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rigidité d’actions

de groupes sur les

espaces Lp non-

commutatifs
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Professeur à l’université de Caen / examinateur



2



Remerciements
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ces travaux.
Je remercie aussi chacun des membres du jury de cette thèse : Indira Chatterji
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Un grand merci à toute l’équipe de probas de Rennes 1 qui, il y a quelques
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Résumé en français

1 Introduction du sujet

1.1 Propriété (TB) pour un espace de Banach B

La propriété (T ) de Kazhdan est une propriété de rigidité des groupes introduite
par D.Kazhdan dans les annés 60 dans [47] pour montrer que les réseaux en rang
supérieur sont de type fini et possèdent un abélianisé fini. Depuis qu’elle a été
introduite, la propriété (T ) a été étudiée par de nombreux auteurs ; elle possède
de nombreuses applications dans des domaines des mathématiques très variés :
en théorie ergodique, dans la théorie des algèbres d’opérateurs, en informatique
théorique...De ce fait, des variantes de la propriété (T ) sont naturellement ap-
parues pour l’étude des groupes topologiques et des phénomènes de rigidité liés
à leurs actions. Dans ce travail de thèse, nous nous sommes intéressés à une
variante de la propriété (T ) introduite récemment par Bader, Furman, Gelander
et Monod dans [4].

Soit G un groupe topologique. Etant donné un espace de Banach B, notons
O(B) son groupe d’isométries, c’est-à-dire le groupe des bijections de B dans B
qui sont linéaires et isométriques. Une représentation orthogonale de G dans B
est un homomorphisme π : G→ O(B) qui est continu, au sens où g → π(g)x est
continue pour tout x dans B. On dit que la représentation π possède presque des
vecteurs invariants si

∀K ⊂ G compact , ∀ǫ > 0, ∃x ∈ B, sup
g∈K

||π(g)x− x|| < ǫ||x||.

Pour tout sous-groupe fermé H de G, on note Bπ(H) = {x ∈ B| ∀g ∈ H, π(g)x =
x } l’espace des vecteurs invariants par π(H). Si de plus H est normal dans G,
une représentation π : G → O(B) induit alors naturellement une représentation
π′ : G→ O(B/Bπ(H)) de G sur l’espace de Banach quotient B/Bπ(H).

Définition 1.1. [4]Soit B un espace de Banach. Soit G un groupe topologique
et H un sous-groupe fermé normal de G. La paire (G,H) possède la propriété
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(TB) (on dit aussi que G possède la propriété (TB) relativement à H), si pour
toute représentation linéaire isométrique π : G → O(B), la représentation π′ :
G→ O(B/Bπ(H)) sur B/Bπ(H) ne possède pas presque des vecteurs invariants.
Un groupe G possède la propriété (TB) si la paire (G,G) possède la propriété
(TB) relative.

Lorsque B est un espace de Hilbert, la définition précédente correspond à la
propriété (T ) de Kazhdan. Les auteurs de [4] ont posé les bases pour l’étude de
la propriété (TB) dans le cadre des espaces de Banach B uniformément convexes,
dont le dual est également uniformément convexe (ces espaces de Banach sont
appelés “ucus”dans [4]).

La propriété (T ) se reformule également en termes d’actions par isométries
affines sur un espace de Hilbert. Un groupe topologique G possède la propriété
de point fixe (FH) si toute action continue de G par isométries affines sur un
espace de Hilbert H possède un point fixe. Pour les groupes localement compacts
et σ-compacts, un théorème de Delorme-Guichardet montre que la propriété (T )
est équivalente à la propriété (FH) (voir [25] et [33]). Les auteurs de [4] ont aussi
étudié l’analogue de cette propriété.

Définition 1.2. Soit B un espace de Banach. Un groupe topologique G possède
la propriété (FB) si toute action continue deG par isométries affines sur B possède
un point fixe.

Les propriétés (TB) et (FB) que nous allons étudier sont distinctes (plus
faibles) des propriétés banachiques introduites par V. Lafforgue dans [52] (voir
aussi [51] pour un renforcement de la propriété (T )), où l’auteur considère de
plus grandes classes de représentations. Nous n’étudierons pas ici ces dernières
propriétés et renvoyons aux articles [51] et [52] pour le lecteur intéressé.

1.2 Les propriétés (TLp
) et (FLp

) pour les espaces Lp clas-
siques

Rappelons qu’un espace borélien standard est un espace mesurable associé à la
tribu borélienne d’un espace métrique séparable complet. Les principaux résultats
de [4] concernent la classe des espaces Lp(X,µ) associés à un espace mesuré
(X,µ), où X est un espace borélien standard. Plus précisément, les auteurs de
[4] étudient les liens entre la propriété (T ) de Kazhdan et leur variante sur ces
espaces Lp que l’on appellera par la suite commutatifs ou classiques. Voici un de
leurs résultats principaux.

Théorème 1.3. [4] Soit G un groupe localement compact à base dénombrable.
Si G possède la propriété (T ), alors G possède la propriété (TB) pour tout espace
de Banach B appartenant à la liste suivante :
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1. les espaces Lp(X,µ) pour toute mesure µ σ-finie sur un espace borélien
standard X et tout 1 ≤ p <∞ ;

2. les sous-espaces fermés des espaces Lp(X,µ) pour tout 1 < p < ∞ avec
p 6= 4, 6, 8... ;

3. les espaces quotients des espaces Lp(X,µ) pour tout 1 < p < ∞ avec p 6=
4
3
, 6

5
, 8

7
....

Si, de plus, µ est sans atomes et G possède la propriété (TLp(X,µ)), alors G possède
la propriété (T ) de Kazhdan.

