible delays, our

choice depends on `n, then we fire en: (`n, (M,+∞),⊥)
(
→ (`n, (M,+∞),⊥)

)νn →
(`n+1, R

1
n+1, α

1
n+1) where νn =

{
dvn + τne − νn−1 if `n ∈ F
bvn + τnc − νn−1 if `n /∈ F

and (R1
n+1, α

1
n+1) is

the successor pointed region of ((M,+∞),⊥) by transition en.

Similarly, we define the F -contraction of % as its F̄ -dilatation, i.e. the run π ∈ Projcp(%) ofAcp which
fires transition en as soon as possible when `n ∈ F and as late as possible when `n /∈ F .

Proof of Proposition 6.1. The proof is based on the following intuitive lemma, whose proof is tedious
but not difficult. Given a run % = (`0, v0)

τ0,a0−−−→ (`1, v1) · · · , in the sequel we abusively denote by
freqA(%|n) the quantity given by (

∑
i≤n|`i∈F τi)/(

∑
i≤n τi). In the same spirit, given π a run in Acp,

we abusively denote by Rat(π|n), the ratio of accumulated costs divided by accumulated rewards for
the finite prefix containing n+ 1 discrete transitions.

Lemma C. Let % be a run of A, and for all n ∈ N π|n be the dilatation of %|n. For all n ∈ N, if
freqA(%|n) = cn

rn
and Rat(π|n) = Cn

Rn
then Cn ≥ cn and (Rn − Cn) ≤ (rn − cn).

Assuming the latter lemma, it is easy to conclude that freqA(%) ≤ Rat(π) for π the dilatation of
%. Indeed, given n ∈ N, Rn − Cn ≤ rn − cn and cn > 0 (the case cn = 0 is straightforward) imply
Rn−Cn
cn

≤ rn−cn
cn

. Moreover, Cn ≥ cn. Hence Rn−Cn
Cn

≤ Rn−Cn
cn

. All together, this yields Rn
Cn
− 1 ≤

rn
cn
− 1 which is equivalent to Cn

Rn
≥ cn

rn
. When n tends to infinity, we obtain Rat(π) ≥ freqA(%).

Using the fact that the F -contraction of % is the F̄ -dilatation of %, one obtains Rat(π′) ≤ freqA(%)
for π′ the contraction of %.

Moreover, the same reasoning can be applied to any run of the projection of % in the corner-point
instead of % inA to prove that the dilatation and the contraction respectively maximizes and minimizes
the ratios. �

Let us now prove the Lemma C. The proof is a tedious inspection of cases, the rest of the section
starts again on page 138.

Proof of Lemma C. The proof is by induction on n. The base case, for n = 0 is trivial, since R0, C0,
r0, c0 are all set to 0 by convention. Note that an initialization at step n = 1 would also be possible
using cases 1 to 3 in the following cases enumeration.

Let us fix n ∈ N. Assume now that the conditions of the lemma are satisfied for all j ≤ n, that is
Cj ≥ cj and (Rj − Cj) ≤ (rj − cj), and let us prove them for n + 1. Consider the prefix of length
n + 1 of %: %n+1 = (`0, 0)

τ0,a0−−−→ (`1, v1) · · · (`n, vn)
τn,an−−−→ (`n+1, vn+1). We note e0, e1, ... the

edges fired along %. Let us detail a careful inspection of cases, depending on the value of vn + τn and
whether `n ∈ F .

135

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Tn

vn vn+τn

(a) Case 1 (Tn > τn).

Tn

vn vn+τn

(b) Case 2 (Tn < τn).

Figure 6.1: Cases 1 and 2.

Tn

vn vn+τn

(a) Case 3 (Tn = τn).

Tn

vn vn+τn

(b) Case 4.1 (Tn > τn).

Figure 6.2: Cases 3 and 4.1.

Case 1 vn ∈ N, `n ∈ F , and vn + τn /∈ N.
In this case, τn = Tn − τ ′ with Tn ∈ N and τ ′ ∈ (0, 1). By definition of the dilatation,
πn+1 is built from π|n by firing Tn idling transitions weighted 1/1 in Acp (possibly interleaved
with idling transitions weighted 0/0) followed by the discrete transition weighted 0/0 that
corresponds to en. Thus, Cn+1 = Cn + Tn, Rn+1 = Rn + Tn, whereas cn+1 = cn + τn
and rn+1 = rn + τn. In particular, Cn ≥ cn (induction hypothesis) and τn < Tn imply
Cn+1 ≥ cn+1. Moreover, Rn+1 − Cn+1 = Rn − Cn and rn+1 − cn+1 = rn − cn, and by
induction hypothesis Rn − Cn ≤ rn − cn. Hence Rn+1 − Cn+1 ≤ rn+1 − cn+1.

Case 2 vn ∈ N, `n /∈ F , and vn + τn /∈ N.
Here, τn = Tn + τ ′ with Tn ∈ N and τ ′ ∈ (0, 1). In the dilatation, Tn transitions weighted
0/1 will be fired before taking the transition corresponding to en. Thus Rn+1 = Rn + Tn,
Cn+1 = Cn, whereas cn+1 = cn and rn+1 = rn + Tn + τ ′. We immediately deduce that
Cn+1 ≥ cn+1 using the induction hypothesis. Moreover Rn+1 − Cn+1 = Rn + Tn − Cn ≤
rn − cn + Tn < rn + Tn + τ ′ − cn = rn+1 − cn+1, where the second step uses the induction
hypothesis.

Case 3 vn ∈ N, and vn + τn ∈ N.
In this case, τn = Tn ∈ N and exactly Tn transitions with reward 1 will be taken in Acp before
firing the transition that corresponds to en. In other words, the costs and rewards are exactly
matched in the corner-point abstraction: Cn+1−Cn = cn+1−cn andRn+1−Rn = rn+1−rn.
Notice that these equalities hold regardless of whether `n ∈ F . Using the induction hypothesis
(Cn ≥ cn and Rn − cn ≤ rn − cn) we easily conclude: Rn+1 − Cn+1 = Rn − Cn + rn+1 −
cn+1 + cn − rn ≤ rn+1 − cn+1, and Cn+1 = cn+1 + Cn − cn ≥ cn+1.

Case 4 vn /∈ N and `n ∈ F

Case 4.1 Assume first that the corner in the last state of π|n is •–. Then letting Tn = dvn+τn−
bvnce, in the dilatation, Tn idling transitions weighted 1/1 will be fired inAcp before firing
the discrete transition corresponding to en. Thus Cn+1 = Cn + Tn, Rn+1 = Rn + Tn,
whereas cn+1 = cn + τn and rn+1 = rn + τn. We immediately obtain Cn+1 ≥ cn+1

136

FROM A TO ACP

Tn,i

vn−i vn vn+τn

Figure 6.3: Case 4.2

Tn

vn vn+τn

Figure 6.4: Case 5.1 (Tn < τn).

using the induction hypothesis and the fact that Tn > τn. Moreover, Rn+1 − Cn+1 =
Rn − Cn ≤ rn − cn = rn+1 − cn+1.
Note that the picture on Fig. 6.2(b) represents the case vn + τn /∈ N, but the reasoning is
valid for vn + τn ∈ N as well.

Case 4.2 Assume now that the corner in the last state of π|n is –•. In this situation, we cannot
conclude immediately, since Cn+1 = Cn + Tn and cn+1 = cn + τn, with Tn = dvn +
τn − dvnee is incomparable to τn in general. Instead, we need to take into account some
previous steps in % and π. Let us consider the least index i such that the corner of the
last state in πn−i is not –•. For this index, πn−i ends either with the pointed region
((bvn−ic, dvn−ie), •–) or with ({vn−i}, •). We then consider the suffix of path πn+1 after
πn−i. Notice that the clock x was not reset along this suffix (since no pointed region of
the form (R, •) was reached). For this part, the accumulated reward is Tn,i = dvn + τn −
bvn−ice. The corresponding part in % has an accumulated delay τn,i = vn + τn − vn−i =∑n

j=n−i τj (since the clock has not been reset). Note that Tn,i ≥ τn,i.
Let us now discuss the cost accumulated along the suffix of path πn+1 after πn−i. By
definition of the dilatation, no idling transition can be fired from a state with an F -location
along this suffix, otherwise the last state of πn−i+1 would not have –• as corner. Thus, the
accumulated cost along the suffix of path πn+1 after πn−i is equal to Tn,i. However, the
corresponding part in % has an accumulated cost cn,i smaller than τn,i (due to the potential
time spent in locations out of F).
The above discussion can be summarized as follows: Rn+1 = Rn−i + Tn,i, Cn+1 =
Cn−i + Tn,i, rn+1 = rn−i + τn,i and cn+1 = cn−i + cn,i with Tn,i ≥ τn,i ≥ cn,i. We can
thus derive that Cn+1 ≥ cn+1, using both the induction hypothesis stating that Cn−i ≥
cn−i and the fact that Tn,i ≥ cn,i. It remains to prove that Rn+1 − Cn+1 ≤ rn+1 − cn+1.
By the above equalities, this is equivalent to proving that Rn+i−Cn+i ≤ (rn+i− cn+i)+
(τn,i − cn,i) which is true by the induction hypothesis stating that (Rn+i − Cn+i) ≤
(rn+i − cn+i) and the fact that τn,i ≥ cn,i.

Case 5 vn /∈ N and `n /∈ F

Case 5.1 Symmetrically to what precedes, the easy case is when the corner in the last state of
π|n is –•. Then, letting Tn = bvn + τnc − dvne < τn, we can write Rn+1 = Rn + Tn and
Cn+1 = Cn. Since cn+1 = cn and rn+1 = rn + τn, we deduce the desired inequalities.

137

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Tn,i

vn−i vn vn+τn

Figure 6.5: Case 5.2.

`1 `2 `4`3

x<1,a,{x}

y=1,a,{y}

x<1,a,{x}

y=1,a,{y}

x<1,a,{x}

y=1,a,{y}

Figure 6.6: A counterexample with two clocks for Proposition 6.1.

Case 5.2 Assume now that the corner in the last state of π|n is •–. Therefore, the last pointed
region in π|n is ((bvnc, dvne), •–), and we let Tn = bvn+ τn−bvncc. By definition of the
dilatation, this can only happen if `n−1 /∈ F . We then consider the least index i such that
the last corner in πn−i is not •–. For this index, the last pointed region in πn−i is either
((bvn−ic, dvn−ie),–•) or ({vn−i}, •). Moreover, all locations `j for n − i ≤ j ≤ n are
not in F . We define Tn,i = bvn + τnc − dvn−ie. Note that Tn ≤

∑n
j=n−i τj . Using this

notation, Rn+1 = Rn−i + Tn,i, and Cn+1 = Cn−j . In A, rn+1 = rn−j +
∑n

j=n−i τj and
cn+1 = cn−i. We trivially derive Cn+1 ≥ cn+1 using the analogous induction hypothesis
at rank n−i. Moreover,Rn+1−Cn+1 = Rn−i+Tn,i−Cn−i < Rni+

∑n
j=n−i τj−Cn−i ≤

rn−i +
∑n

j=n−i τj − cn−i = rn+1− cn+1, using the induction hypothesis at rank n− i in
the next to last step.

Let us notice that we ignored the unbounded region through the whole proof. However it can be
treated exactly in the same way. Indeed, we can consider the abstract valuations in % instead of the
corner-point.

Note that in cases 4.2 and 5.2, the induction relies on other cases (4.1, 5.1, and 1, 2, 3). However,
the induction is well-founded since those cases are treated independently. �

6.1.2 Proposition 6.1 does not extend to timed automata with two clocks

Note that the notion of contraction cannot be adapted to the case of timed automata with several
clocks, as illustrated by the timed automaton in Fig. 6.6. Indeed, there is a run with frequency 1

2
whose projections in the corner-point abstraction have all ratio larger than 2

3 . More precisely, consider
the run % alternating delays (1

2 + 1
n) and 1− (1

2 + 1
n) for n ∈ N, and switching between the left-most

cycle (`1 − `2 − `1) and the right-most cycle (`3 − `4 − `3) following the rules: in round k, take 22k

times the cycle `1 − `2 − `1, then switch to `3 and take 22k+1 times the cycle `3 − `4 − `3 and return
back to `1 and continue with round k + 1.

In fact, delays in `1 and `3 need to be smaller and smaller. A projection of % thus ends either with
rewards 1 in `1 and `3 and 0 otherwise, or with rewards 1 in `2 and `4 and 0 otherwise. If one chooses
one time to put a reward 1 in `2 or `4, one never have another possibility to make another choice. This
is a convergence phenomenon which requires at least two clocks..

138

FROM ACP TO A

Run % cannot have any contraction since its frequency is 1
2 , whereas all its projections in the

corner-point abstraction have ratio larger than 2
3 . Indeed, consider (hk)k≥1 the sequence of the pro-

portions of time elapsed in accepting locations when switching from the cycle `3−`4−`3 to `1−`2−`1
when rewards 1 are elapsed in locations `2 and `4:

hk =
∑k
i=0 22i+1

k+
∑k
i=0 22i+22i+1

=
2
∑k
i=0 4i

k+
∑2k+1
i=0 2i

=
2 4k+1−1

3

k+22k+2−1
= 2∗22k+2−2

3∗22k+2+3k−3
=

2− 2

22k+2

3+ 3k−3

22k+2

.

This sequence converges to 2
3 . The same computation can be done for the case where rewards 1

are elapsed in locations `1 and `3 considering the other switch of cycles. Note that this example uses
the non-convergence of the ratio together with the choice of the lim sup for the definition. It is not
clear that such an example exists for the dilatation.

6.2 From Acp to A

We now want to know when and how ratios in Acp can be lifted to frequencies in A. To that aim we
distinguish between reward-diverging and reward-converging runs.

6.2.1 Reward-diverging case

Given a reward-diverging run π in the corner-point abstraction, one can lift it to a non-Zeno run having
the same frequency as its ratio.

Proposition 6.2 (From Acp to A, reward-diverging case). For every reward-diverging run π in Acp,
there exists a non-Zeno run % in A such that π ∈ Projcp(%) and freqA(%) = Rat(π).

The key ingredient is that given a reward-diverging run π in Acp, for every ε > 0, one can build
a non-Zeno run %ε of A with the following strong property: for all n ∈ N, the valuation %ε[n] is ε

2n -
close to the abstract valuation π[n] (defined on page 122). The accumulated reward along π diverges,
hence freqA(%ε) is equal to Rat(π).

Proof. Given % = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ (`2, v2) · · · a run and n ∈ N, we denote by %[n] the
valuation vn + τn. Similarly, if π belongs to Projcp(%), we consider the states of π which correspond
with a state of % (those which are just before a discrete transition) and we note π[n] the valuation of
the corner of the n-th state if the region is bounded. Otherwise, π[n] is the sum of all the rewards
since the last region {0}. Proposition 6.2 relies on the following lemma:

Lemma D. For every reward-diverging run π in Acp, there exists a run % of A such that, for all
n ∈ N, |π[n]− %[n]| ≤ 1

2n .

Proof of Lemma D. We show that given a reward-diverging run π in Acp, we can build a run % such
that π ∈ Projcp(%) and the %[i] are as close as we want of the π[i]. More precisely, we show that we
can choose suitable delays. In the case where π[i] is different than π[i + 1], the choice of the delay
allows to be as close as wanted of π[i+1]. If π[i] and π[i+1] are equal but an upper bound of a region,
we can move nearer to π[i + 1] = π[i] by the new delay. If the region is unbounded, and π[i + 1]
larger than the maximal constant, it is again a good case. The only difficulty is the case where the new
delay force us to move further than π[i+ 1] = π[i]. The solution is to consider globally the sequence
of the delays in the same corner together with the delay leading to it. Thanks to the non-zenoness,
this sequence is necessarily finite. Therefore, we can effectively choose suitable delays to respect the
condition at the end of the sequence and thus all along the sequence. Note this lemma is a simpler
version of the Lemma 3 in [BBL08]. �

139

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

`0 `1 `2
0<x<1,a,{y}

x>1,a,{x}

y=1,a,{y}

(a) A counterexample with two clocks.

`0 `1 `2
x=1,a,{x}x=1,a,{x}

x>0,a,{x}

(b) Zeno case.

Figure 6.7: Counterexamples to extensions of Proposition 6.2.

Let us consider apart the cases where Rat(π) = 0 and Rat(π) > 0.
Assume first that π is a reward-diverging run in Acp with Rat(π) = 0. Given ε > 0, let %

be a run of A such that, for all n ∈ N, |π[n] − %[n]| < ε
2n . If Cn and Rn are the accumu-

lated costs and rewards in the first n steps of π inz Acp, then Rat(π) = lim supn→+∞
Cn
Rn

and

freqA(%) = lim supn→+∞
Cn+

∑
i≤n αiε/2

i

Rn+
∑
i≤n βiε/2

i where for every i, αi ∈ {−1, 0, 1} and βi ∈ {−1, 1}.

Hence freqA(%) ≤ lim supn→+∞
Cn+ε
Rn−ε (because Rn > ε for n large enough). Since limn→+∞

Cn
Rn

=

0 and limn→+∞Rn = +∞, we deduce lim supn→+∞
Cn+ε
Rn−ε = 0 which means freqA(%) = 0 =

Rat(π).
Assume now that π is a reward-diverging run in Acp with Rat(π) > 0. Using the same notations

as in the previous case, |CnRn −
Cn+

∑
i≤n αiε/2

i

Rn+
∑
i≤n βiε/2

i | ≤ Cnε+Rnε
Rn(Rn−ε) . The latter term tends to 0 as n tends to

infinity. As a consequence freqA(%) = Rat(π). �

6.2.2 Proposition 6.2 extends neither to timed automata with two clocks, nor to Zeno
runs.

The restriction to one-clock timed automata is crucial in Proposition 6.2. Indeed, consider the two-
clocks timed automaton depicted in Fig. 6.7(a). In its corner-point abstraction there exists a reward-
diverging run π with Rat(π) = 0, however every run % satisfies freqA(%) > 0. More precisely,
we exhibit here a reward-diverging run π in Acp of ratio zero and explain why every run % in A has
a positive frequency. First, π consists (omitting idling transitions weighted 0/0) of the following
sequence of transitions :

(`0, {0}2, •)
ε,0/1−−−−→ (`0, ((0, 1)2, {x} = {y}), ��

r
)
a,0/0−−−−→(

(`1, ((1, 2)× (0, 1), {x} < {y}), ��r)
a,0/0−−−−→ (`2, {0} × (0, 1), r) ε,0/1−−−−→ (`2, (0, 1)× {0}, r) a,0/0−−−−→

)ω
.

The ratio of π is thus zero because the accumulated cost of π is zero whereas the reward diverges. On
the other hand, let us consider a run % of A and prove that its frequency is positive. Indeed, % reads
necessarily a word of the form (1− τ0, a).

(
(τi, a).(1− τi, a)

)
1≤i where τ0 ∈ (0, 1) and τi+1 > τi for

all 0 ≤ i. The frequency of F = {`1} in % is thus given by:

freqA(%) = lim sup
n→+∞

∑
i≤n τi∑
i≤n 1

> lim sup
n→+∞

∑
i≤n τ0

n
.

Hence, freqA(%) > τ0 > 0.

140

FROM ACP TO A

`0,{0}, • `0,(0,1), •— `0,(0,1), —• `0,{1}, •

`1,{0}, • `1,(0,1), •— `1,(0,1), —• `1,{1}, •

`2,{0}, • `2,(0,1), •— `2,(0,1), —• `2,{1}, • `2,(1,∞), ⊥

ε,1/1

a,0/0

ε,0/0

ε,0/0 ε,0/0

ε,0/0 ε,1/1 ε,0/0

ε,0/0 ε,0/1

ε,0/0 ε,1/1

a,0/0

a,0/0

a,0/0a,0/0a,0/0
a,0/0

Figure 6.8: The corner-point abstraction Acp of A represented Figure 6.7(b).

6.2.3 Proposition 6.2 does not extend to reward-converging runs

An equivalent to Proposition 6.2 for reward-converging runs (even in the one-clock case!) is hopeless.
The timed automaton A depicted in Fig. 6.7(b), where F = {`0, `2} is a counterexample. Indeed,
in Acp the reward-converging run π iterating infinitely the loop over state `2, {0}, • has ratio 1

2 ,
whereas all runs in A have frequency larger than 1

2 .

6.2.4 Reward-converging case

Even if Proposition 6.2 does not apply to reward-converging runs, a similar construction can be per-
formed. Sometimes, one cannot lift a reward 1 to a delay 1 in A but only to a delay strictly smaller
than 1. Those small imprecisions in the mimicking are negligible when time diverges but impact on
the frequency when time converges.

Proposition 6.3 (From Acp to A, reward-converging case). For every reward-converging run π in
Acp, if Rat(π) > 0, then for every ε > 0, there exists a Zeno run %ε in A such that π ∈ Projcp(%ε)
and |freqA(%ε)− Rat(π)| < ε.

A construction similar to the one used in the proof of Proposition 6.2 is performed. Note however
that the result is slightly weaker, since in the reward-converging case, one cannot ignore imprecisions
forced e.g., by the prohibition of the zero delays, or by strict inequalities in guards.

Proof. Proposition 6.3 uses the following lemma:

Lemma E. For every reward-converging run π in Acp, for every ε > 0, there exists a Zeno run %ε in
A such that π ∈ Projcp(%ε) and for all n ∈ N, |π[n](x)− %ε[n](x)| < ε.

Proof of Lemma E. Let π be a reward-converging run in Acp, and ε ∈ (0, 1). As π is reward-
converging, it ends with transitions weighted 0/0. Let π′ be its longest prefix not ending with a
transition weighted 0/0. With π′, one can associate a finite run %′ ofA, as we did for reward-diverging
runs (see proof of Lemma D): for all indices i smaller than the length of π′, |π′[i](x)− %′[i](x)| < ε

2i
.

For the suffix of π, composed only of transitions weighted 0/0, we define a corresponding run in A
with total duration less than ε. This can, e.g., be achieved by taking successive delays of ε

2k
for k ≥ 1.

Concatenating %′ and the run defined above yields a run %∗ in A always 2 ∗ ε-close to π (i.e. for all
n ∈ N, |π[n](x)− %∗[n](x)| < 2 ∗ ε). �

141

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Let us assume that Rat(π) > 0. Let nπ be the length of the smallest prefix of π such that there is
no transition with non-zero reward after. Thanks to the convergence of the accumulated rewards of π,
nπ is necessarily finite. Given ε > 0, the run %ε′ given by the Lemma E with ε′ = ε

nπ+1 satisfies the
desired property. �

Remark 6.1. Note that if π is a contraction, then π is the contraction of %ε defined in the proof of
Lemma E.

Remark 6.2. If π is of ratio 0, only three cases are possible because zero delays are forbidden:

• π visits only accepting locations and the reward of π is 0, then if π is in the projection of %,
freqA(%) = 1,

• π visits only non-accepting locations, the frequency of each run % whose projection contains π,
is 0

• otherwise, neither 1 nor 0 can be the frequency of a run % having π in its projection.

6.3 Set of frequencies in A

In this section, we use the strong relation between frequencies of runs in A and ratios of runs in Acp
established in the previous subsection to establish key properties of the set of frequencies. A first
consequence of Section 6.1 is that the set of frequencies in a one-clock timed automaton has the same
lower and upper bounds as the set of ratios in its corner-point abstraction. Yet these bounds might not
be sufficient. For example, to decide emptiness of languages defined with a constraint ≥ λ over the
frequencies, we need to decide the realizability of these bounds.

Theorem 6.1. The bounds inf(Freq(A)) and sup(Freq(A)) can be computed and their realizability
is decidable. Moreover, both can be done by a non-deterministic procedure in logarithmic space.

This theorem is based on Proposition 6.4 and Lemma 6.1 dealing respectively with the set of
non-Zeno and Zeno runs in A. This section is naturally structured. The next subsection is devoted to
the proof that the set of frequencies of the non-Zeno runs in a one-clock timed automaton is exactly
the set of ratios of the reward-diverging runs in its corner-point abstraction. Then, Subsection 6.3.2
presents technical lemmas for the decidability of the realizability of the bounds by some Zeno runs.
Last, Theorem 6.1 is proved in Subsection 6.3.3.

6.3.1 Set of frequencies of non-Zeno runs in A

Proposition 6.4 (non-Zeno case). FreqnZ(A) = Ratr−d(Acp)

Proof. The proposition is based on Lemma B and Theorem 5.1, proved in the preliminary Sec-
tion 5.3.3. Let {C1, · · · , Ck} be the set of reachable SCCs of Acp. Recall that Lemma B establishes
that the set of ratios of reward-diverging runs of Acp ending in an SCC Ci is the interval [mi,Mi],
where mi = min(Ri) and Mi = max(Ri) and Ri denotes the set of ratios of reward-diverging sim-
ple cycles in Ci. Then Theorem 5.1 gives the general expression ∪1≤i≤k[mi,Mi] for the set of ratios
for the reward-diverging runs in Acp. By Proposition 6.2, we know that Ratr−d(Acp) ⊆ FreqnZ(A).
Moreover, thanks to the Proposition 6.1 and the convexity of the intervals [mi,Mi], we can show the
other inclusion FreqnZ(A) ⊆ ∪1≤i≤k[mi,Mi] = Ratr−d(Acp) as follows. Let % be a non-Zeno run
in A. We distinguish between two cases:

142

SET OF FREQUENCIES IN A

• if the contraction and the dilatation of % are both reward-diverging, then either the clock is
reset infinitely often along %, or from some point on, the value of the clock along % lies in the
unbounded region forever. In the first case, there is some state of the form (`, {0}, •) in Acp
which is visited infinitely often by both the contraction and the dilatation. In the second case,
from some point on, they will follow the same transitions between states of the form (`,⊥, α⊥)
(within the unbounded region). In both cases, the contraction and the dilatation both end up
in the same SCC, say Ci. Their ratios, and the frequency of % (thanks to Proposition 6.1 and
Lemma B) thus lie in the interval [mi,Mi].

• if the contraction (resp. dilatation) of % is reward-converging, the frequency of % is 1 (resp.
0). Indeed, if the contraction (resp. dilatation) of % is reward-converging, then the accumulated
delay in non-accepting (resp. accepting) locations is bounded in % by the accumulated reward in
non-accepting (resp. accepting) locations in the contraction (resp. dilatation). In this case, the
dilatation (resp. contraction) is reward-diverging and of ratio 1 (resp. 0), therefore freqA(%) ∈
Ratr−d(Acp).

As a consequence, the set FreqnZ(A) of frequencies of non-Zeno runs of A is equal to the set
∪1≤i≤k[mi,Mi] of ratios of the reward-diverging runs of Acp. �

6.3.2 Realizability of bounds by Zeno runs in A

In this section, we deal with reward-converging runs. To do so, we propose a procedure to decide
whether a reward-converging contraction (resp. dilatation) can be lifted to a Zeno run in the timed
automaton with frequency equal to the ratio. We prove a lemma for contraction useful for the lower
bounds, but of course, a similar lemma for dilatation can be similarly proved.

Lemma 6.1 (Zeno case). A reward-converging run π in Acp is a contraction such that there exists a
Zeno run % whose contraction is π and with freqA(%) = Rat(π) if and only if π satisfies the following
conditions :

• from each state of π of the form (`, (i, i+ 1), •–) where ` /∈ F , π follows an idling transition to
(`, (i, i+ 1), –•);

• after each move (`, (i, i+ 1), •–)
1/1−−→ (`, (i, i+ 1), –•) where ` ∈ F , π reaches (`, {i+ 1}, •)

by an idling transition.

• If Rat(π) = 0, then there are only non-accepting locations along π.

