Thèse soutenue

Modélisation comportementale dépend de l’application pour cœurs superscalaires

FR  |  
EN
Auteur / Autrice : Ricardo Andrés Velásquez Vélez
Direction : André SeznecPierre Michaud
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 19/04/2013
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes)
PRES : Université européenne de Bretagne (2007-2016)

Résumé

FR  |  
EN

Ces dernières années, l'effort de recherche est passé de la microarchitecture du cœur à la microarchitecture de la hiérarchie mémoire. Les modèles précis au cycle près pour processeurs multi-cœurs avec des centaines de cœurs ne sont pas pratiques pour simuler des charges multitâches réelles du fait de la lenteur de la simulation. Un grand pourcentage du temps de simulation est consacré à la simulation des différents cœurs, et ce pourcentage augmente linéairement avec chaque génération de processeur. Les modèles approximatifs sacrifient de la précision pour une vitesse de simulation accrue, et sont la seule option pour certains types de recherche. Les processeurs multi-cœurs exigent également des méthodes de simulation plus rigoureuses. Il existe plusieurs méthodes couramment utilisées pour simuler les architectures simple cœur. De telles méthodes doivent être adaptées ou même repensées pour la simulation des architectures multi-cœurs. Dans cette thèse, nous avons montré que les modèles comportementaux sont intéressants pour étudier la hiérarchie mémoire des processeurs multi-cœurs. Nous avons démontré que l'utilisation de modèles comportementaux permet d'accélérer les simulations d'un facteur entre un et deux ordres de grandeur avec des erreurs moyennes de moins de 5%. Nous avons démontré également que des modèles comportementaux peuvent aider dans le problème de la sélection des charges de travail multiprogrammées pour évaluer la performance des microarchitectures multi-cœurs.