• If 0 < Rat(π) < 1, then

– discrete transitions with resets go out of punctual regions or of the unbounded region; and
discrete transitions going from F -locations to F -locations or the opposite, has to be fired
from a punctual region, or from the unbounded region after a positive reward;

– π ends up in non-accepting locations with a constant pointed region of the form ((k, k +
1), –•) with k an integer;

Every fragment of π between reset transitions can be considered independently, since imprecisions
cannot be neglected in Zeno runs: even the smallest deviation (such as a delay ε inA instead of a cost
0 in Acp) will introduce a difference between the ratio and the frequency. A careful inspection of
cases allows one to establish the result stated in the lemma.

143

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Proof. Let π be a reward-converging lasso run ofAcp. Run π is a contraction if and only if it satisfies
the following conditions:

• from each state of π of the form (`, (i, i + 1), •–) where ` /∈ F , π follows an idling transition
to (`, (i, i+ 1), –•);

• after each move (`, (i, i+ 1), •–)
1/1−−→ (`, (i, i+ 1), –•) where ` ∈ F , π reaches (`, {i+ 1}, •)

by an idling transition.

This is straightforward from the definition of contraction.
Then, we now study how to decide whether π is a contraction such that there exists a run % whose

contraction is π and with freqA(%) = Rat(π). We first consider two simple cases:

• If Rat(π) = 0, then there exists a Zeno run % inA whose contraction is π, such that freqA(%) =
Rat(π) = 0 if and only if there are only non-accepting locations along π. Indeed if there were
at least one accepting location, because of the zenoness of % and the positivity of all delays,
freqA(%) would be positive.

• If Rat(π) = 1, let π be the contraction of some run %, then freqA(%) ≥ Rat(π) hence by
definition of the contraction freqA(%) = Rat(π).

We now assume that 0 < Rat(π) < 1 and π is a contraction. For any run % such that π is the
contraction of %, Rat(π) ≤ freqA(%). Thus in order to get the equality we will have to minimize
delays spent in F -locations when building %.

Note that resets of the clock are not reflected in the corner-point abstraction, but could easily be.
Indeed, each discrete transition of the corner-point abstraction corresponds to an edge in A and thus
to a set of reset, moreover, states of the corner-point abstraction contain a region which allow to guess
which clocks have been reset. Therefore, in the sequel, we abusively speak of resets in π. In the
rest of the proof, we will work independently on the reset-free parts of π, let us shortly argue why
this reasoning holds in this context. Let % be a path containing finitely many resets and such that
% = %1 a1−→ %2 a2−→ · · · %n where all the %i’s are reset-free and the ai’s are reset edges. Let π be the
contraction of %, let us notice that π can be written as π1 a1−→ π2 a2−→ · · ·πn where πi corresponds to the
contraction of %i (for 1 ≤ i ≤ n). By definition of the contraction, we know that Rat(πi) ≤ freqA(%i)
for each 1 ≤ i ≤ n. In particular, if there exists i such that Rat(πi) 6= freqA(%i), it is necessarily the
case that Rat(πi) < freqA(%i). In this situation, it is clearly impossible to obtain Rat(π) = freqA(%).

Necessary conditions Now, we are going to prove that if π is a contraction such that there exists a
run % whose contraction is π and with freqA(%) = Rat(π), then the following conditions are satisfied:

1. discrete transitions with resets go out of punctual regions or of the unbounded region; and
discrete transitions going from F -locations to F -locations or the opposite, has to be fired from
a punctual region, or from the unbounded region after a positive reward;

2. π ends up in only non-accepting locations and stays in a pointed region of the form ((k, k +
1), –•).

Let us assume that π is a contraction such that there exists a run % whose contraction is π and with
freqA(%) = Rat(π). Run π is reward-converging, then there is ultimately only 0 rewards.

144

SET OF FREQUENCIES IN A

1. Let us first prove that there is a suffix of π which has only non-accepting locations and stays in
a pointed region of the form ((k, k + 1), –•). Because π is reward-converging, ultimately all
rewards are 0. Hence, only a finite prefix of π contributes to the ratio. As π is a contraction,
after this prefix, there is no state of the form (`, (k, k + 1), •–) with ` ∈ F otherwise there
would immediately be a transition of reward 1. Thus, there is no state of the form (`, {k}, •)
with ` ∈ F . Then, if there are resets in the suffix, then it contains only states with locations
of F and stays in states of the forms (`, {0}, •) and (`, (0, 1), •–). In this case, since delays
are positive in A, the equality freqA(%) = Rat(π) cannot hold. As a consequence, π ends up
in states of the form (`, (k, k + 1), –•) with k a fixed integer, and since π is a contraction, the
location does not belong to F .

2. Let us now prove that the prefix pref, before the suffix in states of the form (`, (k, k + 1), –•),
is such that discrete transitions with resets go out of punctual regions or of the unbounded
region; and discrete transitions going from F -locations to F -locations or the opposite, has to
be fired from a punctual region, or from the unbounded region after a positive reward. These
conditions are necessary and sufficient for pref to not prevent that freqA(%) = Rat(π). The
proof is based on the disjunction of cases of the proof of Lemma C. In the disjunction, we have
seen that for every F -fragment (resp. F̄ -fragment) of π, the ratio is smaller or equal to the
frequency of the corresponding fragment in %. Furthermore, the equality holds only for the case
3 and the cases 4.2 and 5.2 whether vn−i and vn + τn are integers. Then every sub-fragment
(F -fragment or F̄ -fragment) of a finite fragment (separated by resets) has to correspond to
one of these cases. Case 3 is when two consecutive discrete transitions are done in punctual
regions. Case 4.2 with vn−i and vn + τn integers correspond to the case where several discrete
transitions can be fired without resets between two punctual regions from an accepting location,
then the accumulated rewards and delays are the same. As a consequence, if all the locations
are accepting the frequency evolve in the same way as the ratio of π. Finally, the case 5.2 is the
same as the case 4.2 but from a non-accepting location.

The combination of these conditions is equivalent to the two above conditions if regions are
bounded. As explained in the proof of Lemma C, the unbounded region can be treated in
the same way as bounded ones considering abstract valuations instead of corners. The single
subtlety is that the first occurrence of the unbounded region is treated as a pointed region of the
form (R, •–) because the delay in A has to be positive. Then, it can be treated as a pointed
region of the form (R, •). We thus obtain the above conditions.

The conditions are sufficient If pref satisfies the conditions for π to be a contraction and pref and
the corresponding suffix satisfy the above conditions, then π is a contraction and there exists a run
% whose contraction is π and such that freqA(%) = Rat(π). Let pref ′ be the greatest prefix of pref
ending either with a reset, or going from F to F . We saw that the conditions over pref are sufficient for
the existence of % such that the prefix p of % corresponding to pref ′ is such that freqA(p) = Rat(pref ′).
Let us prove that the conditions over the end of π are sufficient. By construction of pref ′, the suffix
that we consider start in a state of the form (`, {k′}, •) with k′ an integer smaller than k, ` ∈ F , and
there is no reset in the sequel. Then, the end of % can be simply built by choosing delays whose sum
tends to the corresponding reward k − k′ in π. �

As a straightforward consequence, lasso runs can be treated in linear time.

145

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Corollary 6.1. Given a reward-converging lasso run π inAcp, whose cycle-free part is pref of length
n and whose cycle is c of length n′, it is decidable in O(n + n′) operations, whether there exists a
Zeno run % such that π is the contraction of % and freqA(%) = Rat(π).

A similar lemma can be proved for dilatations, using the fact that the F -dilatation is the F -
contraction:

Lemma 6.2 (Zeno case). A reward-converging run π in Acp is a dilatation such that there exists a
Zeno run % whose dilatation is π and with freqA(%) = Rat(π) if and only if π satisfies the following
conditions :

• from each state of π of the form (`, (i, i+ 1), •–) where ` ∈ F , π follows an idling transition to
(`, (i, i+ 1), –•);

• after each move (`, (i, i+ 1), •–)
1/1−−→ (`, (i, i+ 1), –•) where ` /∈ F , π reaches (`, {i+ 1}, •)

by an idling transition.

• If Rat(π) = 1, then there are only accepting locations along π.

• If 0 < Rat(π) < 1, then

– discrete transitions with resets go out of punctual regions or of the unbounded region; and
discrete transitions going from F -locations to F -locations or the opposite, has to be fired
from a punctual region, or from the unbounded region after a positive reward;

– π ends up in accepting locations with a constant pointed region of the form ((k, k+1), –•)
with k an integer;

In the same way, we also obtain the corresponding corollary.

Corollary 6.2. Given a reward-converging lasso run π inAcp, whose cycle-free part is pref of length
n and whose cycle is c of length n′, it is decidable in O(n + n′) operations, whether there exists a
Zeno run % such that π is the dilatation of % and freqA(%) = Rat(π).

6.3.3 Proof of Theorem 6.1

Using Propositions 6.1 and 6.4, and Lemmas 6.1 and 6.2, let us briefly explain how we derive Theo-
rem 6.1. For each SCC C of the corner-point abstraction Acp, the bounds of the set of frequencies of
runs whose contraction ends up in C can be computed thanks to the above results. Furthermore we
can also decide whether these bounds can be obtained by a real run in A. The result for the global
automaton follows.

Proof of Theorem 6.1. Let us detail the steps to compute inf(Freq(A)) and to decide whether it is
realized by a run.

• Computing rcycle, the minimal ratio of a simple reward diverging cycle in Acp;

• Computing rprefix, the minimal ratio of a cycle-free prefix ending in a state of a reward-converging
cycle;

• If rcycle ≥ rprefix,

– then inf(Freq(A)) = rcycle and it is reached;

146

SET OF FREQUENCIES IN A

– else inf(Freq(A)) = rprefix and it is reached if and only if it is reached by a run whose
contraction is a lasso around a simple cycle
(and one can decide whether it is the case using Lemma 6.1).

Let us now prove that this approach is correct.
First of all, if there is no reward-converging (simple) cycle inAcp, then all runs inAcp are reward-

diverging. For each run π, there exists a non-Zeno run % in A with Rat(π) = freqA(%), thanks to
Proposition 6.2. In this case, Lemma 6.4 allows us to conclude.

Assume now that Acp contains a reward-converging cycle, and let Src be the set of states in Acp
that belong to a reward-converging cycle. The set S of cycle-free finite runs inAcp ending in a state of
Src is finite and therefore contains a run πprefix with minimal ratio rprefix. The infimum r∗ of the ratios
of runs of Acp is thus min(rprefix, rcycle) where rcycle is the minimal ratio of reward-diverging simple
cycles inAcp. Moreover, it is also the infimum of the frequencies of runs ofA by Propositions 6.1, 6.2
and 6.3.

This bound is reached by a non-Zeno run ofA whose contraction ends up staying in C if and only
if rcycle = r∗.

Let us now assume that rcycle > r∗. The infimum may be reached only by a Zeno run. Let
us prove that if a Zeno run % reaches the bound, then there exists a run %′ reaching the bound and
whose contraction is a reward-converging lasso. In this case, the contraction of % is of ratio rprefix.
It is reward-converging, otherwise rcycle > r∗ would not hold. For the same reasons as in the proof
of Lemma 6.1, it ends in non-accepting locations with a constant pointed region of the form ((k, k +
1), –•). Hence, there exists a run %′′ reaching inf(Freq(A)) and whose contraction ends up iterating
infinitely a simple cycle with states of the form (`, (k, k + 1), –•) with ` ∈ F . Let us now consider
the largest prefix this contraction such that the corresponding suffix is a lasso with only such states.
This prefix has ratio rprefix and it cannot iterate a reward-diverging cycle, because the ratio of the same
prefix without the iteration of this cycle would be strictly smaller than rprefix which is impossible.
Let us consider the run π as the lasso obtained by removing all the iterations of cycles from the
contraction that we consider. This run has ratio rprefix because removed cycles have only rewards 0.
Let us prove that it is a contraction and that there exists a run %′ whose contraction is π and such that
freqA(%′) = rprefix.

To do so, we are going to use the proof of Lemma 6.1. Let us recall the conditions for a run of
Acp to be a contraction:

• from each state of π of the form (`, (i, i + 1), •–) where ` /∈ F , π follows an idling transition
to (`, (i, i+ 1), –•);

• after each move (`, (i, i+ 1), •–)
1/1−−→ (`, (i, i+ 1), –•) where ` ∈ F , π reaches (`, {i+ 1}, •)

by an idling transition.

They cannot be satisfied thanks to additional reward-converging cycles. Hence, by construction of π
from a contraction, π is a contraction. Then, recall the condition over the prefix of a contraction to
have a run in A with a frequency equal to its ratio:

1. discrete transitions with resets go out of punctual regions or of the unbounded region;

2. discrete transitions going from F -locations to F -locations or the opposite, has to be fired from
a punctual region, or from the unbounded region after a positive reward.

Adding some cycles does not help to satisfy these conditions, therefore there exists a run %′ whose
contraction is π and such that freqA(%′) = rprefix.

147

FREQUENCIES IN ONE-CLOCK TIMED AUTOMATA

Complexity In the corner-point abstraction, one can guess, in a non-deterministic way, either a
minimal reward-diverging cycle, or a reward-converging lasso checking on-the-fly whether it is a
contraction and whether its ratio is realizable. The size of the corner-point abstraction is linear in
the size of the timed automaton when it has a single clock. Then, deciding whether there exists
neither a reward-diverging cycle, nor a reward-converging lasso, whose ratio is smaller, is in co-
NLOGSPACE. Now, since NLOGSPACE=co-NLOGSPACE, computing the bound inf(Freq(A)) and
deciding whether it is realized, can be done, in a non-deterministic way, in logarithmic space. Finally,
the same reasoning holds for sup(Freq(A)). �

Conclusion

We proved that the bounds of the set of the frequencies in a timed automaton with only one clock
are the same as the bounds of the set of ratios in the corner-point abstraction, which can easily be
computed. Furthermore, the set of frequencies of non-Zeno runs is equal to the set of ratios of reward-
diverging runs, which is a finite union of intervals. Zeno runs can strongly alter the form of the set of
frequencies, but the bounds are always the same as for the set of ratios in the corner-point abstraction,
and one can decide if they are realized.

The link we established between the timed automaton and its corner-point abstraction differs in
several aspects from what has been established in the general framework of double-priced timed au-
tomata in [BBL08]. First, a result similar to Proposition 6.1 was proven, but ours is more constructive.
More precisely, the runs π and π′ were not necessarily in Projcp(%), and more importantly, it heav-
ily relied on the reward-diverging hypothesis. Then the result which is comparable to Theorem 6.1
in [BBL08] is weaker, as there is no way to decide whether the bounds are realizable or not, and
zenoness is not treated.

Along this chapter, we illustrated the limits of our techniques, by exhibiting counter-examples with
two clocks. These example timed automata share a common aspect: they have convergence phenom-
ena along a cycle. Cycles without such convergences are called forgetful and can be detected [BA11].
In the next chapter, we prove that, under the assumption that cycles are forgetful and that the time
diverges, the set of frequencies in a timed automaton with several clocks is equal to the set of ratios in
its corner-point abstraction.

148

Chapter 7

Frequencies in Forgetful Timed
Automata

Introduction

A quantitative semantics for infinite timed words based on the notion of frequency has been introduced
in Chapter 5. In Chapter 6, we presented how lower and upper bounds of the set of frequencies of
one-clock timed automata can be computed using the corner-point abstraction, a refinement of the
classical region abstraction, introduced in [BBL08]. Moreover, we showed that the realizability of
these bounds is decidable, all this with NLOGSPACE complexity.

The techniques from Chapter 6 do not extend to timed automata with several clocks, and all
counterexamples presented along the last chapter rely on some phenomenon of convergence between
clocks along cycles. Beyond zenoness (when time converges along a run), other convergence phe-
nomena between clocks were first discussed in [CHR02] in the context of control problems. Similarly
to zenoness, these convergences correspond to behaviors that are unrealistic from an implementability
point of view. A procedure to detect cycles with no such convergences (called forgetful cycles) has
been recently introduced in [BA11]. This notion of forgetfulness was used to characterize timed lan-
guages with a non-degenerate entropy. An alternative notion of forgetfulness using the corner-point
abstraction was also proposed in Chapter 5 and compared with the initial notion. Recall that in our
definition, a cycle is said to be forgetful if its projection in the corner-point abstraction is strongly
connected.

In this chapter, we naturally propose to investigate how forgetfulness can be exploited to compute
frequencies. First, we show that forgetfulness of a cycle in a one-clock timed automaton is equivalent
to not forcing the convergence of the clock, that is the clock is reset or not bounded. Note however
that forgetfulness does not imply that all runs are non-Zeno. Under the assumption of forgetfulness,
the set of frequencies for one-clock timed automata can be exactly computed, using the corner-point
abstraction. Then, we show that in forgetful timed automata with several clocks, in which time di-
verges necessarily along a run, the set of frequencies can also be computed thanks to the corner-point
abstraction. On the one hand, the result for timed automata for which all cycles are forgetful (strong
forgetfulness) is as constructive as Proposition 6.2 in Chapter 6 over one-clock timed automata. On
the other hand, to relax strong forgetfulness and consider forgetful and aperiodic timed automata, that
is timed automata whose simple cycles and their powers are forgetful, the proof relies on a set of
canonical runs whose set of frequencies agrees with the set of all frequencies in the timed automaton.

The chapter is structured as follows. In Section 7.1, we propose a characterizations of forget-

149

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

fulness in one-clock timed automata, and provide an expression for the set of frequencies for this
restricted class. Then, Section 7.2 deals with timed automata with several clocks and explains how
forgetfulness may be used to ensure that, when time diverges, the set of frequencies of a timed au-
tomaton and the set of ratios in its corner-point abstraction are equal.

7.1 Frequencies in one-clock forgetful timed automata

In this section, we improve on the results of Chapter 6 for the class of forgetful one-clock timed
automata. Thanks to forgetfulness, we consider timed automata without cycles forcing Zeno behavior
(e.g. a loop without reset and with the guard x < 1) which are not forgetful but we deal with cycles
allowing Zeno behaviors which are forgetful. For this class of timed automata, we give an expression
of the set of frequencies, whereas in Chapter 6 we dealt with all one-clock timed automata but only
computing the bounds of the set of frequencies. Moreover, the class of forgetful one-clock timed
automata is strictly larger than the class of strongly non-Zeno one-clock timed automata for which we
gave an expression of the set of frequencies in Chapter 6.

One-clock timed automata have simpler clock behaviors than the general model. In fact, having
a single clock in a timed automaton is quite close to forgetfulness in the sense that each time the clock
is reset, the timed automaton forgets all the previous timing information. In this section, we present
an equivalent characterization of forgetfulness in the case of one-clock timed automata, and we show
the equivalence between forgetfulness and strong forgetfulness. Last, we propose an expression for
the set of frequencies of forgetful one-clock timed automata.

In a one-clock timed automaton, a reset of the clock along a cycle is linked to forgetfulness.
Indeed, the previous delays are forgotten at each reset of the clock, they do not impact on the current
state and thus on the future states. The following lemma states the precise characterization of forgetful
cycles inspired by this observation.

Proposition 7.1. Let C be a cycle of a one-clock timed automaton. Then, C is forgetful if and only if
the clock is reset or not bounded along C.

Proof of Proposition 7.1. Let A be a timed automaton with a single clock x:

⇒: Let us prove the contrapositive of the left-to-right implication. Let C be a cycle in which x is
bounded and not reset. Then, any region guard r along C is bounded and not punctual (only
positive delays are allowed, see the explanations of the splitting in regions Section 5.1). Let α
and α + 1 be the two corners of r. There is no reset along C hence α is not reachable from
α+ 1 in Proj(C). Thus, Proj(C) is not strongly connected and the cycle C is not forgetful.

⇐: Let us prove the right-to-left implication by inspecting two cases. Let C be a cycle and let us
consider two cases:

– if x is not bounded, then, all the corners are ⊥. The projection of C is thus trivially
strongly connected, hence C is forgetful;

– if x is reset, then, let s = (`, {0}, 0) be a state of Proj(C). From s, all the states of Proj(C)
are reachable, because there is a single clock (regions have at most two corners, and the
second corner can be reached from the first one by one idling transition). Moreover, s is
reached at each iteration of the cycle C. Hence, the projection of C is strongly connected,
thus C is forgetful. �

150

FREQUENCIES IN ONE-CLOCK FORGETFUL TIMED AUTOMATA

In fact, Proposition 7.1 implies that any cycle obtained by concatenation of forgetful cycles in a
one-clock timed automaton is forgetful. Indeed, if the clock is reset or not bounded along each cycle
of the concatenation, it is clearly the case for the concatenation itself.

Corollary 7.1. A one-clock timed automaton is forgetful iff it is strongly forgetful.

Recall that, as illustrated by the timed automaton in Figure 5.9 on page 130 which is not strongly
forgetful, Corollary 7.1 does not hold for timed automata with several clocks.

Let us now consider the set of frequencies in a one-clock timed automaton. By Proposition 6.4,
if there are only non-Zeno runs in a timed automaton, then the set of frequencies equals to the set
of ratios in the corner-point. Firstly, the particular case where a timed automaton has a reachable
reward-converging cycle in its corner-point containing both accepting and non-accepting locations
(called mixed cycle) is easy to treat as stated in the following proposition.

Proposition 7.2. Let A be a forgetful one-clock timed automaton. If there is a mixed reward-
converging cycle in its corner-point Acp, then FreqZ(A) =]0, 1[and FreqnZ(A) = [0, 1].

Proof of Proposition 7.2. The considered cycle belongs to the projection of a cycle C which is for-
getful, then by Proposition 7.1, either x is reset or x is not bounded along C. As the guards of C are
some regions and there is a reward-converging cycle in Proj(C), either x is reset and all the guards are
0 < x < 1 (there is no guard x = 0 because zero delays are forbidden) or all the guards are x > M
(if x is not bounded). Then, the accumulated delay can be as small as necessary, but a delay close to
1 can be elapsed at each iteration in both cases. Moreover, this delay can be elapsed in any location
along C. As a consequence, by alternating delays in accepting and non-accepting locations with the
appropriate proportions before ending by a very small accumulated delay, we can construct a Zeno
run with any frequency in]0, 1[.

For the same reason, two runs respectively maximizing and minimizing the ratio along C (dilating
and contracting) are reward-diverging and are respectively of frequency 1 and 0. Note that if all guards
are x > M , to build such two runs, we can consider runs where the reward elapsed in each state is
bounded by one, otherwise the dilatation (or contraction) leads to unbounded rewards in a single state
and thus prevents the construction of the next discrete transition. Thanks to Proposition 6.4 which
expresses the set of frequencies of non-Zeno runs, the set of frequencies FreqnZ(A) is equal to [0, 1].
To conclude, note that frequencies 0 and 1 are not possible for Zeno runs because zero delays are
forbidden, cycles in Proj(C) are mixed and no delay can be neglected in Zeno runs. �

Now, for the general case, it is possible to consider only timed automata whose corner-point
abstraction do not have such cycles in their corner-point. Then, all the reward-converging cycles in
the corner-point abstractions have either only accepting states, or only non-accepting states. Such
cycles are said to respectively be accepting and non-accepting. We can now give a general expression
for the set of frequencies of a forgetful one-clock timed automaton.

For readability, let us define some notations. Given C a cycle of A having a reward-converging
cycle in its projection, we write p(C) for the set of ratios of cycle-free prefixes ending in reward-
converging cycles of Proj(C) and c(C) for the set of ratios of co-reachable reward-diverging cycles.
By convention, we let max(∅) = −1 and min(∅) = 2. Then, we define M(C) = max(p(C) ∪ c(C))
and m(C) = min(p(C) ∪ c(C)),

M(Acp) = max{M(C) | C accepting cycle of A with a reward-converging cycle in Proj(C)} and

151

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

m(Acp) = min{m(C) | C non-accepting cycle of A with a reward-converging cycle in Proj(C)}.

Moreover, a cycle is said accepting (resp. non-accepting) if it contains only accepting (resp.
non-accepting) locations.

Theorem 7.1. LetA be a forgetful one-clock timed automaton. If there is a mixed reward-converging
cycle inAcp, then FreqZ(A) =]0, 1[and FreqnZ(A) = [0, 1]. Otherwise: Freq(A) = Ratr−d(Acp)∪[
0,M(Acp)

[
∪
]
m(Acp), 1

]
.

Proof. The first part of Theorem 7.1 is established in Proposition 7.2, let us now assume that there
is no mixed reward-converging cycles in Acp. By Proposition 6.4, for non-Zeno runs: FreqnZ(A) =
Ratr−d(Acp). The rest of the proof is based on the following lemma dealing with accepting and
non-accepting reward-converging cycles.

Lemma 7.1. Let C be a cycle of a one-clock forgetful timed automaton A:

• If Proj(C) contains a non-accepting reward-converging cycle, then the set of frequencies of the
infinite runs of A ending in C is

[
0,M(C)

[
.

• If Proj(C) contains an accepting reward-converging cycle , then the set of frequencies of the
infinite runs of A ending in C is

]
m(C), 1

]
.

Proof of Lemma 7.1. Let C be a cycle such that Proj(C) contains a non-accepting reward-converging
cycle. C being forgetful and zero delays being forbidden, there must be a reward-diverging cycle in
Proj(C). In particular, there are some non-Zeno runs ending in C and they all have frequency 0. In
the sequel of the proof, we then consider only Zeno runs. Let % be a Zeno run in A ending in C.
The cycle C is forgetful, hence Proj(C) is strongly connected. Let %0 be a prefix of % having a run
in its projection which ends in a state (`, r, α) of a reward-converging cycle in Proj(C). Note that,
in this case, any state (`, r, α′) belongs to a reward-converging cycle of Proj(C) too. In particular,
the dilatation of %0, which is the run in Proj(%0) which maximizes the ratio, ends in such a state.
The dilatation thus has a ratio smaller than M(C). As a consequence of Proposition 6.1, %0 has a
frequency smaller than M(C). The locations of C are non-accepting, hence the frequency of % is
strictly smaller than M(C) too.

Moreover for any ε > 0, a prefix πε0 ending in a reward-converging cycle of Proj(C) and such
that M(C)− ε < Rat(πε0) ≤ M(C) can be built by definition of M(C). Then, π0 can be mimicked
up to ε by a prefix %ε0 (Proposition 6.3) and then this prefix can be prolongated with an accumulated
delay smaller than ε to obtain an infinite run %ε ending in C and having a projection ending in a
reward-converging cycle of Proj(C). Such a run can thus be constructed with a frequency as close as
necessary to M(C). As a consequence, the value M(C) is the strict upper bound of the frequencies
of infinite runs ending in C.

Finally, we can construct an infinite run with any frequency in
[
0,M(C)

[
by iterating C as much

as necessary with delays close to 1 (C is forgetful hence any delay 0 < d < 1 is possible at each
iteration) in order to decrease the frequency as much as necessary.

The second item of the Lemma 7.1 can be proved in the same way. �

Back to the proof of the second part of Theorem 7.1, the inclusion from right to left is straightfor-
ward from the non-Zeno case and Lemma 7.1.

Thanks to the equality in the non-Zeno case, the inclusion from left to right is only needed for the
subset FreqZ(A). Let thus % be a Zeno run. It can be projected on a reward-converging run in the

152

EXTENSION TO SEVERAL CLOCK FORGETFUL TIMED AUTOMATA

`0
`1

`′1

`2

x=1,a,{x}x=100,a,{x}

x=100,a,{x}x=1,a,{x}

0<x<1,a

Figure 7.1: A non-forgetful counterexample to Theorem 7.1.

corner-point. This projection necessarily ends in a strongly connected subgraphG of the corner-point,
because cycles are forgetful. Moreover, this subgraph has zero rewards and contains either (i) only
accepting locations, or (ii) only non-accepting locations, because we assumed that there is no mixed
cycle in the corner-point abstraction.

We study the case (i), the case (ii) is symmetric. As shown in the proof of Lemma 7.1, the prefix
of % corresponding to the prefix of the projection before the infinite suffix in the subgraph G has a
frequency smaller than M(C) for a cycle C having a reward-converging projection. To conclude,
the frequency of % is smaller than the one of the prefix because all the locations of the suffix are
non-accepting. �

Remark 7.1. The above theorem yields an expression of the set of frequencies which can be computed
in polynomial time, whereas without the forgetfulness assumption, we only are able to compute the
bounds of the set. Nevertheless, the complexity to compute the bounds of the set of frequencies is not
improved with respect to Theorem 6.1, which states that, for one-clock timed automata, they can be
computed by a non-deterministic procedure in logarithmic space.

A non-forgetful counterexample to Theorem 7.1. Note that if the timed automaton is not forgetful,
the form of the set of frequencies can be very different from the expression given in Theorem 7.1.
Figure 7.1 gives an example of non-forgetful timed automaton such that Freq(A) =

]
1

101 ,
2

102

[
∪]

100
101 ,

101
102

[
. There is no reward-diverging run in Acp, M(Acp) = −1 because there is no accepting

reward-converging cycle in Acp and m(Acp) = 1
101 , hence the expected set of frequencies would be

] 1
101 , 1]. The difference with forgetful timed automata is that the accumulated delays in `2 cannot

diverge, therefore it is not possible to increase the frequency as much as necessary. In particular,
there is no infinite run of frequency 1. More generally, this example illustrates a simple manner to
obtain, for the set of frequencies, any finite union of open intervals included in [0, 1]. Nevertheless,
Theorem 6.1 in Section 6.3 whose hypothesis and conclusion are weaker applies to such examples.

7.2 Extension to several clock forgetful timed automata

There is a real complexity gap between one-clock timed automata and timed automata with sev-
eral clocks. For example, in [LMS04], the reachability problem for one-clock timed automata is
proved to be in NLOGSPACE-complete, whereas it becomes PSPACE-complete with two clocks or
more [AD94, FJ13]. As an other example, the language inclusion problem which is undecidable in
the general case [AD94], becomes decidable with at most one clock [OW04].

In this section, we use forgetfulness and time divergence to compute the set of frequencies in
timed automata with several clocks. Note that these assumptions are strong but can be justified by
implementability concerns.

153

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

We aim to find some reasonable assumptions to obtain a class of timed automata whose sets
of frequencies are exactly sets of ratios of their corner-point abstractions. More precisely, we want
to extend the result FreqnZ(A) = Ratr−d(Acp) of Chapter 6, from one-clock timed automata to
timed automata with several clocks. We do not want to complexify our problem dealing with Zeno
runs as we did in one-clock timed automata for which the Zeno case is already non-trivial. As a
consequence, we first assume that timed automata are strongly non-Zeno [AMPS98], that is, in every
cycle there is one clock which is reset and lower guarded by a positive constant. This implies that
there are no reward-converging runs in its corner-point. In [BBL08], double-priced timed automata
are assumed to be strong reward-diverging which also implies that there are no reward-converging
runs in the corner-point abstraction. For one-clock timed automata, strong non-zenoness is strictly
stronger than forgetfulness and implies that Freq(A) = FreqnZ(A) = Ratr−d(Acp). Unfortunately,
this assumption is not sufficient for timed automata with several clocks. For example, the timed
automaton in Figure 6.7(a) in Section 6.2, is strongly non-Zeno and such that Freq(A) =]0, 1] 6=
{0} ∪ {1} = Rat(Acp). In fact, this timed automaton is a typical example of non-forgetful timed
automaton. Delays in `1 have to be larger and larger along cycles, which ensures that frequency 0
cannot be reached in A. On the contrary, in Acp, either the accumulated reward in `1 is always 0
(ratio 0), or there is one idling transition with reward 1 from a state ofAcp with location `1, and in the
future, there always are such transitions in states of the form (`1, R, α) (ratio 1). Therefore, except
over one-clock timed automata, forgetfulness and strong non-zenoness are not comparable.

7.2.1 Inclusion of the set of frequencies in the set of ratios

The main goal of this chapter is to prove the inclusion of the set of ratios in the corner-point in the set
of frequencies in the timed automaton. This section is devoted to prove the other inclusion. This is
based on a proposition from [BBL08] and will be a first illustration of the utility of forgetfulness to
compute the set of frequencies in timed automata with several clocks.

Theorem 7.2. Let A be a strongly non-Zeno and forgetful timed automaton. Then Freq(A) ⊆
Rat(Acp).

Proof. In this proof, we use the following proposition proved in [BBL08].

Proposition A ([BBL08]). Let A be a strongly non-Zeno timed automaton, and let % be an infinite
run in A. Then, the infinite run π consisting in the infinite iteration of the cycle of maximal ratio in
Acp is such that Rat(π) ≥ freqA(%).

Symmetrically, the infinite run consisting in an infinite iteration of the cycle of minimal ratio in
Acp has a ratio smaller than the frequency of any infinite runs in A.

Let Si (i ∈ I) be an SCC of Acp. Writing mi (resp. Mi) the minimum (resp. maximum) of
the ratios of cycles in Si, we have Ratr−d(Acp) =

⋃
I [mi,Mi] (Theorem 5.1). Also, since A is

strongly non-Zeno Rat(Acp) = Ratr−d(Acp). Hence using Proposition A, if m = minI mi and
M = maxIMi, then Freq(A) ⊆ [m,M].

Let us first consider the case where Acp has a single strongly connected component (SCC for
short). The set of ratios of Acp is thus the interval [m,M] where m and M are respectively the
minimal and maximal ratios for a cycle of Acp. Therefore, the set of frequencies of A is a subset of
the set of ratios in Acp.

The general case with several SCC is more complex because Rat(Acp) is not convex a priori. The
key is forgetfulness. Let % be an infinite run ofA. Let π and π′ be two infinite runs ofAcp in Proj(%),
and S and S′ the respective SCC of Acp in which they end. The run % being infinite, there is a simple

154

EXTENSION TO SEVERAL CLOCK FORGETFUL TIMED AUTOMATA

cycle ofA which is visited infinitely often. This cycle is forgetful by assumption, hence its projection
is strongly connected and S = S′. Now, let us consider B the sub-automaton of A containing only
the SCC in which % ends. The prefix of % can be neglected in the computation of the frequency of %,
since A is strongly non-Zeno. Hence freqA(%) ∈ Rat(Bcp) ⊆ Rat(Acp). �

In the sequel, we see how strongly non-zenoness and forgetfulness can be useful to obtain the
inclusion Rat(Acp) ⊆ Freq(A). The problem is not trivial even under these assumptions and the
proof techniques could certainly be interesting in other contexts. This section allows to understand
several subtleties of forgetfulness.

7.2.2 Techniques to compute the frequencies

In this section, we explain the technical aspects which allow to deal with timed automata with several
clocks. To begin with basis, there are two important lemmas respectively due to [BBL08] and [Pur00].

The following lemma, due to [BBL08], establishes that if a valuation v is ε-close to a corner α,
any transition (`, R, α) → (`′, R′, α′) of the corner-point abstraction can be mimicked in A by a
transition (`, v)→ (`′, v′) in the timed automaton, with v′ ε-close to the corner α′.

Let us define some notations to formalize the distance to a corner.

µv(x) = min{|v(x)− p| | p ∈ N},

νv(x, y) = min{|v(x)− v(y)− p| | p ∈ N},

δ(v) = max
x,y∈X

(max({µv(x)} ∪ {νv(x, y)})).

The function δ, thus associate with each valuation, the distance to the closest corner.

Lemma 7.2 ([BBL08]). Consider a transition (`, R, α)→ (`′, R′, α′) inAcp, take a valuation v ∈ R
such that δ(v) < ε and |v(x) − α(x)| = µv(x). There exists a valuation v′ ∈ R′ such that (`, v) →
(`′, v′) in A, δ(v′) < ε and |v′(x)− α′(x)| = µv′(x).

In [BBL08], clocks are bounded, hence unbounded regions are not considered. Nevertheless, the
same result holds for unbounded regions, considering abstract valuations instead of the corner in the
same way as in the proof of Lemma C. Lemma 7.2 thus implies by induction on the length of the run,
that any run in Acp can be mimicked in A up to any ε > 0. As a consequence, respective lower and
upper bounds of the sets of ratios and frequencies are equal, but as seen with the timed automaton in
Figure 6.7(a), Freq(A) can be very different from Rat(Acp) when A is not forgetful.

On the other hand, Lemma 7.3 expresses the preservation of barycentric relations between valua-
tions along transitions.

Lemma 7.3 ([Pur00]). Let (`, g, a,X ′, `′) be an edge of A and v, v′, w and w′ be some valuations of
X such that (`, v) → (`′, v′) and (`, w) → (`′, w′) with R(v) = R(w) and R(v′) = R(w′), then for
any λ ∈ [0, 1] (`, λv + (1− λ)w)→ (`′, λv′ + (1− λ)w′).

Naturally, this lemma can be extended to finite sequences of edges by induction and, in particular,
to cycles.

The combination of both lemmas helps us to prove that if along a given cycle one can go from
every corner to a fixed corner α, then along this cycle one can go as close to α as necessary inA. This
way of reducing the distance to corners is the key to deal with timed automata with several clocks.

155

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

Indeed, given a run π of the corner-point abstraction, it allows to build a run % mimicking it more and
more precisely, i.e. for all ε there is a suffix of % which mimics the corresponding suffix of π up to
ε. Moreover, when time diverges (non-zenoness), if an infinite run % in A mimics an infinite run π of
Acp up to ε converging to 0 along %, then freqA(%) = Rat(π).

Lemma 7.4. Let A be a timed automaton and % = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ · · · τn−1,an−1−−−−−−→
(`0, vn) with r := R(v0) = R(vn) a bounded region, be a finite run of A. Given a corner αn of the
region r, if for any (`0, r, α) there is a finite run from (`0, r, α) to (`0, r, αn) in Proj(%), then for all

ε > 0, there exists %′ = (`0, v0)
τ ′0,a0−−−→ (`1, v

′
1) · · ·

τ ′n−1,an−1−−−−−−→ (`0, v
′
n) such that Proj(%′) = Proj(%)

and ||v′n − αn|| < ε.

Proof of Lemma 7.4. Let us start by fixing, for all corners α, a valuation vεα in r which is ε-close to
α. Thanks to these valuations, we then define a barycentric expression for v0. Let Ωr be the set of
corners of r. As the closure of r is the convex hull of Ωr (for the usual topology of R|X|), there exists
(vεα ∈ r)α∈Ωr and (λα ∈ [0, 1])α∈Ωr such that

∑
α∈Ωr

λα = 1, v0 =
∑

α∈Ωr
λαv

ε
α and ||vεα−α|| < ε.

By assumptions, there are some paths in Proj(%) going from each α to αn. Thanks to Lemma 7.2,
there are some finite runs from each of our valuations vεα very close to the corner α to some valuation
vεα,αn very close to a common corner αn. Formally, there exists (vεα,αn ∈ r)α∈Ωr and some finite runs
(%α)α∈Ωr from (`0, v

ε
α) to (`0, v

ε
α,αn) in A with ||vεα,αn − αn|| < ε. Then, by Lemma 7.3, there is a

finite run %′ from (`0, v0) to the state with location `0 and the valuation equal to the barycenter of the
valuations vεα,αn which is very close to αn by the triangle inequality. Formally, there is a finite run %′

from (`0, v0 =
∑

α∈Ωr
λαv

ε
α) to (`0,

∑
α∈Ωr

λαv
ε
α,αn). To conclude, %′ is as needed because, by the

triangle inequality, ||
∑

α∈Ωr
λαv

ε
α,αn − αn|| ≤

∑
α∈Ωr

λα||vεα,αn − αn|| < ε. �

Remark that we assumed that region r is bounded. Lemma 7.4 does not hold, replacing corners by
abstract valuations, if r is unbounded. Indeed, if along the path, there is a clock x which is reset and
guarded by x = 1 at each transition and a clock y which is unbounded, then the distance between y
and the abstract valuation cannot decreases. We are going to see in the sequel, that it does not prevent
our reasoning to hold because intuitively, only delays impact on frequencies. We can thus reason
without considering clock y, in this case, because it does not constraint delays.

To use Lemma 7.4, we need to find a cycle in Acp which allows, intuitively, to synchronize all
the corners of a region to a common one. Indeed, each run in Acp corresponds to a run in A, the
existence of % is not a real constraint. Moreover, Lemma 7.4 does not require forgetfulness of timed
automata. The following lemma illustrates how forgetfulness can help to use Lemma 7.4. More
precisely, it establishes that given a long enough sequence of cycles such that the concatenation of
any subsequence of cycle is forgetful, then one can go from any corner to any corner following the
sequence of cycle.

Lemma 7.5. Let A be a timed automaton, X its set of clocks and a sequence (ci)1≤i≤K with
K = 2|X|+1, of forgetful cycles containing the location ` of A such that all the cycles obtained
by concatenation of the cycles of a subsequence (ck)i≤k≤j with 1 ≤ i and j ≤ K, are forgetful.
Then for all pairs of corners (α, α′) of the region R associated to `, there is a finite run of the form
(`, R, α)

π1−→ (`, R, α1)
π2−→ · · · (`, R, αK−1)

πK−−→ (`, R, α′) such that for all indices i, πi corresponds
to one iteration of ci.

Proof of Lemma 7.5. Abusing notations we write π ∈ Proj(c) for "π corresponds to one iteration of
c". Consider the subset construction with s0 = {(`, R, α)} and si+1 = {(`, R, β′) | ∃(`, R, β) ∈

si,∃π′i ∈ Proj(ci), s.t. (`, R, β)
π′i−→ (`, R, β′)}.

156

EXTENSION TO SEVERAL CLOCK FORGETFUL TIMED AUTOMATA

First, there are at most |X| + 1 corners in R, hence there are at most K = 2|X|+1 subsets of
(`, R, all) := {(`, R, α) |α corner of R}. Second, by forgetfulness of the ci’s, if si = (`, R, all) then
for all j > i, sj = (`, R, all). Third, there is no other cycles in the subset construction. Indeed, if
there exist indices i < j such that si = sj 6= (`, R, all) := {(`, R, α) |α corner of R} then the cycle
obtained by concatenation of cycles ci+1, · · · , cj is not forgetful, which contradicts strong forgetful-
ness.

As a consequence, the subset construction loops in (`, R, all) forever after a cycle-free prefix
whose length is smaller than K. Hence, there is a finite run of the form (`, R, α)

π1−→ (`, R, α1)
π2−→

· · · (`, R, αK−1)
πK−−→ (`, R, α′) such that for all indices i, π ∈ Proj(ci). �

In the next sections we use these two last lemmas to prove that strong non-zenoness and strong
forgetfulness are sufficient to ensure the existence of such synchronizing cycles along infinite runs in
the corner-point abstraction that we want to mimic them in A.

7.2.3 Inclusion of the set of ratios in the set of frequencies

We first consider the case of strongly forgetful timed automata. Thanks to Lemma 7.4 and by ob-
serving the consequences of forgetfulness of all the cycles in a timed automaton, we obtain a theorem
which is as constructive as Proposition 6.2 in Chapter 6 for one-clock timed automata.

Theorem 7.3. Let A be a strongly non-Zeno strongly forgetful timed automaton. Then, for every
infinite run π in the corner-point ofA, there exists an infinite run %π inA such that π ∈ Proj(%π) and
freqA(%π) = Rat(π).

The idea is to prove, for every run π in Acp, the existence of synchronizing cycles infinitely often
along π which allow to mimic it up to an ε converging to 0.

Proof. Along the infinite run π of Acp, there is a pair (`, R) which appears infinitely often, possibly
with different corners. Let (`, R, αi)i∈N be a sequence of the occurrences of (`, R) and (πi)i∈N the
sequence of factors of π leading respectively from (`, R, αi) to (`, R, αi+1). Each πi corresponds to
a forgetful cycle ci in A hence by Lemma 7.5, for all pairs (α, α′) of corners of the region R, there is

a finite run of the form (`, R, α)
π′1−→ (`, R, α1)

π′2−→ · · · (`, R, αK−1)
π′K−−→ (`, R, α′) with K = 2|X|+1

and such that for all indices i, πi corresponds to one iteration of ci. In particular, this finite run belongs
to the projections of exactly the same runs as π1 · π2 · · ·πK . As a consequence, for any finite run
% = (`, v0)

τ0,a0−−−→ (`1, v1)
τ1,a1−−−→ · · · τn−1,an−1−−−−−−→ (`, vn) with R(v0) = R(vn) = R and such that

π0.π1 · · ·πK ∈ Proj(%), for any corner βn of the region R and for all (`, R, α) there is a finite run
from (`, R, α) to (`, R, βn) in Proj(%).

Let first assume that region R is bounded. Hence, Lemma 7.4 can be applied to such finite runs.
Then, for any ε and given %i a mimicking of π until (`, R, αi), Lemma 7.4 ensures the existence of a
extension of %i to %i+K mimicking π until (`, R, αi+K), such that ||v − αi+K || < ε where v is the
last valuation of %i+K . In words, it is possible to define some finite factors along π which allow to go
as close as necessary from a corner of π while mimicking %. Out of these factors, the distance to the
corners of π can be preserved thanks to Lemma 7.2. To conclude, these factors can be picked infinitely
often to allow the convergence of the distance to the corner of π to 0, but as rarely as necessary to be
neglected in the computation of the frequency.

Now, if a clock y is not bounded in R and it is reset in an infinite number of cycle ci’s. Then,
the construction of % can be done ignoring y when it is unbounded. As discussed after Lemma 7.4,

157

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

the distance of y to its abstract value can be not decreased arriving in R. Nevertheless, when y will
be reset, then its distance to its abstract value is 0. As a consequence, the distance between the
valuation and the corner is defined only by the other clocks and y can come back in the process of the
construction. Thus y does not prevent the distance to the corner to decrease in the long term.

Finally, if a clock is only finitely reset, then one can consider a sequence of cycle after its last
reset, and this clock can be ignored forever. Indeed, only delays impact on the computation of the
frequency and this clock does not constraint them. �

Theorem 7.3 implies that the set of ratios Rat(Acp) is included in the set of frequencies Freq(A).
This implies, together with Theorem 7.2, that ifA is a strongly non-Zeno and strongly forgetful timed
automaton, then Freq(A) is equal to Rat(Acp). Then, Corollary 5.1 states that its bounds can be
computed in polynomial space.

Corollary 7.2. Let A be a strongly non-Zeno strongly forgetful timed automaton. Then, Freq(A) =
Rat(Acp) and its bounds can be computed in polynomial space.

Strong forgetfulness is a realistic assumption from an implementability point of view, but is not
satisfactory because of its difficulties to be checked. Indeed, checking if a cycle is forgetful can be
done in the corner-point abstraction, but there is an unbounded number of cycles in a timed automaton
and we do not know how to avoid to check them all. As a consequence, it is important to relax
this assumption. We did not succeed in proving that strong forgetfulness can be removed from the
hypotheses of Theorem 7.3. Nevertheless, the inclusion Rat(Acp) ⊆ Freq(A) still holds when strong
forgetfulness is replaced by forgetfulness and aperiodicity (forgetfulness of the powers of simple
cycles), both of which can be checked on the corner-point abstraction.

Theorem 7.4. LetA be a strongly non-Zeno, forgetful and aperiodic timed automaton. Then, we have
the following inclusion: Rat(Acp) ⊆ Freq(A).

Proof. We want to prove that for all rat ∈ Rat(Acp), there exists an infinite run πrat in Acp of ratio
rat and such that there exists an infinite run %π ofA with freqA(%π) = Rat(πrat) and πrat ∈ Proj(%π).

By Theorem 5.1, one knows an expression for the set of ratios of the corner-point abstraction:
Rat(Acp) =

⋃
Si∈SCC [mi,Mi], where mi (resp. Mi) is the minimum (resp. maximum) of the ratios

of cycles of the SCC Si of the corner-point.
Let i be the index of an SCC, and a rational number rat ∈ [mi,Mi]. Then, one can build an infinite

run πrat in Acp with ratio rat and ending in Si by alternating iterations of a cycle ci of ratio mi and
a cycle Ci of ratio Mi in Si with the suitable proportion. The prefix to go to ci and the finite run to
go from a cycle to the other are neglected in the computation of the ratio by multiplying the number
of iterations in both cycles at each step, by a common integer. If rat is an irrational number, there
exists an increasing sequence of rationals converging to it, and the same construction can be done by
following the successive proportions corresponding to the elements of the sequence, in the same way
as in the proof of Theorem 5.1.

πrat can be mimicked up to ε for any ε > 0 (Lemma 7.2). However this is not sufficient to ensure
that there exists a run %π of A with freqA(%π) = Rat(πrat) and πrat ∈ Proj(%π). Then, we extend in
πrat, the finite run πCi,ci to go from Ci to ci by a finite run πcKi with K = 2|X|+1 which iterates K
times ci in Acp. We thus want to prove that it allows to mimic πrat up to an ε converging to 0. This
finite extension has a constant length and will be neglected in the computation of the ratio in the same
way as πCi,ci even if it means to increase the numbers of iterations of Ci and ci at each step.

158

EXTENSION TO SEVERAL CLOCK FORGETFUL TIMED AUTOMATA

The cycle ci is in the projection of a cycle (simple or a concatenation of a single simple cycle)
ĉi. ĉi is forgetful and aperiodic by assumption (the concatenation of an aperiodic cycle is aperiodic),
that is all the concatenations of ĉi’s are forgetful. Then, thanks to Lemma 7.5, for all pairs of states
(`, R, α) and (`, R, α′) of Proj(ĉi), there is a run πα,α′ from (`, R, α) to (`, R, α′) corresponding to
2|X|+1 iterations of ĉi. In particular, πα,α′ and π

c2
|X|+1

i

belong to the projections of exactly the same

runs. As a consequence, for any finite run % = (`, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ · · · τn−1,an−1−−−−−−→ (`, vn)
iterating 2|X|+1 times ĉi, for any corner αn of the region R associated to ` and for all (`, R, α) there is
a finite run from (`, R, α) to (`, R, αn) in Proj(%). In other words, Lemma 7.4 can be applied to such
finite runs if R is bounded. Hence, building πrat in Acp as explain above and replacing the finite runs
πCi,ci to go from Ci to ci by the concatenation πCi,ciπc2|X|+1

i

, πrat can be mimicked up to a decreasing

ε each time that we go from Ci to ci.
Finally, if R in unbounded, unbounded clocks can be ignored in the same way as explained at the

end of the proof of Theorem 7.3 holds. �

We thus obtain the following result as a corollary of Theorems 7.2 and 7.4 and Corollary 5.1.

Corollary 7.3. Let A be a strongly non-Zeno, forgetful and aperiodic timed automaton. Then,
Freq(A) = Rat(Acp) and its bounds can be computed in polynomial space.

Strong forgetfulness is stronger than aperiodicity, hence Theorem 7.3 cannot help to establish this
equality in a more general case. However, note that Theorem 7.4 does not imply Theorem 7.3. In
Theorem 7.3, not only the inclusion Rat(Acp) ⊆ Freq(A) is established, but also for all infinite runs
π inAcp there exists an infinite run % inA with π ∈ Proj(%) and freqA(%) = Rat(π). In Theorem 7.4,
this is only proved for some infinite runs π of Acp.

7.2.4 Discussion about assumptions

As explained above, our will to relax the strong forgetfulness is due to the difficulties to check this
property. Strong forgetfulness clearly implies at once forgetfulness and aperiodicity, but a first open
question is whether the opposite implication is true. We conjecture that if there is an example of
forgetful aperiodic timed automata which is not strongly forgetful, then it has more than three clocks
which make the search more complex.

An other open question is whether the hypothesis of aperiodicity in Theorem 7.4 can be removed.
We use this hypothesis in the proof, but could not find examples of forgetful periodic timed automata
for which Theorem 7.4 does not hold. We built some examples of periodic timed automata as in
Figure 5.9, but periodic timed automata seem to be degenerated and in particular, based on punctual
guards which implies bijections between runs in the timed automaton and those in its corner-point
abstraction.

Conclusion

In this chapter, we used a notion of forgetfulness to extend the results about frequencies in timed
automata. On the one hand, thanks to forgetfulness, we can compute the set of frequencies in one-
clock timed automata, even with Zeno behaviors, whereas only the bounds of this set were computed
in Chapter 6. On the other hand, with forgetfulness and time-divergence as in [BBL08], we compute

159

FREQUENCIES IN FORGETFUL TIMED AUTOMATA

the set of frequencies in a class of timed automata with several clocks, whereas techniques of Chapter 6
were not applicable.

Our contribution can also be compared with that of [BBL08] presented in Chapter 5 on double
priced timed automata, that is, timed automata with costs and rewards. Indeed, frequencies are a
particular case of cost and reward functions. In [BBL08], either a run of minimal ratio or an optimal
family (i.e. ε-optimal runs for all ε > 0) is computed, whereas here, assuming forgetfulness, the
exact set of frequencies can be computed, not only the optimal ones. Our techniques might thus prove
useful for double priced timed automata and maybe more generally in other contexts.

In future work, we would like to investigate more deeply the difference between forgetfulness and
strong forgetfulness with the hope to extend Theorem 7.3. Moreover, Theorem 7.2 is less constructive
than the equivalent result for one-clock timed automata which uses notions of contraction and dilata-
tion of a run. It would be interesting to see if forgetfulness could help to extend these constructions
to timed automata with several clocks. Finally, our main tool presented in Lemma 7.4 can easily be
used for the scheduling problem in timed automata with costs and rewards studied in [BBL08]. Thus,
we can prove that in strongly non-Zeno forgetful timed automata, there always exists an infinite run
whose ratio is optimal. We hope that Lemma 7.4, which is fundamental, will be useful for other
problems for which the corner-point abstraction is suitable.

160

Chapter 8

Emptiness and Universality Problems in
Timed Automata with Frequency

Introduction

Earlier in this part, we introduced the notion of frequency as the proportion of time elapsed in ac-
cepting locations along a run. This allows us to define languages of timed automata, for example
with positive frequency or using thresholds. In Chapters 6 and 7, we presented techniques to compute
bounds of the set of frequencies in timed automata of two distinct classes. Our main motivation was
to study languages and more specifically two main questions: "is the language empty ?" and "is the
language universal?".

In this chapter, we draw the consequences of these results. The emptiness problem for timed
automata satisfying one of the restrictions, can easily be decided using the bounds of the set of fre-
quencies. Moreover, in the restricted case of deterministic timed automata, it allows to decide the
universality problem for these languages. The universality problem for non-deterministic timed au-
tomata is much harder. We prove that it is non-primitive recursive for one-clock timed automata, and
becomes undecidable with several clocks, even for the positive frequency semantics. The decidability
status for one-clock timed automata with positive frequency is still open, but we show that the uni-
versality problem for Zeno words in one-clock timed automata with positive frequency acceptance is
decidable. These latter problems remain open for the semantics with threshold.

This chapter is structured as follows. In Section 8.1, we present the consequences of the results of
Chapters 6 and 7. Section 8.2 is devoted to the hardness of the universality problem. Last, we establish
the decidability of the universality problem for Zeno words in one-clock timed automata with positive
frequency in Section 8.3.

8.1 Consequences of Chapters 6 and 7

In Chapters 6 and 7 we proposed approaches to compute bounds of the set of frequencies and decide
their realizability for timed automata of two classes: one-clock timed automata and strongly non-
Zeno, forgetful and aperiodic timed automata. These results allows to decide language problems such
as the emptiness problem.

161

EMPTINESS AND UNIVERSALITY PROBLEMS IN TIMED AUTOMATA WITH FREQUENCY

The emptiness problem. In our context, the emptiness problem asks, given a timed automaton
A whether there is an infinite timed word which is accepted by A under a given frequency-based
constraint. As a consequence of Theorem 6.1, we get the following results.

Theorem 8.1. The emptiness problem for infinite timed words in one-clock timed automata A is in
NLOGSPACE.

Thanks to Corollary 7.3, we can extend this result to timed automata with several clocks with a
PSPACE complexity.

Theorem 8.2. The emptiness problem for infinite timed words in strongly non-Zeno, forgetful and
aperiodic timed automata A is in PSPACE.

Upper threshold languages We defined lower threshold languages by accepting words for which
there exists a run of ratio larger than a threshold λ. We can also define languages with an upper
threshold, using as acceptance condition that the frequency of a word is smaller than a threshold
λ. Since the frequency of a word is the minimum of the frequency of runs reading it, deciding the
emptiness of such a language is harder than for lower threshold languages. Indeed, it can be deduced
from the set of frequencies, only if the timed automaton is deterministic. However, the universality
can be decided by comparing λ with the upper bound of the set of frequencies.

The universality problem. We now focus on the universality problem, which asks, whether all
timed words are accepted under a given frequency-based acceptance condition in a given timed au-
tomaton. We also consider variants thereof which distinguish between Zeno and non-Zeno timed
words. Note that, as presented in Section 5, these variants are incomparable: there are timed automata
that, with positive frequency, recognize all Zeno timed words but not all non-Zeno timed words, and
vice-versa.

A first obvious result concerns deterministic timed automata. One can first check syntactically
whether all infinite timed words can be read (just locally check that the automaton is complete).
Then we notice that considering all timed words exactly amounts to considering all runs. Thanks to
Theorem 6.1 for one-clock timed automata, one can decide, in this case, whether there is or not a run
of frequency does not satisfy the frequency-based constraint. The existence of such a run is equivalent
to the non-universality of the timed automaton.

Theorem 8.3. The universality problem for infinite (resp. non-Zeno, Zeno) timed words in determin-
istic one-clock timed automata is in NLOGSPACE.

In the same way, Corollary 7.3 allows to decide the universality problem in deterministic, strongly
non-Zeno, forgetful and aperiodic timed automata.

Theorem 8.4. The universality problem for infinite (resp. non-Zeno, Zeno) timed words in determin-
istic, strongly non-Zeno, forgetful and aperiodic timed automata is in PSPACE.

Remark that both above theorems also hold for upper threshold languages.

8.2 Lower bound for the universality problem

In the previous section we saw that results of Chapters 6 and 7 allow one to decide universality for
some deterministic timed automata. In this section, we prove that if we relax the assumption of
determinism this becomes much harder!

162

DECIDABILITY OF THE UNIVERSALITY PROBLEM FOR ZENO WORDS WITH POSITIVE
FREQUENCY IN ONE-CLOCK TIMED AUTOMATA

A
c

Σ∪{c} Σ

Figure 8.1:

Figure 8.2: Reduction for the proof of Theorem 8.5.

Theorem 8.5. The universality problem for infinite (resp. non-Zeno, Zeno) timed words in a one-clock
timed automaton is non-primitive recursive. If two clocks are allowed, this problem is undecidable.

Proof. The proof is done by reduction from the universality problem for finite words in timed au-
tomata (which is known to be undecidable for timed automata with two clocks or more [AD94] and
non-primitive recursive for one-clock timed automata [OW04]). Given a timed automaton A that
accepts finite timed words, we construct a timed automaton B with an extra letter c which will be
interpreted with positive frequency. From all accepting locations of A, we allow B to read c and then
accept everything (with positive frequency). The construction is illustrated on Fig. 8.2. It is easy to
check that A is universal for finite timed words over Σ iff B is universal for infinite (resp. non-Zeno,
Zeno) timed words over Σ ∪ {c}. �

Remark that we do not know wether the universality problem for forgetful timed automata with
two clocks is still undecidable

8.3 Decidability of the universality problem for Zeno words with posi-
tive frequency in one-clock timed automata

The universality problem for one-clock timed automata with positive frequency is proved to be non-
primitive recursive in Section 8.2. Its decidability stays open, but distinguishing the Zeno and non-
Zeno cases we obtain a partial answer. Whereas in general, the non-zenoness assumption simplifies
most problems, here the Zeno case is decidable and the decidability of the non-Zeno case is still open.

Theorem 8.6. The universality problem for Zeno timed words with positive frequency in a one-clock
timed automaton is decidable.

The proof of this result is nice and mainly due to Patricia Bouyer-Decître. As a consequence, we
only give a sketch here. The complete proof can be find in [BBBS13].

Sketch of proof. Given a timed automaton A, with a single clock, we want to check whether A is
universal for Zeno timed words with positive frequency. We first check that every Zeno timed word
can be read in A: this is equivalent to checking that all finite timed words can be read in A, and this
can be done [OW04]. Thus, without loss of generality, we assume that A reads all Zeno timed words,
and we now only need to take care of the accepting condition.

The proof is based on the idea that for a Zeno timed word to be accepted with positive frequency
it is (necessary and) sufficient to visit an accepting location once. Furthermore the sequence of times-
tamps associated with a Zeno timed word is converging, and we can prove that from some point on,

163

EMPTINESS AND UNIVERSALITY PROBLEMS IN TIMED AUTOMATA WITH FREQUENCY

in the automaton, all guards will be either verified or falsified: for instance if the value of the clock
is 1.4 after having read a prefix of the word, and if the word then converges in no more than 0.3 time
units, then only the constraint 1 < x < 2 will be satisfied while reading the suffix of the word, unless
the clock is reset, in which case only the constraint 0 < x < 1 will be satisfied.

As a consequence, the algorithm is composed of two phases:

• reading the prefix of the word,

• reading the tail of the Zeno words.

A first important trick is the uniform stabilization. Indeed, all runs reading a same word stabilize
from some point, but depending on the resets, this stabilization does not necessarily occur at the same
point, and there may exist an unbounded number of such runs. Nevertheless, there exists a point after
which all these runs are stabilized. The idea is roughly that at a fix point from which the sum of the
future delays is smaller than 1, only a finite number of valuations are possible and the stabilization
only depends on it.

Finally, to read the tail, the behavior of the automaton can be reduced in a natural way to that of
a finite automaton. Hence, one can decide, given a finite set of states, whether all tails can be read
and accepted from at least one of it. Then, we use the abstract transition system for one-clock timed
automata from [OW05] to decide the existence of a set of states, reachable after a common finite timed
word and from which some tails cannot be read. �

Conclusion

In this chapter we studied the emptiness and universality problems for timed automata with frequen-
cies. The emptiness problem with frequency-based acceptance is decidable for timed automata with
one clock and for forgetful aperiodic strongly non-Zeno timed automata, thanks to the computation of
the bounds of the set of frequencies based on the corner-point abstraction. In the same way, if those
timed automata are deterministic, one can decide the universality problem.

On the other hand, the universality problem in non-deterministic timed automata is harder. Our
results about universality problems are summarized in the following table:

Universality L]λ LZeno>0

one-clock NPR Decidable & NPR
several clocks undecidable undecidable

The undecidability of the general case comes from a reduction from the universality problem for finite
timed words in timed automata with the usual semantics. The other consequence of this reduction
is that the universality for one-clock timed automata is non-primitive recursive. The question of
the decidability status remains open. However, we surprisingly proved that, for non-deterministic
one-clock timed automata with positive frequency, the universality problem restricted to Zeno timed
words is decidable but non-primitive recursive. Finally, an other open question is the decidability of
the universality problem for forgetful timed automata with different semantics. We would need to
carefully inspect the existing reduction [AD94] to find out whose widgets are not forgetful.

164

Conclusion

In this part, we introduced the notion of frequency of a run as the proportion of time elapsed in
accepting locations. This permits to assign a value to each run, and thus to each timed word (taking
the maximal value over the runs reading it). It can then be used in a language-theoretic approach to
define quantitative languages associated with a timed automaton. One can then consider the set of
timed words for which there is an execution of frequency greater than a threshold.

We developed techniques to compute the bounds of the set of frequencies in a timed automaton,
with the motivation to decide in particular the emptiness of such languages. The framework is based
on the corner-point abstraction introduced in [BBL08]. We first studied one-clock timed automata
and developed techniques, but these do not extend to two-clock timed automata. Then, we proposed
an extension to timed automata with several clocks whose cycles are forgetful, that is there are no
convergences forced along them. Indeed, these phenomena make the frequencies harder to compute,
more precisely, it weakens the link between frequencies of runs in a timed automaton and ratios of
runs in its corner-point abstraction. For such timed automata, we proved that the set of frequencies is
equal to the set of ratios (abstract frequencies) in the corner-point abstraction.

Beyond the context of frequency-based language, the central idea of this part was to explore the
link between a timed automaton and its corner-point abstraction. The corner-point abstraction is a
powerful tool allowing to preserve some information on timed behaviors. It was proved in [BBL08],
that for all ε > 0, any run in the corner-point abstraction can be lifted to a run in the timed automaton
preserving valuations up to ε. With the aim to preserve the frequency, we proved that this ε can be
decreased along the run. We did it in such a way that the divergence of time allows to neglect these
decreasing imprecisions in the computation of the frequency. Remark that we had to consider timed
automata without convergence forced along cycles because such phenomena can force the imprecision
ε to increase. To do so, the forgetfulness assumption allowed to establish technical lemmas which
could be used in other contexts. Moreover this assumption, which is realistic from an implementability
point of view, could be used to simplify other problems, or to identify a real behavior which for
example does not satisfy a property. Indeed, one could consider as a realistic behavior a symbolic
path iterating a forgetful cycle (equivalently, a path whose language has a positive entropy [BA11]).
Finally, forgetfulness has already been used in the context of robust control of safety properties in
timed automata in [SBMR13]. Forgetfulness is thus used to characterize timed automata which are
robustly controllable.

165

EMPTINESS AND UNIVERSALITY PROBLEMS IN TIMED AUTOMATA WITH FREQUENCY

166

Part V

Reachability of Communicating Timed
Automata

167

Introduction

In this part, we are interested in the modeling of distributed systems where processes can communicate
and in which timing constraints are important. In the untimed context, a fundamental model to repre-
sent systems of communicating processes, is the one of communicating finite-state machines [vB78].
Processes are then modeled by finite automata and they can exchange messages via communication
channels. This model has been widely studied in the last decades. In this part, we propose to study
a natural extension of communicating finite-state machines, where processes are modeled by timed
automata in order to take into account timing constraints.

Communicating finite-state machines A communicating finite-state machine is simply a finite set
of finite automata (called processes) which communicate via unbounded channels. More precisely, if
there is a channel between a process p and a process q, then p can send messages in the channel and q
can receive them. Channels are perfect, hence messages leave the channel only when q receives them.
Channels are also FIFO (First In First Out): messages are received by q in the same order than they
were sent by p. The graph whose vertices are the processes and edges are the channels is called the
communication topology.

Communicating finite-state machines have the power of Turing machines [Pac82, BZ83]. As a
consequence, one cannot decide the reachability problem: whether there exists an execution of the
system which ends in an accepting state. Intuitively, cycles in the topology permit to encode the tape
of a Turing machine. Moreover, if two processes are connected by two different paths of channels,
the Post correspondence problem can also be encoded. The source can emit the tops of the blocks in
one of the outgoing channels and the bottoms in the other channel, and the target process can receive
messages two by two (one from each ingoing channel) to check whether they are similar. Intermediate
processes along paths only forward messages.

Decidable topologies In fact, the reachability problem is undecidable if and only if there exists an
undirected cycle in the topology [Pac82, BZ83]. We say that a topology without undirected cycle is
a polyforest. Moreover, we say that a topology is decidable (resp. undecidable) if the reachability
problem is decidable (resp. undecidable) in communicating finite-state machines with this topology.

Decidability comes from the fact that in polyforest topologies, considering channels of size one
suffices for deciding reachability. Indeed, if there is a run % reaching an accepting state, then there is
another run %′ where each process does locally the same actions and which is eager, that is the length
of the channels is bounded by one. Local runs of processes are interleaved following the simple rule:
each message is received immediately after its emission. The run %′ is said to be a rescheduling of %.

This rescheduling is possible only in polyforests. For example, consider two processes p and q
which can communicate in both directions. Suppose there is a run where p sends as many a’s desired
and then receives as many b’s as necessary, while q sends as many b’s as wanted and then receives as

169

many a’s as necessary. There is no possible rescheduling to obtain 1-bounded channels, because there
is no interleaving of these two sequences of actions allowing to receive messages immediately after
their emissions. In fact, it is possible only in polyforests because for each process, messages that are
received from different channels, can be scheduled independently and cannot be constrained by the
process itself as in the above example.

Other restrictions leading to decidability When channels are bounded, communicating finite-state
machines have a finite number of states and the expressivity is the same as for finite automata. Yet, the
boundedness of channels of communicating finite-state machines is undecidable. In order to obtain the
decidability of reachability, several other restrictions have been considered. Let us give an overview
of different approaches.

First of all, beyond the boundedness of channels, a weaker properties leads to decidability of the
reachability problem: the existential boundedness. It states that there exist bounds over the channels
such that every run admits a rescheduling of its actions which respects the bounds. Under this as-
sumption, and knowing the bound, the reachability problem thus is decidable. It has also been shown
that, roughly, the only case where the existential boundedness is decidable, is when the channel bound
is known and the system of communicating finite-state machines is deadlock-free (i.e. there is no
reachable configuration in which no transition is enable) [GKM07].

One-type message communicating finite-state machines have been explored in [PP92]. In this
subclass, messages in a channel are all of the same type. This model is equivalent to Petri nets. If
moreover it is required that the topology is cyclic, then the reachability problem is decidable. Weaker
language restrictions for channels have been proposed in [MF85] generalized in [JJ93]. For these
subclasses, the reachability problem is decidable, unfortunately the membership to these classes is
undecidable. Nevertheless, a semi-algorithm for the reachability problem which terminates at least
for the communicating finite-state machine of the defined subclass is proposed in [JJ93].

Another restriction of the communications, called half-duplex communication leads to decidabil-
ity of the reachability problem [CF05]. More precisely, the reachability problem for two processes
connected in both directions, assuming that at most one channel is non-empty in each configuration
of the system along runs is decidable. The generalization of this assumption to any topology (i.e.
assuming that at most one channel is non empty in each cycle) is not sufficient to obtain decidability.
Nevertheless, a characterization of the decidable topologies with this assumption for communicating
pushdown automata has been presented in [HLMS10].

Finally, an alternative model considering unreliable (or lossy) channels has also been investi-
gated [CFI96]. Channels can then lose messages before their reception. With this assumption, the
reachability problem is decidable whatever the topology. Recently, mixing of perfect and lossy chan-
nel has been studied in [CS08]. The reachability problem is decidable for the topology constituted of
two processes connected by two channels, a perfect one and a lossy one. Nevertheless, if any channel
is added to this simple topology, then the reachability problem becomes undecidable.

Timed distributed models Recently, there have been several works bringing time into models in-
cluding concurrency or communications.

As discussed in the general introduction, timing aspects have been added to Petri nets to obtain
several models: time Petri nets [Mer74], timed Petri nets [Ram74] or timed-arcs Petri nets [Han93].

We also presented the model of time-constrained message sequence charts graphs [IT11] which
permits to represent concurrency and communications together with timing aspects, but in a higher
level, focusing on communication behaviors. In particular, [CM06] proposes timed message sequence

170

charts as the semantics of communicating timed automata. Again relating message sequence charts
and automata, communicating event-clock automata, a strict subclass of timed automata, are studied
in [ABG07]. It is shown, among other results, that the reachability problem is decidable for arbitrary
topologies over existentially-bounded channels.

On the other hand, ad hoc networks [DSZ10] are constituted of processes which can communi-
cate by selective broadcast messages. Each process can communicate only with its neighbors. This
model has been considered with both discrete and dense time in [ADR+11]. Several decidability and
undecidability results are thus presented for different classes of timed ad hoc networks.

An extension of lossy channel systems including timing aspects has recently been presented
in [AAC12]. The model considers messages together with their ages and receptions can happen
only if the age of messages satisfies some guards. The reachability problem is then decidable for all
topologies.

Models with loose synchronization over time elapsing have been studied in [IDP03] for discrete
time and for dense time in [ABG+08]. In both approaches, local times of processes differ, but the
communication policies are different. In [IDP03], messages can be exchanged via channels and the
reachability problem is proved to be decidable for a restricted two-process topology. In [ABG+08],
there are no messages, but the communication happens by observing the local clocks of the other
processes. Several semantics are studied. In particular, the existence problem of an untimed word
accepted for all drifts of clocks is undecidable, even for only two processes having one clock.

Urgency leads to undecidability Finally, the model closest to our setting is the communicating
timed automata via perfect channels introduced in [KY06]. Indeed, in this part we propose to ex-
tend the results of Krcal and Yi [KY06], considering a slight extension of their model. Let us develop
explanations about the contribution of [KY06]. The model considered is timed automata communicat-
ing via perfect FIFO-channels. Roughly, it is communicating finite-state machines where processes
are modeled by timed automata instead of finite automata. Channels have the particularity to be
urgent in the sense that, if a timed automaton can receive a message, then all internal actions (non-
communication actions) are disabled. This model is extremely powerful. Considering sequences of
processes where channels connect two successive processes (pipelines), it is proved that the reacha-
bility problem is decidable if and only if there are at most two processes. This result is very negative,
but we are going to prove that this is due to the urgency of the channels. Relaxing this assumption,
we obtain more positive results.

A first observation is that the proof in [KY06], which reduces the reachability problem in counter
machines to the reachability problem in pipeline communicating timed automata, uses continuous
time only in a discrete manner to synchronize actions of all processes. More precisely, at each time
unit, each process does exactly one action (potentially internal). Counters are encoded by the number
of some messages in the channels. Then, we come to a second observation which is that the zero test
of counters is encoded thanks to the urgency of the receptions. As a consequence, the proof is based on
the urgent semantics and relaxing this assumption makes the construction of the proof inapplicable.
Nevertheless, the undecidability result is not only due to urgency, but also to the combination of
synchronization (time) and urgency. In particular, urgency in communicating finite-state machines
does not prevent the rescheduling to be performed in polyforest topologies. Hence, it is still possible
to decide the reachability problem in such communicating finite-state machines considering only 1-
bounded channels.

171

Contribution In this part, we consider communicating timed processes where a finite number of
timed automata synchronize over the elapsing of time and communicate by exchanging messages
over FIFO unbounded channels which can be urgent or not. We significantly extend the results of
[KY06], by giving a complete characterization of the decidability frontier of reachability properties
with respect to the communication topology when some channels are not urgent. Our study comprises
both dense and discrete time.

• Discrete time: Communicating tick automata We provide a detailed analysis of communi-
cation in the discrete time model, where actions can only happen at integer time points. As a
model of discrete time, we consider communicating tick automata, where the flow of time is
represented by an explicit tick action. A process evolves from one time unit to the next one by
performing a tick action, forcing all the other processes to perform a tick as well; all the other
actions are asynchronous. This model of discrete time is called tick automata in [GHKK05],
where they are considered with the Büchi semantics. A time-wrap lemma is formulated in a
similar way as pumping lemmas for finite automata. It can thus be used to show that a discrete
timed language is not regular. This interpretation of discrete time is related to the fictitious time
of [AD94].

As discussed above, the proof of [KY06] applies to discrete time. As a consequence, the reacha-
bility problem in pipeline communicating tick automata whose channels are urgent, is decidable
if and only if there are at most two processes. In this part, we propose to study communicating
tick automata with urgent channels as in [KY06], but also with non-urgent channels. In fact, we
do not consider urgency directly, but we rather model it by introducing an additional emptiness
test operation on channels on the side of the receiver. This allows us to discuss topologies where
emptiness tests are restricted to certain components. We thus extend the results of [KY06] by
providing a complete characterization of decidable topologies for communicating tick automata.
We show that the reachability problem is decidable if, and only if, the topology is a polyforest
(as for communicating finite-state machines), and, additionally, each weakly-connected compo-
nent can test at most one channel for emptiness (i.e. along an undirected path of the topology,
there is at most one channel whose emptiness is testable).

Our results follow from topology-preserving mutual reductions between communicating tick
automata and counter automata. As a consequence of the structure of our reductions, we show
that channels and counters are mutually expressible, and similarly for emptiness tests and zero
tests. This also allows us to obtain a complexity result for communicating tick automata. We
show that reachability in a polyforest system of communicating tick automata over a topology
without emptiness tests has is EXPSPACE-complete.

• Dense time: Communicating timed automata A first result is the complete characterization of
the decidability frontier for communicating timed automata without urgency. We show that the
reachability problem is decidable if, and only if, the communication topology is a polyforest.
Thus, adding dense time does not change the decidability frontier compared to communicating
finite-state machines and communicating tick automata. However, the complexity increases.
From our results it follows that reachability in communicating timed automata is EXPSPACE-
hard, and probably worst due to an exponential blow-up when translating from dense to discrete
time. Nevertheless, the problem is in 2EXPSPACE.

Then we expand the characterization considering two kinds of channels, depending on whether
emptiness can be tested. We complete the undecidability picture for dense time, proving that a

172

topology with at least two channels whose emptiness is testable, in the same weakly connected
component, is undecidable. All our results for dense time follow from a mutual, topology-
preserving reduction to the discrete time model. Over polyforest topologies, we reduce from
dense to discrete time when no channel can be tested for emptiness. Over arbitrary topologies,
we reduce from discrete to dense time, even in the presence of emptiness tests. While the latter
is immediate, the former is obtained via a rescheduling lemma for dense time automata which is
interesting on its own, allowing us to schedule processes in fixed time-slots where send actions
are always executed before receive actions. Unfortunately, this lemma does not immediately
extend to channels whose emptiness is testable, and we do not have concrete ideas to get round
the difficulty.

Outline Chapter 9 is devoted to the definitions of a uniform semantics for systems of communicating
timed processes, together with the two main instantiations yielding the semantics of communicating
timed automata and communicating tick automata. Then, the reductions between communicating tick
automata and counter machines are presented in Chapter 10 with their consequences about decidability
and complexity. Next, these results are partially translated to communicating timed automata thanks
to mutual reductions with communicating tick automata. Finally, difficulties for the remaining open
question is discussed.

173

174

Chapter 9

Communicating Timed Processes: a
Uniform Semantics

In this chapter, we define communicating timed processes with various delay domains in a uniform
way. We then instantiate the delay domain with R+ and {τ} to respectively obtain the semantics of
communicating timed automata and communicating tick automata. Our model is very general, and in
particular allows to test for emptiness of channels, which permits to model the urgency of [KY06]. In
Section 9.3, we develop this link as well as consequences of the time synchronization of processes.

For readability, notations are sometimes different from the rest of the document but they are all
defined or redefined here. For example, the definition of runs is a bit different because we focus on
the reachability problem instead of languages problems.

9.1 Definition of communicating timed processes

In this section, we define communicating timed processes with discrete or continuous time thanks
to a uniform semantics equipped with a delay domain. Processes actions are partitioned: there are
communication actions, internal actions and delays (which synchronize all processes). In order to
model urgency of [KY06], we introduce an extra action which tests the emptiness of a channel.

Definition 9.1 (Labeled transition system). A labeled transition system (LTS for short) is a tuple
TS = 〈S, SI , SF , A,→〉 where S is a set of states with initial states SI ⊆ S and final states SF ⊆ S,
A is a set of actions, and→ ⊆ S ×A× S is a labeled transition relation.

For simplicity, we write s a−−→ s′ in place of (s, a, s′) ∈ →. A path in TS is an alternating
sequence π = s0, a1, s1, . . . , an, sn of states si ∈ S and actions ai ∈ A such that si−1

ai−−→ si for all
i ∈ {1, . . . , n}. We abuse notation and shortly denote π by s0

a1···an−−−−→ sn. The word a1 · · · an ∈ A∗
is called the trace of π. A run is a path starting in an initial state (s0 ∈ SI) and ending in a final state
(sn ∈ SF).

We consider systems that are composed of several processes interacting with each other in two
ways. Firstly, they implicitly synchronize over the passing of time. Secondly, they explicitly commu-
nicate through the asynchronous exchange of messages. For the first point, we represent delays by
actions in a given delay domain D. Typically, the delay domain is a set of non-negative numbers for
dense time, or a finite set of abstract delays for discrete time.

175

COMMUNICATING TIMED PROCESSES: A UNIFORM SEMANTICS

Definition 9.2 (Timed processes). A timed process over the delay domain D is a labeled transition
system TS = 〈S, SI , SF , A,→〉 such that A ⊇ D and TS satisfies the following condition:

∀s ∈ SF ,∀d ∈ D,∃s′ ∈ SF : s
d−−→ s′ (9.1)

Actions in A are either synchronous delay actions in D, or asynchronous actions in A \ D.

Condition (9.1) simply means that a process which reaches an accepting state can let time elapse
staying in accepting states. In particular it can let time elapse until the other processes also reach
accepting states. Nevertheless, a transmission or a reception can lead from accepting states to non-
accepting states. This assumption is quite natural, indeed a process which ended its execution do not
have to block time elapsing for the other processes in practice.

Let us now introduce FIFO channels between processes as pairs (p, q) of processes, with the
intended meaning that process p can send messages to process q.

Definition 9.3 (Topology). A communication topology is a triple T = 〈P,C,E〉, where 〈P,C〉 is a
directed graph comprising a finite setP of processes and a set of communication channelsC ⊆ P×P .
Additionally, the set E ⊆ C specifies channels that can be tested for emptiness.

Let us define several notions around topologies. Channels in E are said to be testable channels.
A topology 〈P,C,E〉 is said test-free if E is empty. A topology is weakly-connected if for any pair
of processes, there is an undirected path of channels between them. A weakly-connected component
T ′ of a topology T is a maximal weakly-connected subgraph of the T , that is there exists no larger
weakly-connected subgraph of T containing T ′. A topology is acyclic if it has no cycle. A topology is
a polyforest if it has no undirected cycle. Moreover, a polytree topology is exactly a weakly-connected
polyforest topology.

For a process p ∈ P , let C[p] = C ∩ ({p} × P) be its set of outgoing channels, and let C−1[p] =
C ∩ (P × {p}) be its set of incoming channels. Processes may send messages to outgoing channels,
receive messages from incoming channels, as well as test emptiness of incoming channels for testable
channels.

Definition 9.4 (Communication actions). b Let T = 〈P,C,E〉 be a topology.

• Given a finite setM of messages, the set of possible communication actions for process p ∈ P is
Apcom = {c!m | c ∈ C[p],m ∈M}∪{c?m | c ∈ C−1[p],m ∈M}∪{c== ε | c ∈ E∩C−1[p]}.

• The set of all communication actions is Acom =
⋃
p∈P A

p
com.

While send actions (c!m) and receive actions (c?m) are customary, we introduce the extra test
action (c== ε) to model the urgent semantics of [KY06]. Actions not in (D ∪ Acom) are called
internal actions.

Definition 9.5 (Communicating timed processes). A system of communicating timed processes is a
tuple S = 〈T ,M,D, (TSp)p∈P 〉 where T = 〈P,C,E〉 is a topology, M is a finite set of messages, D
is a delay domain, and, for each p ∈ P , TSp = 〈Sp, SpI , S

p
F , A

p,→p〉 is a timed process over D such
that Ap ∩Acom = Apcom.

States sp ∈ Sp are called local states of p, while a global state ~s = (sp)p∈P is a tuple of local
states in

∏
p∈P S

p. We give the semantics of a system of communicating timed processes in terms of
a global labeled transition system. The contents of each channel is represented as a finite word over
the alphabet M . Processes move asynchronously, except for delay actions that occur simultaneously.

176

COMMUNICATING TIMED OR TICK AUTOMATA

Definition 9.6 (Semantics of communicating timed processes). The semantics of a system S =
〈T ,M,D, (TSp)p∈P 〉 of communicating timed processes is the labeled transition system JSK =
〈S, SI , SF , A,→〉 where S = (

∏
p∈P S

p)× (M∗)C , SI = (
∏
p∈P S

p
I)× {εC}, SF = (

∏
p∈P S

p
F)×

{εC}, A =
⋃
p∈P A

p, and there is a transition (~s1, w1)
a−−→ (~s2, w2) under the following restrictions:

• if a ∈ D, then sp1
a−−→ sp2 for all p ∈ P ,

• if a 6∈ D, then sp1
a−−→ sp2 for some p ∈ P , and sq1 = sq2 for all q ∈ P \ {p}

– if a = c!m, then w2(c) = w1(c) ·m and w2(d) = w1(d) for all d ∈ C \ {c},
– if a = c?m, then m · w2(c) = w1(c) and w2(d) = w1(d) for all d ∈ C \ {c},
– if a = (c== ε), then w1(c) = ε and w1 = w2, and

– if a 6∈ Acom, then w1 = w2.

To avoid confusion, states of JSK will be called configurations in the remainder of the part. Given
a path π in JSK, its projection to process p is the path π|p in TSp obtained by projecting each transition

of π to process p. In a transition (~s1, w1)
a−−→ (~s2, w2) over a delay action a ∈ D, all processes locally

perform the transition. In this case, define its projection to process p to be the underlying transition
sp1

a−−→ sp2. Otherwise, exactly one process p moves and the others stay put. Then , the projection to
process q is sp1

a−−→ sp2 if p = q, and empty otherwise.
In the sequel, we study the reachability problem in communicating timed processes, which is

defined as follows.

Definition 9.7. b

• The reachability problem asks, given a system of communicating timed processes S, whether
there exists a run in its semantics JSK.

• Two systems of communicating timed processes S and S ′ are said to be equivalent if JSK has a
run if and only if JS ′K has a run.

Recall that a run starts in initial states and ends in accepting states. We moreover require all
channels to be empty at the end of a run, which simplifies our constructions later by guaranteeing
that every sent message is eventually received. This is without loss of generality since configuration
reachability and control-state reachability are easily inter-reducible.

9.2 Communicating timed or tick automata

In this section, we naturally use the uniform semantics of communicating timed processes to define
communicating timed automata and communicating tick automata by instantiating the delay domain
D respectively with R+ and {τ}.

9.2.1 Communicating timed automata

Communicating timed automata are simply communicating timed processes synchronizing over the
dense delay domain D = R+. Let us define syntax and semantics of timed automata as timed pro-
cesses before defining communicating timed automata.

177

COMMUNICATING TIMED PROCESSES: A UNIFORM SEMANTICS

P1 P20<x<1,!a,{x}

x=1,!b

0<y<1,?a,{y}

0<y<1,?b

c1

Figure 9.1: Example of a system of communicating timed automata ((Pi)1≤i≤2, {c1}).

Definition 9.8 (Timed automata). A timed automaton B = 〈L,LI , LF , X,Σ,∆〉 is defined by a finite
set of locations L with initial locations LI ⊆ L and final locations LF ⊆ L, a finite set of clocks X ,
a finite alphabet Σ and a finite set ∆ of transitions rules (`, σ, g, R, `′) where `, `′ ∈ L, σ ∈ Σ, the
guard g is a conjunction of constraints x#c for x ∈ X , # ∈ {<,≤,=,≥, >} and c ∈ N, andR ⊆ X
is a set of clocks to reset.

The semantics of timed automata can be given as timed processes over D = R+.

Definition 9.9 (Semantics of timed automata). The semantics of B = 〈L,LI , LF , X,Σ,∆〉 is given
by the timed process JBK = 〈S, SI , SF , A,→〉 with states S = L×RX+ , initial states SI = LI×{0X},
final states SF = LF × RX+ , actions A = Σ ∪ R+, and transitions:

• (`, v)
d−→ (`, v′) if d ∈ R+ and v′(x) = v(x) + d for every clock x,

• and (`, v)
σ−→ (`′, v′) if there exists a rule (`, σ, g, R, `′) ∈ ∆ such that g is satisfied by v (defined

in the natural way) and v′ = v[R←0].

We decorate a path π = (`0, v0)
a0−→ (`1, v1)

a1−→ · · · (`n, vn) in JBK with additional timestamps

ti =
∑
{aj | j = 0, . . . , i− 1 and aj ∈ R+}: π = (`0, v0)

a0,t0−−−→ (`1, v1)
a1,t1−−−→ · · · (`n, vn). The ti’s

give the date of occurrence of every transition.
We are now able to define communicating timed automata.

Definition 9.10 (Communicating timed automata). A system of communicating timed automata is a
system of communicating timed processes S = 〈T ,M,R+, (JBpK)p∈P 〉 where for each p ∈ P , Bp is
a timed automaton.

Note that each timed automaton has access only to its local clocks. By Definition 9.5, each timed
automaton performs communicating actions in Apcom and synchronizes with all the other processes
over delay actions in R+.

An example of a system of communicating timed automata is represented in Figure 9.1. There are
two processes P1 and P2 and a channel c1 = (P1, P2). This is a pipeline of two processes. P1 send an
a and a b and P2 receive them. To solve the reachability problem for this example, the question is thus
whether there exist consistent timestamps, that is such that for every message, the reception is done
after the emission. This system has some runs. For instance, P1 can read the word (!a, 0.5).(!b, 1.5)
and P2 can read (?a, 0.7).(?b, 1.6). These local runs correspond to a run whose sequence of action is
(0.5).!a.(0.2).?a.(0.8).!b.(0.1).?b. These timed words are compatible in the sense that receptions by
P2 are done after the corresponding emissions by P1.

9.2.2 Communicating tick automata

Let us now give the definition of communicating tick automata which requires less notations.

178

DISCUSSION ABOUT THE MODELS

P1

P2

P3

!a τ !b
τ

τ ?a !c ?b
τ τ

τ τ τ ?c
τ

c1 c2

Figure 9.2: Example of a system of communicating tick automata ((Pi)1≤i≤3, {c1, c2}).

Definition 9.11 (Communicating tick automata). A system of communicating tick automata is a sys-
tem of communicating timed processes S = 〈T ,M,D, (TSp)p∈P 〉 such that D = {τ} and for each
p ∈ P , TSp is a tick automaton, i.e., a timed process over D with finitely many states and actions.

Thus, tick automata communicate with actions in Acom and, additionally, synchronize over the
tick action τ . An example of a system of communicating tick automata ((Pi)1≤i≤3, {c1, c2}) during
an execution is represented in Figure 9.2. There are three processes P1, P2 and P3 and two channels
c1 = (P1, P2) and c2 = (P2, P3), hence the topology is a pipeline of three processes. Current states
of the processes are represented by double circles. An execution of the system necessarily starts with
an emission of a by P1 and then the three processes synchronize on a τ -transition. Then, in the current
execution P1 emitted a b, but a could have been received by P2 before. The current execution can be
prolongated in a run with the sequence of actions: !a.τ.!b.?a.τ.τ.!c.?b.?c. Condition 9.1 implies that
from accepting states of tick automata, there is a τ -transition to an accepting state. When there is
a single accepting state in the processes, there necessarily is a loop labeled by τ over them. In the
sequel, we sometimes omit these loops.

The global synchronization over τ -transitions makes communicating tick automata more expres-
sive than communicating finite-state machines, in the sense that ticks can forbid re-orderings of com-
munication actions that are legitimate without ticks. Notice that there is only one tick symbol in
D. With two tick symbols, reachability is already undecidable for the one channel topology p → q
without emptiness test. We give a proof of this result in section 9.3.3.

9.3 Discussion about the models

In this section, we first discuss the key notion of emptiness test to model urgency. Then, we illustrate,
in communicating timed processes, the impossibility to re-order runs in order to bound the size of
channels in the same way as for communicating finite-state machines. Finally, we detail the undecid-
ability result about communicating tick automata if two different ticks are allowed.

9.3.1 Modeling urgency with emptiness test

In the urgent semantics for receive actions of [KY06], if a message can be received by a process, then
internal actions are disabled (while other communication and delay actions are still enabled). In our
model, instead of defining a separate urgent semantics, we introduce the extra test action c== ε, which
allows us to locate more precisely where in the topology is the urgent semantics (i.e., test action) used.
Below, we show how to implement the urgent semantics of [KY06] with the test action.

We need to ensure that internal actions of control states where also a receive action c?m is avail-
able can be executed only if m cannot be received from c. This can happen if either (1) c is empty, or

179

COMMUNICATING TIMED PROCESSES: A UNIFORM SEMANTICS

Urgent semantics Model with emptiness test

`0

`1

`2

`0,m

`0,m′

`0,−

`2,?

`1,m′

`1,?

ε

c?m

c?m

ε

c==ε ε

Figure 9.3: Illustration of the construction to model urgency of the reception of m.

q r
c

(a) Topology

!0

τ

(b) Tick automaton for
process q

?0

τ

(c) Tick automaton for pro-
cess r

Figure 9.4: A simple system of communicating tick automata that is not existentially-bounded.

(2) it is not empty and the message in front of the channel is ms 6= m. Let M(`) = {m | ` c?m−−→ `′}
be the set of messages that can be read from a given control location ` for a fixed channel c. For (2),
we modify the automaton with a standard construction to store into its finite control the first message
ms that can be received from c (if any), and check that ms 6∈ M(`) before the internal action can be
executed. For (1), in the case no message ms is stored in the location, the internal action is preceded
by a test action c== ε (by introducing an intermediate state).

The construction is illustrated in Figure 9.3. More precisely, it represents how to translate the
simple case where from a location ` in a timed automaton with urgent semantics, one can either
perform an internal action if the reception is not enabled, or receive a message m. There is three
possible locations in the translation.

• the first message in the channel is m, then the ε-edge is disabled;

• the first message in the channel is m′ 6= m, then the reception of m is disabled;

• there is no message in the buffer, then the reception of m is disabled and we check that the
channel is empty before performing the internal action.

The target states of the form (`, ?) mean that there is a copy of this state (and of the ingoing edge) for
each possible message in front of the channel instead of ?, and one with no message. We, in some
sense, guess the future reception or the emptiness of the channel.

9.3.2 On the power of time

Consider the topology with two processes q and r and a channel from q to r (that cannot be tested
for emptiness). Formally, this topology is the triple T = 〈{q, r}, {(q, r)}, ∅〉. It is known that every
communicating finite-state machine with topology T is existentially 1-bounded, i.e., each run can
be re-ordered into a run where the channel always contains at most one message [Pac82, HLMS10].
However, this property doesn’t hold for systems of communicating tick automata.

Consider the example depicted in Figure 9.4. Because of the global synchronization enforced by
the tick action τ , the first reception necessarily occurs after the last transmission. Hence, this example

180

DISCUSSION ABOUT THE MODELS

q r
c

(a) Topology

τ1

?1

τ0

?0

(b) Multi-tick automaton for process r

Figure 9.5: Simulation of a perfect channel automaton by a 2 tick automaton.

TSp TSq

c!
m

c?
m
′

c!
m

τ m
′

Figure 9.6: Illustration of the simulation of the communication actions of TSp in TSq.

is not existentially-bounded: for every bound B ∈ N, there exists a run with no B-bounded re-
ordering. This shows that systems of communicating tick automata are more expressive than CFSM.
Alternatively, from a language viewpoint, the trace language of this example is {(!0)nτ(?0)n | n ∈
N}. However, no CFSM (with topology T) has the same trace language (where τ would be an internal
action). Note that a similar example can naturally be constructed for communicating timed automata
by putting ε-transitions instead of τ -transitions with guards x = 1 and y = 1 in the respective
processes and never resetting them.

9.3.3 Undecidability of multi-tick automata

One could consider a more expressive model where communicating tick automata can synchronize
over a two distinct tick actions {τ0, τ1}, instead of just one tick τ . However, in the simplest non-trivial
topology T = 〈{q, r}, {(q, r)}, ∅〉with two processes q, r and a channel from q to r with no emptiness
tests, reachability becomes undecidable already with two tick actions. In fact, a perfect channel au-
tomaton S = 〈〈{p}, {(p, p)}, ∅〉,M, ∅, (TSp)〉 (for which reachability is undecidable [BZ83]) can be
simulated by topology T above. Without loss of generality, assume M = {0, 1}. S can be simulated
by a system of two communicating finite-state automata S ′ = 〈T ,M,D, (TSq,TSr)〉 over topology
T = 〈{q, r}, {(q, r)}, ∅〉, and where D = {τ0, τ1}, TSr is shown in Figure 9.5, and TSq is defined as
follows.

Let c be the channel (q, r). Figure 9.6 illustrates the principle of the simulation of the communi-
cation actions of TSp in TSq. The send actions !m of p are seamlessly performed by q as c!m. Since
q (unlike p) cannot directly read from the channel (only r can), to simulate a receive action ?m of p, q
performs the corresponding tick action τm in order to force process r to read message m on its behalf.
As a consequence, we derive the following theorem.

Theorem 9.1. Let T be a topology with at least one channel. Then, the reachability problem for
communicating multi-tick automata with at least two distinct tick actions and with topology T is
undecidable.

181

COMMUNICATING TIMED PROCESSES: A UNIFORM SEMANTICS

Conclusion

We defined communicating timed processes with perfect channels whose emptiness is potentially
testable. This general model allows in particular to define the semantics of systems of communicating
timed or tick automata. The testability of some channels allows one to model the urgency of [KY06].
In the sequel of the part, we extend the result of [KY06] considering also channels whose emptiness
is not testable. The proof of undecidability in [KY06] uses time only to synchronize processes in
such a manner that they all do exactly one action at each time unit. As a consequence of this obser-
vation, we first work on the simpler model of communicating tick automata which also permits this
synchronization.

182

Chapter 10

Reachability Problem in Communicating
Tick Automata

Introduction

As presented in the introduction of this part, the reachability problem in communicating finite-state
machines with a fixed topology is decidable if and only if this topology is a polyforest [Pac82, BZ83].
In this case, the problem is PSPACE-complete and it is sufficient to consider 1-bounded channels. As
discussed in Section 9.3.2, the rescheduling trick to consider bounded channels does not work when
there is synchronization on time (discrete or dense).

In this chapter, we study decidability and complexity of communicating tick automata. Our main
technical tool consists of mutual reductions to/from counter automata, showing that, in the presence
of tick actions:

• each channel is equivalent to a counter, and

• each emptiness test on a channel is equivalent to a zero test on the corresponding counter.

This allows us to derive a complete characterization of decidable topologies, and also to obtain com-
plexity results. We start by defining communicating counter automata.

10.1 Communicating counter automata

Let us briefly fix the notations for counter automata. Operations on a counter x are x++ (increment),
x-- (decrement) and x==0 (zero test). Given a set X of counters, we write Op(X) for the set of
operations over counters in X .

Definition 10.1 (Counter automata). A counter automaton is a classical Minsky machine [Min67]
S ′ = 〈L,LI , LF , A,X,∆〉 with finitely many locations L, initial locations LI ⊆ L, final locations
LF ⊆ L, a finite set of non-negative counters X , alphabet of actions A ⊇ Op(X), and transition
rules ∆ ⊆ L×A× L.

As usual, the semantics is given as a labeled transition system JS ′K = 〈S, SI , SF , A,→〉 where
S = L × NX , SI = LI × {0X}, SF = LF × {0X}, and the transition relation → is the smallest
relation such that: for all (`, a, `′) ∈ ∆ and for all x ∈ X ,

183

REACHABILITY PROBLEM IN COMMUNICATING TICK AUTOMATA

• if a = (x++) then, for all v, v′ ∈ NX such that v′(x) = v(x) + 1 and for all y ∈ X \ {x}
v(y) = v′(y), (`, v)

a−→ (`′, v′);

• if a = (x--) then, for all v, v′ ∈ NX such that v′(x) = v(x) − 1 and for all y ∈ X \ {x}
v(y) = v′(y), (`, v)

a−→ (`′, v′);

• if a = (x==0) then, for all v, v′ ∈ NX such that v′(x) = v(x) = 0 and v = v′, (`, v)
a−→ (`′, v′).

For technical reason, we assume that acceptance is with zero counters. This is without loss of gener-
ality because from a counter machine without this assumption, one can build an equivalent machine
whose reachability problem with zero counters is equivalent to the reachability problem for the orig-
inal machine. The construction is simple and consists in adding an accepting sink location reachable
from the other accepting locations by decreasing counters and in which one can decrease all the coun-
ters.

Definition 10.2 (Communicating counter automata). A system of communicating counter automata
is a system of communicating timed processes S = 〈T ,M,D, (JSpK)p∈P 〉 such that D = ∅ and each
Sp is a counter automaton.

By Definition 9.5, this entails that each counter automaton performs communication actions in
Apcom. Notice that, since the delay domain is empty, no synchronization over delay action is possible.

10.2 From tick automata to counter automata.

In this section, we present an intuition for the reduction from tick automata to counter automata. We
first present a reduction from communicating tick automata with a given topology to communicating
counter automata with the same topology. Then, rescheduling runs of the counter machine, we explain
that the reduction can be done from communicating tick automata with polyforest topologies to a
product of non-communicating counter automata. The goal of this reduction is to derive decidability
and complexity results for the reachability problem in communicating tick automata.

Proposition 10.1. Let T be a topology. For every system of communicating tick automata S with
topology T , we can build, in polynomial time, an equivalent system of communicating counter au-
tomata S ′ with the same topology.

Sketch of the proof. Let us informally explain the principle of the construction. The complete proof
is mainly due to my coauthors Lorenzo Clemente, Frédéric Herbreteau and Grégoire Sutre. It can be
found in the research report [CHSS12].

Let S be a system of communicating tick automata over a polytree topology. We build a system
of communicating counter automata S ′ over the same topology, which is equivalent with respect to
the reachability problem. Synchronization on delay actions is not possible in communicating counter
automata. Intuitively, we implement synchronization on the delay action τ in S by communication in
S ′ Let us describe the outline of the reasoning.

• A new message called τ . We introduce a new type of message, also called τ , which is broadcast
by all processes in S ′ each time there is a synchronizing tick action in S .

• A fair desynchronization. Since communication through channels is by nature asynchronous,
we allow the sender and the receiver to be momentarily desynchronized during the computation.
However, we impose the desynchronization to be asymmetric. The receiver is allowed to be

184

FROM TICK AUTOMATA TO COUNTER AUTOMATA.

“ahead” of the sender (with respect to the number of ticks performed), but never the other
way around. This ensures causality between transmissions and receptions, by forbidding that a
message is received before it is sent.

• Definition of counters. To keep track of the exact amount of desynchronization between sender
and receiver (as the difference in number of ticks), we introduce counters in S ′. We endow each
process p with a non-negative counter xpc for each channel c ∈ C−1[p] from which p is allowed
to receive. The value of counter xpc measures the difference in number of ticks τ between p and
the corresponding sender along c.

• Increments and decrements. Whenever a process p performs a synchronizing tick action τ
in S , in S ′ it sends a message τ in broadcast onto all outgoing channels; at the same time, all
its counters xpc are incremented, recording that p, as a receiver process, is one more step ahead
of its senders. When one such τ -message is received by a process q in S ′ along channel c, the
corresponding counter xqc is decremented; similarly, this records that the receiver process along
c is getting one step closer to the sender process p.

• Correctness of the emptiness test. While proper ordering of receptions and transmissions is
ensured by the fact counters are non-negative, testing emptiness of the channels is more difficult.
In fact, a receiver, which in general is ahead of the sender, might see the channel as empty at
one point (thus the test is positive), but then the sender might later (i.e. after performing some
tick) send some message, and the earlier test should actually have failed in the synchronized
system S (false positive). We avoid this difficulty by imposing that the counter xqc is equal to
zero when a test action is simulated. Thus enforcing that the receiver q is synchronized with the
corresponding sender along channel c on emptiness tests, which ensures that the result of the
test is sure. To do so, we simply add a zero test xqc==0 to the test action c== ε by q.

• Resynchronization. Given an accepting run in the system of communicating counter automata
S ′, counters could be non zero, whereas processes, in a run of S, have to perform the same
number of τ actions. In a similar way, the numbers of τ actions in each component can be
different in the components of S ′, whereas they have to be equals in S. In fact, thanks to
Condition (9.1), if there is an accepting run in S ′, the corresponding partial run in S , which
ends in accepting locations, can be prolongated in a run of S by simply adding the suitable
number of τ ’s at the end, in each process, staying in accepting states. �

Remark 10.1. There are as many counters in the built communicating counter machine for each pro-
cess as channels in the same process of the original system of communicating tick automata. More-
over, the number of counters which have to be zero testable also corresponds to the number of testable
channels.

It has been shown that, on polytrees, runs of communicating processes (even infinite-state) can be
rescheduled to satisfy the so-called eagerness requirement, where each transmission is immediately
followed by the matching reception [HLMS10]. Their argument holds also in the presence of empti-
ness tests, since an eager run cannot disable c== ε transitions. Indeed, making receptions closer to
emissions can only empty the channels more often. Thus, by restricting to eager runs, communication
behaves just as a rendezvous synchronization.

Then, one can reduce the reachability problem in polytrees system of communicating tick au-
tomata to the reachability problem in non-communicating counter automata. Indeed, given a polytree

185

REACHABILITY PROBLEM IN COMMUNICATING TICK AUTOMATA

• •

•empty channel • mi

`p `′p!mi

• •

`q `′q?mi

Figure 10.1: Encoding of the synchronization.

system S of communicating tick automata, one can then obtain an equivalent counter automaton to S
by taking the product of all process counter automata synchronizing over τ ’s and emissions-receptions
of the same message. Moreover, this reduction applies to polyforests. First, one can apply the reduc-
tion of Proposition 10.1 to each weakly-connected component. Then, thanks to Condition (9.1), num-
bers of τ actions performed in each component, can be made uniform, staying in accepting locations.
Hence, there is a run in the polyforest if and only if there are runs in all the components which are
polytrees. As a consequence, we obtain the following theorem.

Theorem 10.1. For every polyforest topology T , the reachability problem for systems of communi-
cating tick automata with topology T is reducible, in polynomial time, to the reachability problem for
products of (non-communicating) counter automata.

Remark 10.2. By Remark 10.1, here again, there are as many channels (resp. testable channels)
in the system of communicating tick automata as counters (resp. zero testable counters) in the built
counter automaton.

When no test is allowed, we obtain the complexity for the reachability problem in polyforest
topologies. Indeed, it has the same complexity as the coverability problem for Petri nets, which is
known to be EXPSPACE-complete [Lip76, Rac78].

Corollary 10.1. The reachability problem for systems of communicating tick automata with test-free
polyforest topologies is EXPSPACE-complete.

Proof. The idea of the proof is that the reachability problem in our products of counter automata can
be reduced, in polynomial time, to the coverability problem in Petri nets.

Let S be a polyforest system of communicating tick automata, and let S ′ be the equivalent product
of counter automata obtain by Theorem 10.1. Each counter automaton C can be naturally transformed
into a Petri net, by translating each location of C in a place and each edge of C in a transition, and
defining the initial marking as the marking where there only is one token in the place corresponding
to the initial location. Then, the synchronization over emissions and receptions can be encoded by
additional places and transitions. Each one-bounded channel is encoded by |M |+1 places whereM =
{m1, · · · ,m|M |} is the message alphabet. These places respectively represent the empty channel and
the channel containing the messagemi. The Petri net is built in such a way that there always is exactly
one token in only one of these places. The principle of the encoding is represented in Figure 10.1. A
transition, which corresponds to an emission of the message mi in a channel, can be fired only if the
channel is empty, and when it is fired, the token in the place encoding the emptiness of the channel
is placed in the place encoding that there is the message mi in the channel. On the other hand, a

186

FROM COUNTER AUTOMATA TO TICK AUTOMATA

transition, which corresponds to a reception of the message mi in a channel, can be fired only if the
channel contains this message, and when it is fired, the token in the place encoding that there is the
message mi in the channel is placed in the place encoding the emptiness of the channel.

The size of the resulting Petri net is polynomial in the size of S ′, and hence in the size of S.
Moreover, a marking where there tokens encoding the current locations are in places corresponding
to accepting locations is coverable if and only if there exists a run in S ′, and hence if and only if there
exists a run in S . �

10.3 From counter automata to tick automata

In the previous section, we presented a simulation of polyforest systems of communicating tick au-
tomata by counter automata without communication. In this section we propose a reciprocal reduction.
More precisely, we reduce the reachability problem for non-communicating counter automata to the
reachability problem for systems of communicating tick automata with star topology, that is topology
where there is a central process p such that all the channels have p either as sender or as receiver and
not both (see Figure 10.2 for a scheme).

Definition 10.3 (Star topology). A topology T = 〈P,C,E〉 is called a star topology if there exist
two disjoint subsets Q,R of P and a process p in P \ (Q ∪ R) such that P = {p} ∪ Q ∪ R and
C = (R× {p}) ∪ ({p} ×Q).

Then, the following theorem holds.

Theorem 10.2. Let T be a star topology with α channels, of which β can be tested for emptiness. The
reachability problem for (non-communicating) counter automata with α counters, of which β can be
tested for zero, is reducible, in linear time, to the reachability problem for systems of communicating
tick automata with topology T .

The idea is to simulate each counter with a dedicated channel, thus the number of counters is the
number of channels in T . Moreover, our reduction is uniform in the sense that it works independently
of the exact arrangement of channels in T , which we take not to be under our control. Without
loss of generality, we consider counter automata where all actions are counter operations (i.e., ∆ ⊆
L× Op(X)× L).

Sketch of the proof of Proposition 10.1. This result is mainly due to my coauthors Lorenzo Clemente,
Frédéric Herbreteau and Grégoire Sutre. As a consequence, I only give the intuition of the proof
which can be found in its entirety in the research report [CHSS12].

Let us first consider an arbitrary star topology T = 〈P,C,E〉 with the following set of processes
P = {p} ∪ Q ∪ R where Q = {q1, . . . ,qm}, R = {r1, . . . ,rn}, m,n ∈ N, and set of channels
C = {p} × Q ∪ R × {p} and in which emptiness of all channels can be tested (i.e. E = C). This
topology is depicted in Figure 10.2 (bottom left). Let S ′ be a counter automaton with m+n counters,
namely X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}. The counters are split into X and Y in arbitrary
way to reflect the star topology T , which is given a priori. We build, from S ′, an equivalent system of
communicating tick automata S with topology T . Let us informally explain how the reduction works.

• Outline. The process p simulates the control-flow graph of the counter automaton, and the
counters xi and yj are respectively simulated by the channels (p,qi) called ci and channels
rj ,p) called dj .

187

REACHABILITY PROBLEM IN COMMUNICATING TICK AUTOMATA

0

1

3

dj !test

τdj !wait
τ

0

1

2

3

ci?wait τ

cj == ε ci?test

ci?end

τ

p

r1

rn

q1

qm

d
1

dn

c1

c
m

`

`′

LF fη(op)
c1!end · · ·cn!end

τ

Figure 10.2: Simulation of a counter automaton by a system of communicating tick automata: Tick
automata for rj (top left) and qi (top right), topology (bottom left), tick automaton for p (bottom
right).

• Messages. In order to define S , we need to provide its message alphabet and one tick automa-
ton, for each process p in P . The message alphabet is M = {wait, test}. Actions performed
by processes in P are either communication actions or the delay action τ .

• Loose synchronization. Processes rj’s are assigned the tick automaton of Figure 10.2 (top
left), and processes qi’s are assigned the tick automaton of Figure 10.2 (top right). Intuitively,
communications on wait messages are loosely synchronized using the τ actions in qi and rj ,
so that p can control the rate of their reception and transmission.

• Role of process p. The process p is a larger tick automaton than qi’s and rj’s. It simulates
control states of S ′ and communicates with other processes for the simulation of counter op-
erations. It is roughly represented on Figure 10.2 (bottom right). It contains roughly the same
control states as in S ′ which are connected by the same counter operations. These operations
can require several transitions in p to be simulated, in this case, some intermediate control states
are added. The simulation preserves the control-flow graph of S ′. Hence, we simply explain
how to translate counter operations of S ′ into communication actions and τ actions.

– Encoding of the counters. The number of wait messages in channels ci and dj respec-
tively encodes the value of counters xi and yj .

– Increment of xi / decrement of yj . Incrementing xi amounts to sending wait in ci, and
decrementing yj amounts to receiving wait from dj . Both actions can be performed by
p.

– Decrement of xi / increment of yj . Decrementing xi is more involved, since p cannot
receive from the channel ci. Instead, p performs a τ action in order to force a τ action in
qi, hence, a receive of wait by qi. But all other processes also perform the τ action, so
p compensates in order to preserve the number of wait messages in the other channels.
To do so, process p simply receives wait from all channels dj’s and sends wait in all
channels ch’s such that h 6= i. The simulation of the increment of yj can similarly be
done.

188

CHARACTERIZATION OF THE DECIDABLE TOPOLOGIES

– Zero test. When p simulates xi==0, it simply sends test in the channel ci. This message
is eventually received by qi since all channels must be empty at the end of the simulation.
The construction guarantees that the first receive action of qi after the send action ci!test
of p is the matching receive ci?test. This means, in particular, that the channel is empty
when p sends test in ci. The same device is used to simulate a zero test of yj , except
that the roles of p and its peer (here, rj) are reversed. Clearly, channels that need to be
tested for emptiness are those encoding counters that are tested for zero.

– End of the execution. In their final state, qi’s and rj’s do nothing except τ actions, as
required by Condition (9.1). Processes rj’s can move freely to its final control state, then,
in order not to accept to fast a run, qi’s must receive an end message from p to move
in a final control state. Indeed, without this trick, a process qi could stop the simulation
of counter yi by staying in a final control state and performing τ ’s without receiving
messages. As a consequence, from control states of p, corresponding to final control
states of S ′, there is a sequence of send of end messages in all the ci’s. �

10.4 Characterization of the decidable topologies

Since our mutual reductions between counter machines and polyforest systems of communicating
tick automata show how transform counters into channels, and zero tests into emptiness tests, we may
completely characterize which topologies have a decidable reachability problem, depending on ex-
actly which channels can be tested for emptiness. Intuitively, decidability holds even in the presence
of multiple emptiness tests, provided that each test appears in a different weakly-connected compo-
nent.

Theorem 10.3 (Characterization of decidable topologies). Given a topology T , the reachability prob-
lem for systems of communicating tick automata with topology T is decidable if and only if T is a
polyforest containing at most one testable channel in each weakly-connected component.

Proof. Let us prove both implications of this theorem.

• For one direction, assume that the reachability problem for systems of communicating tick
automata with topology T is decidable. The topology T is necessarily a polyforest, since the
reachability problem is undecidable for non-polyforest topologies even without ticks [Pac82,
BZ83]. Suppose that T contains a weakly-connected component with (at least) two channels
that can be tested for emptiness. By an immediate extension of Theorem 10.2 to account for the
undirected path between these two channels, we can reduce the reachability problem for two-
counter automata to the reachability problem for systems of communicating tick automata with
topology T . Since the former is undecidable, each weakly-connected component in T contains
at most one testable channel.

• For the other direction, assume that T is a polyforest with at most one testable channel in
each weakly-connected component, and let S be a system of communicating tick automata
with topology T . Thus, S can be decomposed into a disjoint union of independent systems
S1, . . . ,Sn, where each Si has a polytree topology Ti containing at most one testable chan-
nel. The only interactions between S1, . . . ,Sn are through τ actions. But these interactions are
superficial: every run of Si can be continued with arbitrarily many τ actions, as required by

189

REACHABILITY PROBLEM IN COMMUNICATING TICK AUTOMATA

(9.1). Therefore, S has a run if, and only if, each Si has a run. By Theorem 10.1, the reacha-
bility problem for systems of communicating tick automata with topology Ti is reducible to the
reachability problem for counter automata where only one counter can be tested for zero. As the
latter is decidable [Rei08, Bon11], the former is decidable, too. We obtain that the reachability
problem for systems of communicating tick automata with topology T is decidable. �

Conclusion

Even though global synchronization makes communicating tick automata more expressive than com-
municating finite-state machines, our characterization shows that the reachability problem is decidable
for exactly the same topologies (that is, polyforests). However, while reachability problem for com-
municating finite-state machines is PSPACE-complete, it is EXPSPACE-complete for communicating
tick automata. In the next chapter, we extend some results to communicating timed automata, thanks
to technical lemmas allowing one to reschedule runs, and thus allowing one to discretize continuous
timed systems.

190

Chapter 11

Reachability Problem in Communicating
Timed Automata

Introduction

In this chapter, we consider communicating timed automata, that is communicating timed processes
synchronizing over the dense delay domain D = R+. We extend results for tick automata of Chap-
ter 10 to the case of timed automata. To this end, we present mutual, topology-preserving reductions
between communicating tick automata and communicating timed automata.

The idea is to abstract each timed automaton by a tick automaton preserving essential informations
about the synchronization with respect to time. First, each timed automaton is instrumented with τ -
transitions fired regularly to ensure the synchronization of time elapsing in all automata when time will
be abstracted. Then, the usual region construction is performed to obtain tick automata. The proof of
the equivalence of the reachability problems in both models will be finally done thanks to a technical
lemma allowing to reschedule the actions of a timed automaton. Unfortunately, this approach does
not apply when emptiness of channels can be tested. We discuss why it would be difficult to deal with
these tests at the end of the chapter. The reciprocal reduction is intuitive (one τ is translated in one
time unit) and its correctness is much simpler. It is also presented in this chapter together with the
resulting undecidability result. Note that this reduction deals with emptiness tests. As a consequence,
it yields a more general undecidability result than the straightforward reduction of communicating
finite-state machines which already implies undecidability for non-polyforest topologies.

The chapter is structured as follows. We first explain the construction to encode timed automata
by tick automata. We prove the correctness of the construction assuming that the rescheduling lemma
holds. Section 11.2.2 is then devoted to the proof of this technical lemma which is nevertheless
central. We draw the consequences of this reduction in Section 11.2.3, thus obtaining a decidability
result. Finally, in Section 11.3 we present the reciprocal reduction which is simpler and implies
undecidability results.

11.1 From continuous time to discrete time

In this section, we aim at transforming a system of communicating timed automata S into a system
of communicating tick automata S ′ with the same topology. Of course, this transformation has to
preserve reachability of final locations. Recall that the classical region construction [AD94] (recalled
in Chapter 2, page 32) allows such a transformation for a single timed automaton. Moreover, it

191

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

(Bp, 0)
g∧(t=0)−−−−−−→

(Bp, 1)
g∧(0<t<1)−−−−−−−→

τ,t = 0

τ,t = 1, {t}

Figure 11.1: From timed to tick automata: instrumentation of a timed automaton B with τ -transitions.

provides a finite transition system RG(B), called the region automaton, for any given timed automaton
B that preserves reachability of final locations. Concretely, from every path in B we have a path in
RG(B) by removing delays. Conversely, from every path in RG(B), one can build a path in B by
inserting adequate delays. This is however not true for a system of communicating timed automata.
More precisely, there are paths in the system 〈T ,M, ∅, (RG(Bp))p∈P 〉 that are not feasible in the
system 〈T ,M,R+, (JBpK)p∈P 〉. Intuitively, synchronization of processes on delays does not enable
all interleavings of actions. In this section, we introduce a construction that allows to apply the region
graph construction separately on each process, when the topology T is test-free and acyclic. Our
reduction only manipulates processes locally, thus preserving the topology.

Sketch of the construction. The construction performed separately on each process can roughly
be summarized as follows. We first apply a step (called “instrumentation” hereafter) that introduces
ticks in order to retain enough synchronization to enable only the paths that are feasible in dense time.
Then, we abstract time, replacing each timed automaton by the region automaton of its instrumented
version, thus obtaining tick automata.

Formal definition of the construction.

• Instrumentation. Let us explain how to introduce τ -actions in each process Bp to perform a
synchronizing tick action τ at each integer date k and at each interval (k, k + 1). We build
an automaton Instr(Bp), depicted in Figure 11.1 on the left, that consists in two copies (called
“modes”) of Bp: (Bp, 0) and (Bp, 1). Actions occurring on integer dates k are performed in
(Bp, 0), and those in (k, k+ 1) happen in (Bp, 1). This is ensured by adding a new clock t and
τ -transitions that switch from one mode to the other.

Definition 11.1 (Instrumentation). The τ -instrumentation of the timed automaton B = 〈L,LI ,
LF , X,Σ,∆〉 is the timed automaton Instr(B) = 〈L × {0, 1}, LI × {0}, LF × {0, 1}, X ∪
{t},Σ ∪ {τ},∆′〉, where t 6∈ X and ∆′ is defined by:

– (`, 0)
σ,g∧(t=0),R−−−−−−−−→ (`′, 0) ∈ ∆′ and (`, 1)

σ,g∧(0<t<1),R−−−−−−−−−→ (`′, 1) ∈ ∆′ for all rules

`
σ,g,R−−−→ `′ in ∆,

– and (`, 0)
τ,(t=0),∅−−−−−−→ (`, 1) ∈ ∆′ and (`, 1)

τ,(t=1),{t}−−−−−−−→ (`, 0) ∈ ∆′ for all locations ` ∈ L.

• End of the construction. Once the instrumentation is done, we obtain an equivalent system
of tick automata by applying the region construction to each instrumented process. Formally,
each process of the system of communicating timed automata is replaced by the tick automa-
ton Ap = RG(Instr(Bp)), that is by the region graph of its instrumentation Instr(Bp, τ). The
number of regions for an automaton with clocks X and maximal constant M is bounded by
|X|!.2|X|.(2M + 2)|X|, hence the construction is factorial in the size of B.

192

CORRECTNESS OF THE REDUCTION

The next section is devoted to the proof of the correctness of this construction with respect to the
reachability problem.

11.2 Correctness of the reduction

In the previous section, we presented an abstraction of communicating timed automata by communi-
cating tick automata, manipulating each process separately. In this section, we prove that this con-
struction preserves the reachability of final locations, thus obtaining the following theorem.

Theorem 11.1. Let T be a test-free acyclic topology. For every system of communicating timed au-
tomata S = 〈T ,M,R+, (JBpK)p∈P 〉 with topology T , we can produce, in exponential time, an equiv-
alent system of communicating tick automata S ′ = 〈T ,M, {τ}, (Ap)p∈P 〉 over the same topology T ,
where the tick automaton Ap = RG(Instr(Bp)) is obtained by applying the region graph construction
to Instr(Bp, τ).

11.2.1 Proof of the correctness using a rescheduling lemma

Instrumentation preserves reachability Let us consider S1 = 〈T ,M,R+, (JInstr(Bp)K)p∈P 〉, the
system obtained from S by intrumenting the processes. Let tp be the clock added by instrumentation
in process p. From any path %1 in S1, we easily obtain a path % in S by removing the τ transitions.
Conversely, consider a run % in S. We need to make sure that every transition on % can be taken by
S1 despite the constraints introduced by the instrumentation on tp. In fact, every delay transition in %
can be cut into a sequence of delays and τ -transitions to ensure that for every process p, tp = 0 when
in mode 0 and 0 < tp < 1 when in mode 1, hence tp does not prevent a transition to be fired. Hence,
S has a reachable final location iff S1 has a reachable final location.

Synchronization over τ -transitions preserves reachability Consider system S2 = 〈T ,M,R+ ∪
{τ}, (Instr(Bp))p∈P 〉 which is similar to S1 except that the processes not only synchronize on dense-
time delays but also on τ -transitions. Every run %2 in S2 is easily transformed into a run %1 in S1 by
replacing every synchronized τ -transition by a sequence of |P | τ -transitions. For the opposite direc-
tion, take any run %1 in S1. Since all actions performed in mode 0 occur instantaneously, τ -transitions
may be interleaved with communication actions on %1. However, we can reschedule actions that
occur instantaneously, taking care of the causality between communication actions. In particular, τ -
transitions do not interact with communication actions. Hence, without loss of generality, we can
assume that all the processes do their τ -transition sequentially when entering mode 0, then commu-
nication actions, and finally, they all do their τ -transition sequentially when leaving mode 0. Then
replacing every sequence of |P | τ -transitions by a synchronized τ -transition yields a path in S2. As a
consequence, S1 has a reachable final location iff S2 has a reachable final location.

Region abstraction preserves reachability We consider the system of communicating tick au-
tomata S ′ = 〈T ,M, {τ}, (RG(Instr(Bp)))p∈P 〉. Thanks to the region graph construction every run in
S2 yields a run in S ′. The heart of the proof is to prove the reciprocal implication. Let us consider a
run %′ in S ′ and prove that there is a corresponding one in S2.

• Need for rescheduling. Thanks to the region graph construction, from %′, we obtain a run for
every process p (called local runs). The challenge to build a run of the system of communicating
processes is to schedule all the actions in %′ on timestamps that are consistent with the guards in

193

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

0 1
a1a2 b1a3 b2

a0b0τ τb3a4τ

0 1
a1
a2
a3 b1

b2

Ip Iqa0b0τ τa4b3τ

Figure 11.2: Addition of τ ’s along a run (left) and rescheduling of a run (right).

S2 and that preserve dependencies between transmissions and receptions of messages. In other
words, we are looking for an interleaving of the local runs which is consistent.

• All the processes share the same mode. Thanks to the instrumentation, all the actions between
two fixed τ ’s in %′ are done in local runs either on an integer date k (mode 0 for all processes)
or in an open interval (k, k + 1) (mode 1 for all processes).

• Ticks partially preserve dependencies. If a transmission of a message and its reception are
separated by at least one τ -action along %′, then in all possible interleavings of local runs cor-
responding to %′ (necessarily respecting the synchronization over τ ’s), the transmission of a
message is done before the reception. A problem can only occur for a transmission whose
reception is done in the same interval of ticks.

– Mode 0. If the transmission of a message and its reception are done between the same
ticks and if processes are in mode 0, then they appear simultaneously (on an integer date
k) in the local runs. As a consequence, it causes no problem to build the run in S2 from
the local runs because they can freely be interleaved.

– Mode 1. The potential conflict between guards over clocks in processes and dependencies
between transmissions and receptions of messages can only appear when timed automata
are in mode 1. We thus propose a way to ensure that it is always possible to schedule
transmissions in channels (p, q), and then their receptions. This is depicted in Figure 11.2
on the left (before rescheduling) and on the right (after rescheduling) where the a’s are
emissions of p and the b’s are receptions of q. The rescheduling Lemma establishes that
every run of a timed automaton can be rescheduled such that integral timestamps ti ∈ N
are kept the same, and non-integral timestamps ti ∈ (k, k+ 1) belong to k+ I for a given
I ⊆ (0, 1).

Lemma 11.1 (Rescheduling Lemma). Let B be a timed automaton, % = (`0, v0)
d1−→

(`0, u1)
t1,a1−−−→ (`1, v1)

d2−→ (`1, u2)
t2,a2−−−→ · · · (`n, vn), and I ⊆ (0, 1) an open interval.

Then, there exists a run %′ = (`0, v
′
0)

d′1−→ (`0, u
′
1)

t′1,a1−−−→ (`1, v
′
1)

d′2−→ (`1, u
′
2)

t′2,a2−−−→
· · · (`n, v′n) such that for all 0 < i ≤ n, if ti ∈ N then t′i = ti and if ti ∈ (k, k + 1) then
t′ − i ∈ k + I .

– Please wait your turn. Intuitively, the above lemma allows us to restrict non-integer
timestamps in (k, k + 1) to occur in a predefined sub-interval k + I . Let us see how this
helps in constructing a run in S2 from local runs in timed processes. To each process p,
we associate an open interval Ip ⊆ (0, 1), such that, for every channel (p, q), Ip and Iq are
disjoint, and Ip comes before Iq. This is always possible on acyclic topologies. Hence, all
actions of process p in (k, k+ 1) on %′ can be rescheduled to occur in k+ Ip (according to
the rescheduling Lemma), thus preserving dependencies between transmissions by p and
receptions by q in intervals (k, k + 1).

194

CORRECTNESS OF THE REDUCTION

As a consequence, local runs can be rescheduled to respect causality between transmissions and re-
ceptions. This yields a run in S2 where all processes synchronize on both delays and τ transitions.
Hence, there is a reachable final location in S2 iff there is a reachable final location in S ′.

11.2.2 Proof of the rescheduling lemma

To conclude the proof of Theorem 11.1, we need to prove the correctness of the rescheduling Lemma.
Intuitively, resets and guards in a timed automaton allow to enforce minimal and/or maximal delays
between timestamps on a path. Since clocks are compared to integers only, it suffices to just distin-
guish between integral and non-integral dates. While for closed guards like x ≤ 1 a non-integral
time-point t ∈ (0, 1) would suffice to represent all non-integral dates, to accommodate open guards
like x < 1 we need a dense interval I ⊆ (0, 1).

Preliminaries The proof is based on a refinement of the region equivalence for bound M = ∞.
Two valuations v and v′ are equivalent, denoted v ∼ v′, if for all clocks x and y:

1. bv(x)c = bv′(x)c,

2. {v(x)} = 0 iff {v′(x)} = 0, and

3. {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}.

The following Lemma is an intermediate result for the proof of the Rescheduling Lemma. It is
also a good warming-up before a simple but tedious proof.

Lemma F. For all non-negative real numbers t, t′ and t′′ such that t > t′, t > t′′ and 0 ≤ {t′} < {t′′}
we have:

{t′} ≤ {t} < {t′′} ⇒ {t− t′} < {t− t′′} (11.1)

{t} < {t′} or {t′′} ≤ {t} ⇒ {t− t′′} < {t− t′} (11.2)

Proof. First, observe that for non-negative real-numbers t and t′:

{t− t′} =

{
{t} − {t′} if {t} − {t′} ≥ 0

1 + {t} − {t′} otherwise
(11.3)

Let us first prove (11.1). From {t′} < {t′′}, we have {t′′} < {t′} + 1, hence 1 + {t} − {t′′} >
{t} − {t′}. Then since {t′} ≤ {t} < {t′′} it comes {t− t′} < {t− t′′} by (11.3).

Now, we turn to the proof of (11.2). From {t′} < {t′′} we deduce {t} − {t′} > {t} − {t′′}. If
{t′′} ≤ {t}, from (11.3) we obtain {t− t′′} = {t}−{t′′} < {t}−{t′} = {t− t′}. If {t} < {t′}, then
we deduce that 1 + {t} − {t′} > 1 + {t} − {t′′} which also leads to {t− t′′} < {t− t′} by (11.3).�

We are now ready to prove the rescheduling Lemma. Without loss of generality, we can assume
that a run of a timed automaton B is an alternating sequence of delays di ∈ R+ and actions ai 6∈ R+:
(`0, v0)

d1−→ (`0, u1)
t1,a1−−−→ (`1, v1)

d2−→ (`1, u2)
t2,a2−−−→ · · · (`n, vn). We omit the timestamps on delays

as they are not needed in the sequel.
Let I be an interval such that I ⊆ (0, 1). We show that, from every path % = (`0, v0)

d1−→

(`0, u1)
t1,a1−−−→ (`1, v1)

d2−→ (`1, u2)
t2,a2−−−→ · · · (`n, vn), we can build a path %′ = (`0, v

′
0)

d′1−→

195

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

(`0, u
′
1)

t′1,a1−−−→ (`1, v
′
1)

d′2−→ (`1, u
′
2)

t′2,a2−−−→ · · · (`n, v′n) such that v′0 = v0, and for all i ∈ {1, . . . , n}, if
ti ∈ N then t′i = ti, otherwise, t′i ∈ btic+ I , and vi ∼ v′i and ui ∼ u′i.

Note that the integral parts of timestamps are preserved. The choice concerns only fractional parts
{ti}’s.

A proof by induction We prove by induction on the length of path % that all t′i can be chosen such
that vi ∼ v′i and ui ∼ u′i for all i ≥ 0. This is obvious for v0 and v′0 as they are equal. Now, we
assume that vi ∼ v′i holds up to some given i ≥ 0, and we prove that u′i+1 can be built such that
ui+1 ∼ u′i+1. Observe that this entails vi+1 ∼ v′i+1 as vi+1 and v′i+1 are obtained from ui+1 and u′i+1

respectively by resetting the same clocks as specified by the transition labeled by the action ai+1.

Notations For every clock x, let tx denote the last timestamp before ti+1 when clock x has been
reset. That is, tx is the largest timestamp tj in {t0, . . . , ti} such that x is reset on the transition labeled
by aj . In the same way, we define t′x relatively to t′i+1 that we are going to build. Observe that
ui+1(x) = ti+1 − tx and u′i+1(x) = t′i+1 − t′x for every clock x. The induction hypothesis thus
implies that lemma holds for tx and t′x. That is: if {tx} = 0 then {t′x} = 0 otherwise {t′x} ∈ I .
Moreover, {ui+1(x)} = {ui+1(y)} entails {tx} = {ty} for all clocks x and y. The same holds for
u′i+1, t′x and t′y.

Condition 1 Let us prove that bui+1(x)c = bu′i+1(x)c for every clock x, which corresponds to
condition 1 of the region equivalence. We prove that this holds for any choice of t′i+1 that respects
the conditions of the rescheduling lemma. We have ui+1(x) = bti+1c − btxc + {ti+1} − {tx}
and u′i+1(x) = bt′i+1c − bt′xc + {t′i+1} − {t′x}. The cases where {tx} = 0 or {ti+1} = 0 are
straightforward. We only detail the case where {tx} ∈ (0, 1) (which entails {t′x} ∈ I by induction)
and ti+1 ∈ (0, 1). We show that any choice of {t′i+1} ∈ I is valid. We have −1 < {ti+1} − {tx} < 1
hence bti+1c − btxc − 1 < bui+1(x)c < bti+1c − btxc + 1. In the same way, we have −1 <
{t′i+1} − {t′x} < 1 and hence bt′i+1c − bt′xc − 1 < bu′i+1(x)c < bt′i+1c − bt′xc + 1. Now, since
bti+1c = bt′i+1c, btxc = bt′xc, and 0 is the only integer strictly between −1 and 1, we deduce that
bui+1(x)c = bu′i+1(x)c.

Condition 2 and 3 We now prove that conditions 2 and 3 of the region equivalence hold. Let
X0, . . . , Xk ⊆ X define a partition of the clocks according to their fractional part in the valuation vi.

• Partitioning For each x, y ∈ Xj , {vi(x)} = {vi(y)}, for each x ∈ Xj and y ∈ Xj−1,
{vi(y)} < {vi(x)}, and

⋃k
j=0Xj = X . Observe that vi and v′i define the same partition of

clocks as vi ∼ v′i. This partition is depicted in Figure 11.3 to the left. As time elapses from vi
and v′i, the fractional part of clock valuations increases and the ordering of partitions changes
in a circular way. Some clocks, say X0, . . . , Xj−1 have their fractional part increased, whereas
some others, say Xj . . . , Xk have their fractional part decreased as they have been set back to
0 meanwhile. Assume that the ordering of fractional part of the clocks in ui+1 is as depicted in
Figure 11.3 to the right.

• Rephrasing We now show that {t′i+1} can always be chosen in such a way that u′i+1 has the
same ordering of the fractional part of the clocks as ui+1, which will conclude the proof that
ui+1 ∼ u′i+1.

196

CORRECTNESS OF THE REDUCTION

01

X0

X1

Xj−1
Xj

Xk
01

Xj
Xj−1

Xk
X0

X1

Figure 11.3: The ring of fractional parts before (left) and after (right) time elapses.

– Trivial partition case We first consider the case when the partition only contains the
single set X . As all the clocks have the same fractional part, only condition 2 of the
region equivalence needs to be considered.

∗ If {ui+1(x)} = 0 for every clock x, we simply choose {t′i+1} = {t′x} which yields
{u′i+1(x)} = 0. By induction, {t′i+1} satisfies the lemma.
∗ If {ui+1(x)} > 0 for every clock x, choosing {t′i+1} 6= {t′x} guarantees that
{u′i+1(x)} > 0 too. We need to show that there always exists such a solution. From
{ui+1(x)} > 0, we obtain {ti+1 − tx} > 0, hence we cannot have {ti+1} = 0 and
{tx} = 0 at the same time. If {ti+1} = 0 then {tx} > 0, hence {t′i+1} = 0 is a
solution since {t′x} > 0 by induction hypothesis. Conversely, if {ti+1} ∈ (0, 1),
then we can choose any {t′i+1} ∈ I distinct from {t′x} (recall {t′x} = {t′y} for all
clocks x and y).

– General case Now, we consider a partition X0, . . . , Xk of the clocks in vi and v′i, with
k ≥ 1, and the partition Xj , . . . , Xk, X0, . . . , Xj−1 in ui+1 as depicted in Figure 11.3.
Let us first focus on the case when {ui+1(x)} = 0 for x ∈ Xj . As u′i+1(x) = t′i+1 − t′x,
for {u′i+1(x)} = 0 it must be the case that {t′i+1} = {t′x}. By induction hypothesis, this
value of {t′i+1} satisfies the lemma.
Now consider the case where {ui+1(x)} > 0 for x ∈ Xj . As illustrated on Figure 11.3 to
the right, we need to make sure that, in valuation u′i+1, the clocks in Xj have the smallest
fractional part and the clocks in Xj−1 have the largest one. This is ensured by condition
{u′i+1(x)} < {u′i+1(y)} for x ∈ Xj and y ∈ Xj−1, which translate as:

{t′i+1 − t′x} > 0 and {t′i+1 − t′x} < {t′i+1 − t′y}. (11.4)

We distinguish two cases depending on whether {t′y} > {t′x} or {t′y} < {t′x}. Let us
consider the first case. From Lemma F and inequalities (11.4), we need to find a value of
{t′i+1} such that {t′x} < {t′i+1} < {t′y}. By induction hypothesis we have {t′y} ∈ I and
the following two cases for {t′x}:
∗ either {t′x} = 0, then {tx} = 0 by induction, hence {ti+1} > 0 as {ui+1(x)} > 0.

Since {ti+1} ∈ (0; 1) we must choose {t′i+1} in I = (a, b). Taking {t′i+1} = a+{t′y}
2

fulfills all the requirements.

∗ or {t′x} ∈ I . Then choosing {t′i+1} = {t′x}+{t′y}
2 yields a solution.

It remains to consider the case when {t′y} < {t′x}. Applying Lemma F on (11.4) yields
two sets of solutions: {t′i+1} < {t′y} or {t′x} ≤ {t′i+1}.

∗ If {ti+1} ∈ (0; 1), then {t′i+1} = {t′x}+b
2 is a solution as {t′x} ≤ {t′i+1} and, by

induction hypothesis, {t′x} ∈ I since {t′y} < {t′x} (i.e. {t′x} 6= 0).

197

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

∗ Now, if {ti+1} = 0 we have {ty} > 0. Indeed, as y ∈ Xj−1, we have {ui+1(y)} =
{ti+1 − ty} > 0 and {ty} = 0 entails {ti+1} > 0, a contradiction. By induction
hypothesis, from {ty} > 0 we get {t′y} > 0. Hence, we can pick {t′i+1} = 0 which
satisfies {t′i+1} < {t′y}.

Finally, it remains the case when the ordering of fractional parts is the same in vi and ui+1.
Then, considering Xj = X0, and Xj−1 = Xk yields a solution for {t′i+1} as stated above.

11.2.3 Consequences

We reduced the reachability problem in communicating timed automata with a test-free and acyclic
topology to the reachability problem in communicating tick automata with the same topology. As a
consequence of this reduction together with Theorem 10.3 and Corollary 10.1, we obtain the following
theorem.

Theorem 11.2 (Characterization of decidable test-free topologies). Given a test-free topology T , the
reachability problem for systems of communicating timed automata with topology T is decidable if
and only if T is a polyforest.

Moreover, the reachability problem for systems of communicating timed automata with test-free
polyforest topology is EXSPACE-hard and in 2EXPSPACE.

While the reachability problem is known to be decidable for a system of two communicating timed
automata with only one channel and emptiness test [KY06], that proof does not preserve the topology
and it looks hardly adaptable to arbitrary polyforest topologies. Unfortunately, the rescheduling ap-
proach does not work when emptiness of channels can be tested because a rescheduling can change the
result of an emptiness test. Therefore, the above decidability result is not as general as Theorem 10.3
for tick automata. We discuss this limitation in Section 11.4.

11.3 Reciprocal reduction and its consequences

In this section, we translate the undecidability cases of Theorem 10.3 to communicating timed au-
tomata. To do so, we make the reduction from tick to timed automata in a very intuitive way.

Reduction Given a system of communicating tick automata S , we produce an equivalent system
of communicating timed automata S ′, over the same topology. The synchronization on τ ’s is easily
simulated using clocks in S ′ by ensuring that all the processes elapse 1 time unit exactly when they
(synchronously) perform a τ in S. Thus, every run in S has a corresponding run in S ′. For the
converse to hold, we have to make sure that for every run of S ′, all the processes perform the same
number of τ ’s on the corresponding run of S . In fact, it is always possible to make uniform the number
of ticks in processes. Indeed, this is ensured by condition (9.1) (in page 176) since we require that
timed processes can always delay from their final locations, while staying in final locations.

The following theorem thus follows from Theorem 10.3.

Theorem 11.3 (Undecidability). Given a topology T with two testable channels in the same weakly-
connected component, the reachability problem for systems of communicating timed automata with
topology T is undecidable.

The simple topology p −→ q −→ r was known to be undecidable when both channels can be tested
for emptiness [KY06]. Theorem 11.3 strongly generalizes this result establishing undecidability for
every topology containing at least two testable channels in the same weakly-connected component.

198

ABSTRACTION OF COMMUNICATING TIMED AUTOMATA WITH EMPTINESS TESTS IS
DIFFICULT

11.4 Abstraction of communicating timed automata with emptiness tests
is difficult

In this section we discuss why our abstraction (presented in Section 11.1) does not work with channels
with emptiness tests and why it seems difficult to find a suitable abstraction that preserves the topology.
Notice that an abstraction that does not preserve the topology is known for the particular case of a
channel with distinct sender and receiver [KY06].

11.4.1 Our construction is not sound for emptiness test

We propose the simple example in Figure 11.4. From top to bottom, there are a sender and a re-
ceiver, communicating via a channel c. We can easily verify that there is no global run in this system.
Indeed, due to timing constraints, the actions along a global run have to be in the following order:
c!a; c?a; c== ε; c!a; c== ε; c?a. Then the second emptiness test fails because c is not empty. Hence
the receiver cannot reach its final location. On the contrary, the system of communicating tick au-

0<x<1,c!a,{x} x=1,c!a,{x}

0<y<1,c?a 0<y<1,c== ε,{y} y=1,c== ε,{y} 0<y<1,c?a,{y}

ε,{x}

ε,{y}

Figure 11.4: A counter-example to our abstraction with emptiness test.

tomata obtained by applying the construction in Section 11.1 has a global run that reaches the final
locations. This system is depicted in Figure 11.5. The global run corresponds to the sequence of
actions c!a; c?a; c== ε; τ ; c== ε; c!a; c?a where both processes synchronize on τ . Observe that this
global run cannot be re-scheduled in the spirit of the Rescheduling Lemma. Indeed, both real-time
constraints and dependencies between the communication actions prevent to swap actions c== ε; c!a
into c!a; c== ε.

c!a τ c!a

c?a c== ε τ c== ε
τ

c?a

c?a

ε,τ

ε,τ

ε,τ

Figure 11.5: A counter-example to our abstraction with emptiness test.

In fact, even with a single channel, scheduling all the emissions of a one time unit before all the
receptions, emptiness tests can becomes false. We then would like to schedule differently in order to
preserve the successful emptiness tests. For instance, if the sender emit a and b and the receiver can
receive a but is able to receive b only after an emptiness test and an internal action, we would like to
schedule the reception of a and the emptiness test before the emission of b. A first idea would thus be
to try to allocate several slots to each process.

199

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

11.4.2 Why soundness is hard to achieve

Our abstraction is based on the possibility to allocate one slot per time unit (the interval I in the
rescheduling Lemma) to each process in the system. In the previous section, we have seen that in
presence of emptiness test, one slot per process may not be sufficient. We now show that we cannot
even find a bound on the number of slots per time unit needed by each process.

0<x<1,c!a

0<x<1,c!b

ε,{x}
0<y<1,c?a

0<y<1,c== ε0<y<1,c?b

0<y<1,c?b

ε,{y}ε,{x} ε,{y}

Figure 11.6: A counter-example to our abstraction with emptiness test.

Figure 11.6 shows an example with a sender p (left) and a receiver q (right) that communicate
via a channel c = (p, q). Consider a global run of the system where the sender p performs actions
c!a; c!b while the receiver q does actions c?a; c== ε; c?b. Obviously, q has to perform the emptiness
test c== ε between the two emissions by p. Observe that both processes can iterate this behavior.
Finally, all these actions occur in one time unit. This shows that the number of slots needed by p and
q depends on the number of iterations on their respective loops. Thus there may not be an uniform
choice of slots in presence of emptiness tests.

Notice that this is due to a convergence phenomenon but not necessary to Zeno behaviors. Adding
loops that reset the clocks on the initial locations of both process, we could let one time unit elapse
infinitely often, but the problem would remain the same.

Conclusion

In this chapter, we translated the characterization of the topologies of systems of communicating
processes for which reachability is decidable from communicating tick automata to dense timed pro-
cesses. To do so, we introduced a rescheduling lemma allowing, in timed automata whose accepting
locations are reachable, to build runs in which actions are done either on integral timestamps or on
timestamps whose fractional part is in any fixed interval. We also generalized the undecidability result
of [KY06], doing a reduction from discrete time to dense time. Finally, we illustrated the limitations
of the rescheduling approach with respect to the tests of emptiness of channels (which corresponds
to the urgency in [KY06]). We thus exhibited a simple example constituted of one channel with a
sender and a receiver illustrating the impossibility to bound the number of interleavings of sequences
of their respective actions. Note that this example is based on convergence phenomena that we studied
in the previous part in timed automata with frequencies. It could be interesting to investigate some
restrictions using the notion of forgetfulness, which may permit the rescheduling lemma or a variant
to apply.

200

Conclusion

We have studied the decidability and complexity of the reachability problem for communicating timed
processes synchronizing over discrete or continuous time. In discrete time, we gave a complete char-
acterization of decidable topologies with emptiness tests, as well as a tight connection with Petri nets
in the test-free case which allows to conclude that for polyforest topologies, the reachability problem
is EXSPACE-complete. Our approach for the characterization can be seen as a generalization of the
proof in [KY06] where dense time was only used in a discrete way. In dense time, we proved the
decidability for polyforest test-free topologies which is the same result as for communicating finite-
state machines. Moreover, we generalized the undecidability result of [KY06] to arbitrary weakly-
connected topologies containing two testable channels. The rescheduling approach does not work
in the presence of emptiness tests, to lift the characterization of decidable topologies from discrete
time to dense time. Nevertheless, an interesting open problem is to get an equivalent system of tick
automata by another approach.

201

REACHABILITY PROBLEM IN COMMUNICATING TIMED AUTOMATA

202

Part VI

Conclusion and Future Works

203

Conclusion and Future Work

Determinization of timed automata

Contribution To face the unfeasibility of determinization of timed automata in general, we pro-
posed a game approach that, given a timed automaton and resources (number of clocks and maximal
constant), allows one to find a good reset policy for the determinization of the timed automaton with
these resources. Every winning strategy yields a deterministic equivalent and losing strategies pro-
duce a deterministic approximation with good properties (over approximation or abstraction). The
approach improves the two existing methods [BBBB09, KT09]: it exactly determinizes strictly more
timed automata, and approximates more precisely in case the determinization is not exact.

A prototype has been implemented during a visit at Aalborg University in the team of Kim G.
Larsen and in particular thanks to the help of Peter Bulychev. For the moment, the implementation
is a bit rough. It implements the one-the-fly algorithm from [LS98] to avoid to build all the game if
possible.

The unfeasibility of determinization of timed automata can be annoying in the verification process.
Our game-approach yields a pragmatic solution to this fundamental problem, allowing to deal with
the impossibility to determinize all timed automata by performing an approximation when needed.
Thanks to the very expressive relations between clocks, our approximate determinization is built in a
clever way.

Implementation and heuristics The theoretical problem is hard and it would be of interest to de-
velop a more efficient tool which could be used or integrated to existing tools. We have several ideas
to develop.

• Greedy strategy for determinizable classes Our game-based algorithm allows to determinize
all timed automata of known determinizable classes. For these timed automata, the strategy is
simple and the deterministic timed automaton can be built in a greedy way. Roughly, each time
there is a clock of X which is reset (in the non-deterministic timed automaton), we reset one
clock of Y (in the deterministic timed automaton) preserving the fact that each clock of X is
exactly expressed (equal up to an integer). To do so, we choose to reset the first clock of Y
which is no longer used to express any clock of X , or which is used to express clocks whose
values are larger than the maximal constant, or which is used to express clocks having integral
values (hence it can be reset without losing the expression of these clocks up to an integer).
Such a strategy is winning for timed automata of classes known to be determinizable. A first
step in order to make the implementation usable would be to first try this strategy. Indeed, most
of the realistic real time systems can be modeled by timed automata of these classes.

• Beyond the greedy strategy Even if a lot of non-deterministic timed automata are determiniz-
able with our greedy approach, we need to improve the performances of the general algorithm.

205

Indeed, on the one hand, it is nice to be able to always produce a deterministic timed automaton
even if it is an approximation; on the other hand, the resources imposed for the determinization
can be restricted in such a way that the greedy strategy cannot be used. In this case, we search
a good tradeoff between the precision of the game approach and the computation time. Starting
with the greedy strategy until a deadlock is reached, can be a first option. Then, we could try
several heuristics to obtain greedy strategies hoping to find winning strategies or "good" losing
strategies. For example, one can minimize the imprecision of the expression of the clocks of
X by the clocks of Y in different ways. One can minimize the number of clocks of X which
are no longer expressed up to an integer by clocks of Y . One can also consider the size of the
imprecision. One thus prefers the relation 1 < x − y < 2 to the relation 0 < x − y < 3. It is
then possible to minimize the imprecisions in different ways, considering the maximal impre-
cision for a clock of X , or the sum of the imprecisions, or the average. We do not know if one
of these heuristics is better than the other ones. The comparison of losing strategies needs also
to be investigated. Sometimes, the language inclusion of two deterministic approximations can
be decided, but they can be incomparable. Depending on the context, we would like to develop
adequate criteria, and optimize heuristics with respect to them.

• Finding small strategies Beyond the size of the game or of the part of the game that we build,
the size of the resulting deterministic timed automata is also very important. We would like
to design heuristics to optimize this parameter. For example, we could simply add, in the
resources, a bound over the number of locations for the deterministic timed automaton which
is built. In this case, it would be possible to produce no result. It could of course be a first
try before using another version of the approach. Another idea would be to define simulation
relations between states in the game allowing to use the same strategy from the state which
is simulated as from the other. We thus hope that the deterministic timed automaton could be
quotiented into a smaller one.

Extensions to other models Extensions of timed automata have been investigated, such as timed
automata with data [dLAMJM11], timed automata with costs [ATP01, BFH+01] or even linear hybrid
systems [ACHH92]. We would like to adapt our game approach to deal with these models. The states
of the game would need to be refined, but studying the approximation mechanism and some extensions
of the relations (in particular for linear hybrid systems) could be of interest.

Off-line test selection for non-deterministic timed automata using test purposes

Contribution We provided a general formal framework for the generation of test cases from speci-
fications given as non-deterministic timed automata. In this approach, we use test purposes expressed
thanks to timed automata able to observe clocks of the specification. Problems due to non-determinism
of the specification are fixed thanks to our game approach for the determinization. It ensures that even
if the resulting deterministic specification is an io-abstraction, the conformance relation is preserved.
More precisely, sound test cases produced from the computed deterministic specification are always
sound for the non-deterministic specification. The risk due to the approximation is to miss some
non-conformances, that is to emit false positive verdicts.

Our approach is very general and provides at once, a formal setting and a procedure for the off-
line generation of test cases. To our knowledge, this is the most complete framework for this concrete
problem.

206

Control of the reachability of test purposes During the execution of a test case, the tester can
control inputs of the implementation, but outputs are not controllable. As a consequence, some test
purposes cannot be satisfied even if the implementation conforms to a specification which can satisfy
the purpose. In [DLLN09], a game approach is proposed to select controllable executions of the test
cases. The risk is then to miss some or even all traces. Our approach allows one to lose the game and
produce an Inconc verdict when this happens. Nevertheless, we can optimize the chances to satisfy
the test purpose. In our framework, we prune the controllable actions of the test cases leading to states
which are not co-reachable from the purpose, but we could improve the method. For example, when
two inputs are possible, one input can lead in a controllable path whereas the other does not. We
then could perform a preprocessing in order to compute states from which the reachability of the test
purpose is controllable, as well as the paths to execute.

Coverage criterion to lead generation of test purposes Test purposes allow one to select some
behaviors to test. In our framework, we assume that test purposes are given. The generation of a
suitable set of test purposes is a problem in itself. A syntactic coverage criterion (e.g. edge coverage,
and see [UL10] for more examples) intrinsically defines a set of test purposes. Naturally, depending
on the context, expected properties can be different, but we would like to define coverage criteria
to guide the generation of test purposes. Then, there will be a tradeoff between the precision of the
coverage criterion and the controllability of the reachability of the purposes. It would be of particular
interest to discuss with industrial partners in order to understand their practices and concrete needs.

Extension to networks of timed automata More and more systems are distributed. They can
be modeled by communicating processes for example by synchronized exchanges of messages or
via channels. We saw, in Part V, that their verification is very difficult. It is then interesting to
generate test cases for such a model, even if the scalability remains the main problem. Specifications
can be defined separately for each process. Of course, the global system can be tested as a single
transition system, but the entire model could have a huge size or be infinite. The goal of the approach
would be to distribute the generation of test cases and thus avoid to compute or to widely explore
the product of all the processes. Even without timing aspects, this problem is hard. First of all, the
usual conformance relation is not compatible with the composition, that is two implementations can
conform to their respective specifications whereas the product of them does not conform to the product
of the specifications, because of some deadlocks. Then, a possible outline for the approach would be
to generate test cases separately for each process and to use them for the generation of test cases for
the global system. We would like to investigate possibilities to adapt our approach to such settings,
even if we know that it is a long term objective.

Frequencies in timed automata

Contribution We defined new quantitative semantics for the acceptance of infinite timed words
in timed automata. The frequency of a run is the proportion of time elapsed in accepting location
along it. A run is thus said accepting if it satisfies a fixed frequency-based constraint. A word is
accepted if there is at least one accepting run reading it. With the motivation to decide language
problems such as emptiness or universality, we studied the set of frequencies in timed automata. We
first presented techniques applying only to one-clock timed automata to compute the bounds of the
set of frequencies, and then extended our results to timed automata with several clocks, assuming
that there were no convergence phenomena. The computation of the bounds of the set of frequencies
in a timed automaton permits to decide emptiness, and even universality if the timed automaton is

207

deterministic. Finally, we reduced the universality problem for timed automata with Büchi semantics
to the universality problem with frequencies. The latter problem is thus non-primitive recursive for
one-clock timed automata and undecidable with several clocks. We also proved the decidability of the
universality for Zeno words in one-clock timed automata with positive frequencies, but the non-Zeno
case remains open.

Modeling quantitative aspects in timed automata is primordial to answer to questions about energy
consumptions or failure rates for example. This work focuses on a particular case of double-priced
timed automata and for their study, develops novel techniques. These techniques permit to investigate
deeply the link between runs in a timed automaton and runs in its corner-point abstraction. They are
generic and could be adapted to other contexts.

Remaining open questions Beyond the decidability of the universality for non-Zeno words in one-
clock timed automata with frequencies, several questions remain open, in which we are interested
but for which we do not have concrete ideas. First, we proved the decidability of the universality for
Zeno words in one-clock timed automata with positive frequencies, but the proof does not trivially
extend to other frequency-based constraints. Moreover, we showed the undecidability of the univer-
sality problem for timed automata with frequencies, but we do not know whether the universality for
forgetful and/or strongly non-Zeno timed automata with frequencies is undecidable. Generally, we
are still looking for restrictions allowing to decide universality with frequencies. On the other hand,
concerning the decidability of the emptiness problem, we would like to relax non-convergence as-
sumptions. A first step would be to deal with Zeno behaviors, that is to relax the strong non-zenoness
assumption. For one-clock timed automata, we succeeded in dealing with them thanks to careful in-
spections of cases. We would be interested in investigating whether the techniques can be extended to
timed automata with several clocks. Finally, relaxing the forgetfulness assumption on timed automata
would be of interest, we hope that it could help to better understand the convergence phenomena.

Determinization preserving some properties of the frequencies The determinization of timed
automata is not possible in general, we discussed this fact in Part III of the document. Nevertheless,
some classes are known to be determinizable. Note that this determinizability is valid only for the
usual semantics for finite words. Indeed, even without time, deterministic Büchi automata are strictly
less expressive than non-deterministic ones. Similarly to Büchi automata, the determinization of
timed automata with frequencies is impossible in general. We would like to find some restriction
allowing the determinization not necessarily preserving exact frequencies, but possibly preserving
other properties such as "larger than a threshold" to preserve a frequency-based language. Another
important operation which we would like to be able to perform, would be the complement. The main
interest of the complement would be to decide the universality of the language, thus reducing it to
emptiness of the complement.

Extension to several frequencies A natural extension of our frequency-based semantics is to con-
sider frequencies of several subsets of locations. Acceptance conditions could thus be of the form
freq1 ≥ λ1 ∧ freq2 ≥ λ2. The emptiness of the languages defined in this way would then be harder
to decide (if decidable at all). A first step could be to investigate such a model without time where
transitions have all the same weight. This is quite close to [CDHR10] where generalization of mean-
payoff conditions are studied in games.For one-clock timed automata, we contracted time in accepting
locations and dilated time in non-accepting location to compute lower bounds of the sets of frequen-
cies. With two frequencies, this is not as simple, but there may exist variants allowing to decide the

208

existence of a run satisfying at once two constraints over two different frequencies.

Forgetfulness of timed automata

Contribution The notion of forgetfulness has been introduced in [BA11] to detect cycles of timed
automata allowing to read timed languages with positive entropy, that is cycles along which there is
no forced convergence. Observing convergences asks for more and more precise clocks, thus these
behaviors are not realistic in an implementability point of view. We assumed the forgetfulness of
cycles to compute the set of frequencies of a large class of timed automata. Then, we established
technical lemmas allowing to make a tight link between runs of a timed automaton and runs of its
corner-point abstraction. In this way, given a run of the abstraction, one can build a very similar run
in the timed automaton, preserving the frequency value.

Forgetfulness is a fundamental notion close to non-zenoness, allowing to detect convergence phe-
nomena. It has been initially used to characterize timed automata whose languages have a positive en-
tropy [BA11]. Since the publication of our work, it has also been useful for robust control [SBMR13].
Moreover, convergences seem to be behind the limitations of other results such as for the model
checking of stochastic timed automata [BBBM08].

Open questions about forgetful timed automata Forgetful timed automata have been recently
introduced and several questions have to be studied. For example, this class is clearly closed under
union, but is it closed under other operations? Can we decide the universality of timed languages for
a given semantics? Does this class have nice properties useful in other contexts? In summary, we are
very impatient to broaden our knowledge about forgetful timed automata.

Using forgetfulness for some other problems Forgetfulness already was useful in another context:
it has been used to characterize timed automata which are robustly controllable [SBMR13]. In other
words, the goal is to distinguish timed automata where a Büchi condition can be satisfied in a robust
way; that is even when the chosen delays are systematically perturbed by an adversary by a bounded
parametrized amount. Timed automata for which there exists such a positive parameter are proved to
be exactly timed automata containing an accepting lasso whose cycle is forgetful.

On the other hand, we currently work on the model-checking of a robust variant of LTL, consid-
ering that only paths whose languages have a positive entropy matter. The formula is thus satisfied if
and only if there is no lasso counterexample with a forgetful cycle. To search such a counter-example,
we then prove that forgetfulness of a cycle implies its discretizability, and encode the search in a SAT
instance. The problem can thus be solved using a SAT-solver.

Finally, the quantitative model checking of timed automata with a probabilistic semantics is re-
stricted to one-clock timed automata, for the moment, but this limitation seems to be due to con-
vergence phenomena [BBBM08]. It would be of interest to investigate the possibility to extend the
approach to forgetful timed automata. Generally, we are still looking for other contexts in which
forgetfulness could be relevant and helpful.

Communicating timed processes

Contribution The most notable result is the characterization of topologies for which the reachability
problem is decidable in communicating timed automata. As for communicating finite-state machines,
the reachability problem is decidable if and only if the topology is a polyforest. This result can seem
to contradict the main theorem of [KY06] which establishes the undecidability for pipelines if and

209

only if there are at least three processes. In fact, models are slightly different. Indeed, in [KY06], the
undecidability result relies on the combination of the synchronization over time, and of the urgency of
receptions from channels, which disables internal actions when receptions are possible. Considering
urgent and non-urgent channels, we extended the result of [KY06]. On the one side, for communicat-
ing discrete timed processes, we completely characterized the decidable topologies. On the other side,
we partially translated this characterization to dense time, proving that polyforests, without urgency,
are decidable thanks to a rescheduling lemma. Unfortunately, this technical lemma does not deal with
urgency. As a consequence, the decidability of polyforest topologies with some urgent channels re-
mains an open question. Nevertheless, we also extended the undecidability result of [KY06], showing
that topologies which are not polyforests, or with a weakly connected component with at least two
urgent channels, are undecidable.

The remaining open question Our reduction from discrete time to dense time does not deal with
urgency. The decidability of polyforests with at most one urgent channel per weakly connected com-
ponent is still open. We discussed the limitations of the rescheduling approach, observing some
convergence phenomena. Such convergences have been also observed in timed automata with fre-
quencies, hindering the computation of the set of frequencies in timed automata. In a single timed
automaton, convergence phenomena can be detected thanks to the notion of forgetfulness. In order
to complete the characterization of decidable topologies when urgent channels are allowed, two ideas
are thus possible. Either we choose to study these convergences, to isolate them, and try an approach
similar to the one we had for frequencies, or we investigate other approaches to perform a different
reduction from discrete time to dense time, maybe not preserving the topology. Indeed, our reduction
is distributed in the sense that it manipulates each process separately. We conjecture that a reduction
in the general case is possible, hence we currently investigate this question.

Other ideas to gain decidability of the reachability problem In this document, we extended the
characterization of decidable topologies from communicating finite-state machines to communicating
timed processes. For communicating finite-state machines, the restriction to decidable topologies
(i.e. polyforest topologies) is strong. Indeed, in polyforest communicating finite-state machines, it is
sufficient to consider one-bounded channels to decide the reachability problem. This is not the case
when processes are synchronized by time elapsing. Several other restrictions over the communicating
finite-state machines have been studied to obtain the decidability of the reachability problem. It could
be of interest to study other decidable classes of communicating finite-state machines in order to
extend some results to communicating timed automata. For example, when we consider bounded
channels, these can be seen as a finite memories which do not increase the complexity of models.
The decidability is also straightforward for communicating timed processes with bounded channels.
Nevertheless, the synchronization could lead to new decidable classes inspired by other works such
as the language restriction for channels in [JJ93], which, roughly, forbids embedded loops in channels
languages.

Extension to systems with clock drifts Distributed timed automata with independently evolving
clocks have been introduced in [ABG+08]. In this model timed automata exchange information only
observing clocks of other processes. One of the main results considers a universal semantics over this
model: an untime word is accepted if for all drifts of clocks, there is an accepted run reading this word.
The existence of such a word is then proved to be an undecidable problem. We are very interested
in such models with clock drifts. We are currently investigating the model of communicating timed

210

processes where time rates are local: the synchronization is loose. The universal semantics imposes
a much stronger condition for runs to be accepted, it seems to help to decide whether there exists an
accepted run. In particular, we can decide, thanks to a non-trivial construction, whether a fixed run
can be executed whatever the drifts. To decide whether there exists an accepted word for the universal
semantics, the problem is different, since we should consider several runs for a single word. In the long
term, we would like to investigate other semantics, and particularly with boundedness assumptions
over the drifts for communicating timed processes via channels, as it is done in [ABG+08] with
observations of clocks.

211

212

Bibliography

[AAC12] Parosh A. Abdulla, Mohamed F. Atig, and Jonathan Cederberg. Timed lossy channel
systems. In Proceedings of the 32th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’12), volume 18 of
LIPIcs, pages 374–386. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[ABG07] S. Akshay, Benedikt Bollig, and Paul Gastin. Automata and logics for timed message
sequence charts. In Proceedings of the 27th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS’07), vol-
ume 4855 of Lecture Notes in Computer Science, pages 290–302. Springer, 2007.

[ABG+08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund, and K. Narayan Kumar.
Distributed timed automata with independently evolving clocks. In Proceedings of the
19th International Conference on Concurrency Theory (CONCUR’08), volume 5201
of Lecture Notes in Computer Science, pages 82–97. Springer, 2008.

[ACHH92] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid
automata: An algorithmic approach to the specification and verification of hybrid sys-
tems. In Hybrid Systems, volume 736 of Lecture Notes in Computer Science, pages
209–229. Springer, 1992.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. In Pro-
ceedings of the 17th International Colloquium on Automata, Languages and Program-
ming (ICALP’90), volume 443 of Lecture Notes in Computer Science, pages 322–335.
Springer, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AD09a] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Analytic approach. In Proceedings of the 7th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS’09), volume 5813 of Lecture
Notes in Computer Science, pages 13–27. Springer, 2009.

[AD09b] Eugene Asarin and Aldric Degorre. Volume and entropy of regular timed languages:
Discretization approach. In Proceedings of the 20th International Conference on Con-
currency Theory (CONCUR’09), volume 5710 of Lecture Notes in Computer Science,
pages 69–83. Springer, 2009.

[AD10] Eugene Asarin and Aldric Degorre. Two size measures for timed languages. In Pro-
ceedings of the 30th IARCS Annual Conference on Foundations of Software Tech-

213

BIBLIOGRAPHY

nology and Theoretical Computer Science (FSTTCS’10), volume 8 of LIPIcs, pages
376–387. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[ADOW05] Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. Decid-
ability and complexity results for timed automata via channel machines. In Proceed-
ings of the 32nd International Colloquium on Automata, Languages and Programming
(ICALP’05), volume 3580 of Lecture Notes in Computer Science, pages 1089–1101.
Springer, 2005.

[ADR+11] Parosh A. Abdulla, Giorgio Delzanno, Othmane Rezine, Arnaud Sangnier, and Ric-
cardo Traverso. On the verification of timed ad hoc networks. In Proceedings of
the 9th International Colloquium on Formal Modeling and Analysis of Timed Systems
(FORMATS’11), volume 6919 of Lecture Notes in Computer Science, pages 256–270.
Springer, 2011.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determinizable class of timed
automata. In Proceedings of the 6th International Conference on Computer Aided
Verification (CAV’94), volume 818 of Lecture Notes in Computer Science, pages 1–
13. Springer, 1994.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alter-
nating refinement relations. In Proceedings of the 9th International Conference on
Concurrency Theory (CONCUR ’98), volume 1466 of Lecture Notes in Computer Sci-
ence, pages 163–178. Springer, 1998.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proceedings of the 5th IFAC Symposium on System Structure and
Control (SSSC’98), pages 469–474. Elsevier Science, 1998.

[ATP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. In Proceedings of the 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of Lecture Notes in Computer
Science, pages 49–62. Springer, 2001.

[BA11] Nicolas Basset and Eugene Asarin. Thin and thick timed regular languages. In Pro-
ceedings of the 9th International Colloquium on Formal Modeling and Analysis of
Timed Systems (FORMATS’11), volume 6919 of Lecture Notes in Computer Science,
pages 113–128. Springer, 2011.

[BB05] Laura Brandán Briones and Ed Brinksma. A test generation framework for quiescent
real-time systems. In Proceedings of the 4th International Workshop on Formal Ap-
proaches to Software Testing (FATES’04), volume 3395 of Lecture Notes in Computer
Science, pages 64–78. Springer, 2005.

[BBB+08] Christel Baier, Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Marcus
Größer. Almost-sure model checking of infinite paths in one-clock timed automata.
In Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science
(LICS’08), pages 217–226. IEEE, 2008.

214

BIBLIOGRAPHY

[BBBB09] Christel Baier, Nathalie Bertrand, Patricia Bouyer, and Thomas Brihaye. When are
timed automata determinizable? In Proceedings of the 36th International Colloquium
on Automata, Languages and Programming (ICALP’09), volume 5556 of Lecture
Notes in Computer Science, pages 43–54. Springer, 2009.

[BBBM08] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Quantita-
tive model-checking of one-clock timed automata under probabilistic semantics. In
Proceedings of the 5th International Conference on the Quantitative Evaluation of
Systems (QEST’08), pages 55–64. IEEE, 2008.

[BBBS11] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Amélie Stainer. Emptiness
and universality problems in timed automata with positive frequency. In Proceed-
ings of the 38th International Colloquium on Automata, Languages and Programming
(ICALP’11), volume 6756 of Lecture Notes in Computer Science, pages 246–257.
Springer, 2011.

[BBBS13] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Amélie Stainer. Empti-
ness and universality problems in timed automata with positive frequency. CoRR
arXiv:1309.2842, 2013.

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for
multi-priced timed automata. Formal Methods in System Design, 32(1):3–23, 2008.

[BCD05] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using timed
automata. In Proceedings of the 8th International Conference on Foundations of Soft-
ware Science and Computational Structures (FOSSACS’05), volume 3441 of Lecture
Notes in Computer Science, pages 219–233. Springer, 2005.

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE transactions on software engineering, 17(3):259–
273, 1991.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable
timed automata. Theoretical Computer Science, 321(2-3):291–345, 2004.

[BDL+12] Peter E. Bulychev, Alexandre David, Kim Guldstrand Larsen, Axel Legay, Guangyuan
Li, Danny Bøgsted Poulsen, and Amélie Stainer. Monitor-based statistical model
checking for weighted metric temporal logic. In Proceedings of the 18th Interna-
tional Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’12), volume 7180 of Lecture Notes in Computer Science, pages 168–182.
Springer, 2012.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen, Paul Pet-
tersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability for priced
timed automata. In Proceedings of the 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of Lecture Notes in Computer Sci-
ence, pages 147–161. Springer, 2001.

[BGP96] Béatrice Bérard, Paul Gastin, and Antoine Petit. On the power of non-observable ac-
tions in timed automata. In Proceedings of the 13th Annual Symposium on Theoretical

215

BIBLIOGRAPHY

Aspects of Computer Science (STACS’96), volume 1046 of Lecture Notes in Computer
Science, pages 257–268. Springer, 1996.

[BJSK11] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen. Off-line test
selection with test purposes for non-deterministic timed automata. In Proceedings of
the 17th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’11), volume 6605 of Lecture Notes in Computer Science,
pages 96–111. Springer, 2011.

[BJSK12] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen. Off-line test
selection with test purposes for non-deterministic timed automata. Logical Methods
in Computer Science, 8(4:8), 2012.

[Bon11] Rémi Bonnet. The reachability problem for vector addition system with one zero-test.
In Proceedings of the 36th International Symposium on Mathematical Foundations of
Computer Science (MFCS’11), volume 6907 of Lecture Notes in Computer Science,
pages 145–157. Springer, 2011.

[Bou09] Patricia Bouyer. From Qualitative to Quantitative Analysis of Timed Systems. Mémoire
d’habilitation, Université Paris 7, Paris, France, January 2009.

[BSJK11a] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. A game ap-
proach to determinize timed automata. In Proceedings of the 14th International
Conference on Foundations of Software Science and Computation Structures (FOS-
SACS’11), volume 6604 of Lecture Notes in Computer Science, pages 245–259.
Springer, 2011.

[BSJK11b] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. A game ap-
proach to determinize timed automata. Research Report 7381, INRIA, Rennes, France,
July 2011.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323–342, 1983.

[CCH+05] Arindam Chakrabarti, Krishnendu Chatterjee, Thomas A. Henzinger, Orna Kupfer-
man, and Rupak Majumdar. Verifying quantitative properties using bound functions.
In Proceedings of the Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME’05), volume 3725 of Lecture Notes in
Computer Science, pages 50–64. Springer, 2005.

[CDE+10] Krishnendu Chatterjee, Laurent Doyen, Herbert Edelsbrunner, Thomas A. Henzinger,
and Philippe Rannou. Mean-payoff automaton expressions. In Proceedings of the
21th International Conference on Concurrency Theory (CONCUR’10), volume 6269
of Lecture Notes in Computer Science, pages 269–283. Springer, 2010.

[CDH08] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative lan-
guages. In Proceedings of the 22nd International Workshop on Computer Science
Logic (CSL’08), volume 5213 of Lecture Notes in Computer Science, pages 385–400.
Springer, 2008.

216

BIBLIOGRAPHY

[CDHR10] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François
Raskin. Generalized mean-payoff and energy games. In Proceedings of the 30th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’10), volume 8 of LIPIcs, pages 505–516, 2010.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proceedings of the Workshop on
Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer, 1981.

[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communica-
tion. Information and Computation, 202(2):166–190, 2005.

[CFI96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels are easier
to verify than perfect channels. Information and Computation, 124(1):20–31, 1996.

[CHR02] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison of
control problems for timed and hybrid systems. In Proceedings of the 5th International
Workshop on Hybrid Systems: Computation and Control (HSCC’02), volume 2289 of
Lecture Notes in Computer Science, pages 134–148. Springer, 2002.

[CHSS12] Lorenzo Clemente, Frédéric Herbreteau, Amélie Stainer, and Grégoire Sutre. Reach-
ability of communicating timed processes. CoRR arXiv:1209.0571, 2012.

[CHSS13] Lorenzo Clemente, Frédéric Herbreteau, Amélie Stainer, and Grégoire Sutre. Reach-
ability of communicating timed processes. In Proceedings of the 16th International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS’13), volume 7794 of Lecture Notes in Computer Science, pages 81–96. Springer,
2013.

[CM06] Prakash Chandrasekaran and Madhavan Mukund. Matching scenarios with timing
constraints. In Proceedings of the 4th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS’06), volume 4202 of Lecture Notes in
Computer Science, pages 98–112. Springer, 2006.

[CS08] Pierre Chambart and Philippe Schnoebelen. Mixing lossy and perfect fifo chan-
nels. In Proceedings of the 19th International Conference on Concurrency Theory
(CONCUR’08), volume 5201 of Lecture Notes in Computer Science, pages 340–355.
Springer, 2008.

[dAHM03] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Discounting the future
in systems theory. In Proceedings of the 30th International Colloquium on Automata,
Languages and Programming (ICALP’03), volume 2719 of Lecture Notes in Computer
Science, pages 1022–1037. Springer, 2003.

[dLAMJM11] Wilkerson de L. Andrade, Patrícia D. L. Machado, Thierry Jéron, and Hervé Marc-
hand. Abstracting time and data for conformance testing of real-time systems. In
Proceedings of the 4th International IEEE Conference on Software Testing, Verifica-
tion and Validation (ICST’12), pages 9–17. IEEE, 2011.

217

BIBLIOGRAPHY

[DLL+10] Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Nyman, and Andrzej Wasowski.
Timed i/o automata: a complete specification theory for real-time systems. In Pro-
ceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control (HSCC’10), pages 91–100. ACM, 2010.

[DLLN09] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Timed testing under
partial observability. In Proceedings of the 2nd International Conference on Software
Testing Verification and Validation (ICST’09), pages 61–70. IEEE, 2009.

[DSZ10] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized verifi-
cation of ad hoc networks. In Proceedings of the 21th International Conference on
Concurrency Theory (CONCUR’10), volume 6269 of Lecture Notes in Computer Sci-
ence, pages 313–327. Springer, 2010.

[EM79] Andrzej Ehrenfeucht and Jan Mycielski. Positional strategies for mean payoff games.
International Journal of Game Theory, 8(2):109–113, 1979.

[END03] Abdeslam En-Nouaary and Rachida Dssouli. A guided method for testing timed input
output automata. In Proceedings of the 15th IFIP International Conference on Testing
of Communicating Systems (TestCom’03), volume 2644 of Lecture Notes in Computer
Science, pages 211–225, 2003.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In Proceedings of the
4th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), volume 4202 of Lecture Notes in Computer Science, pages 187–199.
Springer, 2006.

[FJ13] John Fearnley and Marcin Jurdziński. Reachability in two-clock timed automata is
PSPACE-complete. In Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALP’13), volume 7966 of Lecture Notes in Computer
Science, pages 212–223. Springer, 2013.

[GHKK05] Hermann Gruber, Markus Holzer, Astrid Kiehn, and Barbara König. On timed au-
tomata with discrete time - structural and language theoretical characterization. In
Proceedings of the 9th International Conference on Developments in Language The-
ory (DLT’05), volume 3572 of Lecture Notes in Computer Science, pages 272–283,
2005.

[GKM07] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with
bounded channels. Fundamenta Informaticae, 80(1-3):147–167, 2007.

[GMNK09] Paul Gastin, Madhavan Mukund, and K. Narayan Kumar. Reachability and bound-
edness in time-constrained MSC graphs. In Perspectives in Concurrency Theory,
IARCS-Universities, pages 157–183. Universities Press, 2009.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of Lecture Notes in Com-
puter Science. Springer, 2002.

[Han93] Hans-Michael Hanisch. Analysis of place/transition nets with timed-arcs and its appli-
cation to batch process control. In Proceedings of the 14nd International Conference

218

BIBLIOGRAPHY

on Application and Theory of Petri Nets (ICATPN’93), volume 691 of Lecture Notes
in Computer Science, pages 282–299, 1993.

[HLMS10] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachabil-
ity analysis of communicating pushdown systems. In Proceedings of the 13th Inter-
national Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’10), volume 6014 of Lecture Notes in Computer Science, pages 267–281.
Springer, 2010.

[IDP03] Oscar H. Ibarra, Zhe Dang, and Pierluigi San Pietro. Verification in loosely syn-
chronous queue-connected discrete timed automata. Theoretical Computer Science,
290(3):1713–1735, 2003.

[IT11] ITU-T. Z.120: Message sequence charts (MSC). Technical report, International
Telecommunication Union, 2011.

[JJ93] Thierry Jéron and Claude Jard. Testing for unboundedness of fifo channels. Theoreti-
cal Computer Sciences, 113(1):93–117, 1993.

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. Software
Tools for Technology Transfer, 7(4):297–315, 2005.

[JLL77] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Complexity of some
problems in Petri nets. Theoretical Computer Science, 4(3):277–299, 1977.

[KCL98] O. Koné, R. Castanet, and P. Laurencot. On the fly test generation for real time pro-
tocols. In Proceedings of the 7th International Conference on Computer Communica-
tions & Networks (IC3N’98), pages 378–387. IEEE, 1998.

[KJM04] Ahmed Khoumsi, Thierry Jéron, and Hervé Marchand. Test cases generation for non-
deterministic real-time systems. In Proceedings of the 3rd International Workshop on
Formal Approaches to Software Testing (FATES’03), volume 2931 of Lecture Notes in
Computer Science, pages 131–145. Springer, 2004.

[KL07] Orna Kupferman and Yoad Lustig. Lattice automata. In Proceedings of the 8th In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI’07), volume 4349 of Lecture Notes in Computer Science, pages 199–213.
Springer, 2007.

[KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Au-
tomatic verification of real-time systems with discrete probability distributions. Theo-
retical Computer Science, 282:101–150, 2002.

[KT04] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time
systems. In Proceedings of the 11th International SPIN Workshop on Model Checking
Software (SPIN’04), volume 2989 of Lecture Notes in Computer Science, pages 109–
126. Springer, 2004.

[KT09] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. For-
mal Methods in System Design, 34(3):238–304, 2009.

219

BIBLIOGRAPHY

[KY06] Pavel Krcál and Wang Yi. Communicating timed automata: The more synchronous,
the more difficult to verify. In Proceedings of the 18th International Conference on
Computer Aided Verification (CAV’06), volume 4144 of Lecture Notes in Computer
Science, pages 249–262. Springer, 2006.

[Lip76] Richard J. Lipton. The Reachability Problem Requires Exponential Space. Department
of Computer Science, Yale University, 1976.

[LMN05] Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of
real-time systems using Uppaal. In Proceedings of the 4th International Workshop on
Formal Approaches to Software Testing (FATES’04), volume 3395 of Lecture Notes in
Computer Science, pages 79–94. Springer, 2005.

[LMS04] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Model checking
timed automata with one or two clocks. In Proceedings of the 15th International
Conference on Concurrency Theory (CONCUR’04), volume 3170 of Lecture Notes in
Computer Science, pages 387–401. Springer, 2004.

[LS98] Xinxin Liu and Scott A. Smolka. Simple linear-time algorithms for minimal fixed
points. In Proceedings of the 25th International Colloquium on Automata, Languages
and Programming (ICALP’98), volume 1443 of Lecture Notes in Computer Science,
pages 53–66. Springer, 1998.

[Mar11] Nicolas Markey. Robustness in real-time systems. In Proceedings of the 6th IEEE
International Symposium on Industrial Embedded Systems (SIES’11), pages 28–34.
IEEE, 2011.

[Mer74] Philip M. Merlin. A study of the recoverability of computing systems. PhD thesis, Dep.
of Information and Computer Science, University of California, Irvine, CA, 1974.

[MF85] Gérard Memmi and Alain Finkel. An introduction to fifo nets-monogeneous nets: A
subclass of fifo nets. Theoretical Computer Science, 35:191–214, 1985.

[Min67] Marvin Lee Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.

[MK10] Lakshmi Manasa and Shankara Narayanan Krishna. Integer reset timed automata:
Clock reduction and determinizability. CoRR arXiv:1001.1215v1, 2010.

[Mol82] Michael K. Molloy. Performance analysis using stochastic Petri nets. IEEE transac-
tions on Computers, 100(9):913–917, 1982.

[NS03] Brian Nielsen and Arne Skou. Automated test generation from timed automata. Soft-
ware Tools for Technology Transfer, 5(1):59–77, 2003.

[OW04] Joël Ouaknine and James Worrell. On the language inclusion problem for timed au-
tomata: Closing a decidability gap. In Proceedings of the 19th IEEE Symposium on
Logic in Computer Science (LICS’04), pages 54–63. IEEE, 2004.

[OW05] Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In
Proceedings of the 20th Annual Symposium on Logic in Computer Science (LICS’05),
pages 188–197. IEEE, 2005.

220

BIBLIOGRAPHY

[Pac82] Jan K. Pachl. Reachability problems for communicating finite state machines. Re-
search Report CS-82-12, University of Waterloo, May 1982.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE, 1977.

[PP92] Wuxu Peng and S. Purushothaman. Analysis of a class of communicating finite state
machines. Acta Informatica, 29(6/7):499–522, 1992.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,
10(1-2):87–113, 2000.

[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6(2):223–231, 1978.

[Ram74] C. Ramchandani. Analysis of Asynchronous Concurrent Systems by Timed Petri Nets.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1974. Project
MAC Report MAC-TR-120.

[Rei08] Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. Electronic Notes in
Theoretical Computer Science, 223:239–264, 2008.

[SBMR13] Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust con-
troller synthesis in timed automata. In Proceedings of the 24th International Confer-
ence on Concurrency Theory (CONCUR’13), volume 8052 of Lecture Notes in Com-
puter Science, pages 546–560. Springer, 2013.

[Sch61] Marcel Paul Schützenberger. On the definition of a family of automata. Information
and control, 4(2):245–270, 1961.

[SPKM08] P. Vijay Suman, Paritosh K. Pandya, Shankara Narayanan Krishna, and Lakshmi Man-
asa. Timed automata with integer resets: Language inclusion and expressiveness. In
Proceedings of the 6th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’08), volume 5215 of Lecture Notes in Computer Science,
pages 78–92. Springer, 2008.

[ST08] Julien Schmaltz and Jan Tretmans. On conformance testing for timed systems. In
Proceedings of the 6th International Conference on Formal Modeling and Analysis of
Timed Systems (FORMATS’08), volume 5215 of Lecture Notes in Computer Science,
pages 250–264. Springer, 2008.

[Sta12] Amélie Stainer. Frequencies in forgetful timed automata. In Proceedings of the
10th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’12), volume 7595 of Lecture Notes in Computer Science, pages 236–251.
Springer, 2012.

[Tre96] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software
- Concepts and Tools, 17(3):103–120, 1996.

[Tri06] Stavros Tripakis. Folk theorems on the determinization and minimization of timed
automata. Information Processing Letters, 99(6):222–226, 2006.

221

BIBLIOGRAPHY

[UDL] UPPAAL DBM library, http://people.cs.aau.dk/~adavid/UDBM/
python.html.

[UL10] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Morgan Kaufmann, 2010.

[vB78] Gregor von Bochmann. Finite state description of communication protocols. Com-
puter Networks, 2:361–372, 1978.

[ZHM97] Hong Zhu, Patrick A. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, 1997.

222

http://people.cs.aau.dk/~adavid/UDBM/python.html
http://people.cs.aau.dk/~adavid/UDBM/python.html

Key Word Index

(Σ1,Σ2)-refinement, 66, 69
Aut(σ), 45, 47, 61, 69
GA,(k,M ′), 42, 47, 58, 61
GA,(k,M ′), 58, 68, 69
tioco, 86, 88, 89
ε-closure, 58, 68
ε-transition, 57, 79

Abstract valuation, 120, 121
Acyclic, 174, 191
Aperiodic, 127, 128, 156, 157, 159, 160
Approximate Determinization, 36, 52
Approximate determinization, 36, 37, 65, 92
Atomic reset, 48

Büchi semantics, 117

Channel, 174
Co-reachable, 81
Communicating counter automata, 181, 182
Communicating tick automata, 176, 179, 182,

184, 185, 187, 191, 196
Communicating timed automata, 175, 176, 189,

191, 196
Communicating timed processes, 174, 175
Communication actions, 174
Compatible, 82
Complementable, 35
Complete, 28, 82
Conformance relation, 86, 88, 89
Conformance testing, 37, 85
Contraction, 132, 133, 136, 140, 141, 143, 144
Corner, 119
Corner-point abstraction, 119, 121–129, 131–

157, 159–162
Cost, 122
Counter automata, 181, 184, 185

Delay domain, 173

Deterministic, 29, 82, 86
Determinizable, 30, 82
Determinization, 35–37, 54, 92
Diagonal constraint, 32
Dilatation, 132, 133, 141, 144

Emptiness problem, 116, 159
Emptiness test, 173, 174, 177, 182, 184, 185,

187, 196–198
Equivalent, 29, 82, 175, 191
Event-clock timed automata, 36
Exhaustive, 87, 98

Forgetful, 126–129, 147–157, 159, 160, 162
Frequency, 114, 116, 117, 119–129, 131–157,

159–162
Frequency-based languages, 116

Guard, 27, 28

Implementation, 85
Input-complete, 82, 85, 87
Integer reset timed automata, 36, 56
Invariant, 27, 28, 59, 67, 79
io-abstraction, 93
io-refinement, 88–90, 93

Labeled transition system, 173
Language, 29, 30

Mimicking, 121, 137, 139, 154–156
Mixed, 149, 150

Non-blocking, 82, 85, 87
Non-determinizable timed automata, 35
Non-Zeno, 137, 140
non-Zeno, 30, 145

Observed clock, 79, 90

223

KEY WORD INDEX

Open timed automaton with inputs and outputs,
79

OTAIO, 79

Parallel product, 83
Path, 173
Petri net, 184
Pointed region, 119
Polyforest, 174, 184, 185, 187, 196
Polytree, 174
Precise, 91, 97
Prefix, 28
Product, 84, 92
Projection, 31, 121–129, 131–157, 175
Proper clock, 79, 90
Prototype, 71
Python, 71

Ratio, 122
Reachability problem, 28, 175, 179, 184, 185,

187, 196
Reachable, 81
Region, 30
Region abstraction, 191
Region automaton, 31, 32
Region equivalence, 30
Relation, 41
Repeatedly observable, 98
Rescheduling lemma, 192–196
Reward, 122
Reward-converging, 123, 139, 143, 144, 149,

150
Reward-diverging, 137, 140, 145
Run, 173

Semantics of timed automata, 28
Sequence, 81, 85
Skeleton, 52, 53
Sound, 87, 88, 90, 97
Star, 185
Strategy, 45, 47, 69
Strict, 87, 97
Strongly forgetful, 126, 149, 155–157
Strongly non-Zeno, 30, 36, 152, 159, 160, 162
Syntax of timed automata, 27

TAIO, 80
Test case, 86, 93, 97

Test execution, 100
Test generation, 91
Test purpose, 90
Test suite, 86, 97
Test-free, 174, 191, 196
Testable, 174
Timed automata, 176
Timed process, 174
Timed word, 29, 30
Topology, 174
Trace, 81, 83, 173

Under-approximation, 65
Universality problem, 116, 160
Update of relations, 42, 59
Urgency, 177

Valuation, 27
Verdict, 86, 95

Weak timed simulation, 29

Zeno, 30, 138, 139, 141, 144, 161, 162
Zero test, 182, 184, 185
Zone, 71

224

Bibliographic Index

[AAC12], 169
[ABG+08], 25, 169
[ABG07], 169
[ACHH92], 20
[AD09a], 23, 107, 113
[AD09b], 23, 107, 113
[AD10], 23, 107, 113
[AD90], 20, 27
[AD94], 20, 21, 27, 35, 39, 77, 161, 170, 189
[ADOW05], 21
[AFH94], 22, 36, 53
[AHKV98], 66
[AMPS98], 22, 30, 36
[ATP01], 23, 107
[BA11], 24, 110, 113, 126, 129, 130, 146, 163
[BB05], 77
[BBB+08], 23, 107, 111
[BBBB09], 22, 36, 39, 40, 52–56, 64, 75, 103,

203
[BBBM08], 23
[BBBS11], 24
[BBL08], 23, 24, 107, 109–111, 113, 118, 119,

124, 137, 146, 147, 163
[BCD05], 37, 39, 40, 47
[BD91], 20
[BDFP04], 49
[BDL+12], 35
[BFH+01], 23, 107
[BGP96], 21
[BJSK11], 23
[BJSK12], 23, 40
[BSJK11], 79
[BSJK11a], 22, 40
[BSJK11b], 40
[BSJK12], 79
[BZ83], 25, 167, 179, 181, 187
[Boc78], 25, 167

[Bou09], 32, 115
[CCH+05], 108
[CDE+10], 108, 109, 124
[CDH08], 108
[CE91], 21
[CF05], 168
[CFI96], 168
[CHR02], 110, 126
[CHSS12], 182, 185
[CHSS13], 25
[CM06], 168
[CS08], 168
[DLL+10], 66, 78
[DLLN09], 78, 100
[DSZ10], 169
[EM79], 108
[END03], 101
[Fin06], 22, 35, 39, 47
[GHKK05], 170
[GKM07], 168
[GMN08], 20
[GTW02], 45, 47
[HLMS10], 168, 178, 183
[Han93], 20, 168
[IDP03], 169
[IT11], 20, 168
[JJ93], 168
[JLL77], 20
[JT04], 78, 90
[K09], 78
[KCL98], 101
[KJM03], 23, 78
[KL07], 108
[KNSS02], 23, 107
[KT04], 77
[KT09], 22, 23, 36, 38–40, 52, 53, 64–66, 75,

77, 78, 85, 86, 100, 103, 203

225

BIBLIOGRAPHIC INDEX

[KY06], 25, 169, 170, 173, 174, 177, 180, 196–
199

[LMN04], 77, 86
[LS10], 56
[LS98], 72
[MF85], 168
[Mar11], 24
[Mer74], 20, 168
[Min67], 181
[Mol82], 107
[NS03], 23, 77, 78
[OW04], 21, 161
[OW05], 162
[PP92], 168
[Pac82], 25, 178, 181, 187
[Pnu77], 21
[Pur00], 126
[Ram74], 20, 168
[SBMR13], 111, 163
[SPKM08], 22, 36, 56
[ST08], 77, 86
[Sch61], 108
[Sta12], 24
[Tre96], 85, 86
[Tri06], 22, 35, 39, 47
[UDL10], 72
[ZHM97], 90, 101
[dAHM03], 108

226

	I Contribution à la vérification des automates temporisés
	Introduction à la vérification des automates temporisés
	Déterminisation des automates temporisés et application au test
	Fréquences dans les automates temporisés
	Accessibilité dans les automates temporisés communicants
	Conclusion

	II Introduction
	Introduction
	Technical preliminaries

	III Determinization of Timed Automata
	A Game Approach to Determinize Timed Automata
	The game approach
	Game definition
	Example
	Properties of the strategies

	Comparison both existing methods
	Comparison with KT-fmsd09
	Comparison with BBBB-icalp09

	Extension to -transitions and invariants
	-transitions
	Invariants
	Properties of the strategies in the extended game
	Comparison with KT-fmsd09

	Beyond over-approximation
	Under-approximation
	Combining over- and under-approximation

	Implementation of a prototype tool
	Using zones instead of regions
	Implementation of the prototype
	Execution of the program

	Application of the Game Approach to Off-line Test Selection
	A model of open timed automata with inputs / outputs
	Timed automata with inputs/outputs
	The semantics of OTAIOs
	Properties and operations

	Conformance testing theory
	The tioco conformance theory
	Refinement preserving tioco

	Off-line test case generation
	Test purposes
	Principle of test generation
	Test suite properties

	Discussion and related work

	IV Frequencies in Timed Automata
	Preliminaries
	Frequencies in timed automata
	Frequency-based semantics
	Frequencies and timed automata
	A brief comparison with the usual semantics
	A particular case of double-priced timed automata

	The corner-point abstraction
	Definition and examples
	Ratios in the corner-point abstraction
	Set of ratios in the corner-point abstraction

	Forgetfulness
	Forgetfulness and aperiodicity
	Comparison with the forgetfulness of BA-formats11bib][BA11]

	Frequencies in One-Clock Timed Automata
	From A to Acp
	Contraction and dilatation
	Proposition 6.1 does not extend to timed automata with two clocks

	From Acp to A
	Reward-diverging case
	Proposition 6.2 extends neither to timed automata with two clocks, nor to Zenokey]Zeno runs.
	Proposition 6.2 does not extend to reward-convergingkey]Reward-converging runs
	Reward-converging case

	Set of frequencies in A
	Set of frequencies of non-Zeno runs in A
	Realizability of bounds by Zenokey]Zeno runs in A
	Proof of Theorem 6.1

	Frequencies in Forgetful Timed Automata
	Frequencies in one-clock forgetful timed automata
	Extension to several clock forgetful timed automata
	Inclusion of the set of frequencies in the set of ratios
	Techniques to compute the frequencies
	Inclusion of the set of ratios in the set of frequencies
	Discussion about assumptions

	Emptiness and Universality Problems in Timed Automata with Frequency
	Consequences of Chapters 6 and 7
	Lower bound for the universality problem
	Decidability of the universality problem for Zeno words with positive frequency in one-clock timed automata

	V Reachability of Communicating Timed Automata
	Communicating Timed Processes: a Uniform Semantics
	Definition of communicating timed processes
	Communicating timed or tick automata
	Communicating timed automata
	Communicating tick automata

	Discussion about the models
	Modeling urgency with emptiness test
	On the power of time
	Undecidability of multi-tick automata

	Reachability Problem in Communicating Tick Automata
	Communicating counter automata
	From tick automata to counter automata.
	From counter automata to tick automata
	Characterization of the decidable topologies

	Reachability Problem in Communicating Timed Automata
	From continuous time to discrete time
	Correctness of the reduction
	Proof of the correctness using a rescheduling lemma
	Proof of the rescheduling lemma
	Consequences

	Reciprocal reduction and its consequences
	Abstraction of communicating timed automata with emptiness tests is difficult
	Our construction is not sound for emptiness test
	Why soundness is hard to achieve

	VI Conclusion and Future Works
	Bibliography