Le résultat de [4] concernant les liens entre la propriété (T ) et la propriété
(FB) s’énonce comme suit.

Théorème 1.4. [4] Soit G un groupe localement compact à base dénombrable.
Alors :

1. (FB) implique (TB) pour tout espace de Banach ;

2. (T ) implique (FB) pour tout sous-espace fermé B de Lp(X,µ), où (X,µ)
est un espace mesuré avec une mesure µ σ-finie et pour tout 1 < p ≤ 2 ;

3. (T ) implique (FB) pour tout sous-espace fermé B de Lp(X,µ), avec 2 ≤
p ≤ 2 + ǫ(G), pour une certaine constante ǫ(G) > 0 dépendant du groupe
G.

Il est à remarquer que la restriction p ≤ 2 dans le point 2 du théorème
précédent est nécessaire. En effet, il existe des groupes avec la propriété (T ) de
Kazhdan qui n’ont pas la propriété de point fixe (FLp(X,µ)) pour p > 2 suffisam-
ment grand (voir pour cela, par exemple, [23] ou [85]).

D’autre part, les groupes de Lie simples de rang supérieur ou égal à 2, ainsi
que leurs réseaux (tels que SL3(Z)) possèdent la propriété (FLp(X,µ)) pour tout
1 < p < ∞ (voir le théorème B dans [4]). Un résultat beaucoup plus fort est
conjecturé dans [4] : les groupes précédents possèdent la propriété (TB) pour tout
espace de Banach B “ucus”.

Une autre classe de groupes pour lesquels la propriété (FLp(X,µ)) a été démontrée,
pour tout 1 < p < ∞, est la famille des “réseaux universels”, c’est-à-dire les
groupes SLn(Z[x1, ...xk]) pour k ≥ 0 et n ≥ 4. Ceci est un résultat M.Mimura
dans [59].

Un exemple d’application de la propriété (FLp) a été donné par A.Navas, qui
a utilisé cette propriété pour améliorer un de ses résultats antérieurs concernant
la rigidité des actions de groupes de Kazhdan sur le cercle à travers le théorème
suivant (voir par exemple [61]).
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Théorème 1.5. [61] Soit α > 0. Soit Diffeo1+α
+ (S1) le groupe des difféomorphismes

du cercle S1 de classe 1+α. Soit Γ un groupe avec la propriété (FLp), pour p > 1
α
.

Si Φ : Γ → Diffeo1+α
+ (S1) est un homomorphisme, alors Φ(Γ) est un groupe cy-

clique fini.

Il est naturel de se demander dans quelle mesure ces résultats peuvent se
généraliser à la classe considérablement plus riche des espaces Lp non-commutatifs.
C’est le premier des deux objets principaux de cette thèse : étudier les propriétés
(TLp(M)) et (FLp(M)) pour les espaces Lp(M) associés à une algèbre de von Neu-
mann M, appelés espaces Lp non-commutatifs par la suite.

Rappelons que tout espace mesuré (X,µ) tel que X soit un espace borélien
standard est isomorphe comme espace mesuré à [0, 1], muni de la mesure µ1⊕µ2,
où µ1 = λ est la mesure de Lebesgue et µ2 est une mesure atomique. Les
algèbres de von Neumann abéliennes sont alors toutes isomorphes à une algèbre
L∞([0, 1], µ), et les espaces Lp commutatifs sont tous des espaces Lp([0, 1], µ). En
comparaison, la variété des algèbres de von Neumann M, objets qui peuvent être
vues comme des espaces mesurés non-commutatifs, est infiniment plus vaste (voir
exemples plus loin), et ceci est également valable pour les classes d’isométries des
espaces Lp(M) associés (voir la section 5 du chapitre 1).

Pour étudier la propriété (TLp(M)), nous avons dû étendre les méthodes de
[4] au cadre non-commutatif. Le maniement des algèbres de von Neumann non-
commutatives pose de nombreuses difficultés techniques telles que, par exemple,
l’extension dans le cadre des opérateurs de certaines inégalités connues dans le
cas commutatif (voir l’extension de l’inégalité de Ando dans le théorème 1.1.4).
D’autre part, le groupe des isométries d’un espace Lp non-commutatif est souvent
d’une complexité beaucoup plus grande que celui d’un espace Lp classique.

Les outils que nous avons développés nous permettent également d’étudier la
propriété (H) de Haagerup dans le cadre des espaces Lp non-commutatifs. C’est
le deuxième objet de ce mémoire. Rappelons qu’un groupe G possède la propriété
(H), ou est appelé groupe a-T -menable, s’il existe une représentation unitaire de
G sur un espace de Hilbert, qui est C0 (c’est-à-dire dont les coefficients matriciels
tendent vers 0 à l’infini) et possède des vecteurs presque invariants. Cette pro-
priété peut être vue comme une propriété de non-rigidité forte des groupes G,
en opposition extrême avec la propriété (T ). De manière équivalente, G possède
(H) s’il admet une action propre par isométries affines sur un espace de Hilbert.
Nous menons une étude de ces deux versions de la propriété (H) dans le cadre
des espaces Lp non-commutatifs. Les analogues de ces deux formulations de la
propriété (H) sur les espaces Lp ne sont plus équivalentes, et ceci déjà dans le cas
des espaces Lp classiques pour p > 2. Mentionnons cependant le résultat suivant
de Nowak, annoncé dans [63] et prouvé dans [64]. Ce résultat a été aussi prouvé
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par Chatterji, Drutu, Haglund dans [12].

Théorème 1.6. [64] Soit G un groupe localement compact à base dénombrable.

1. Si 1 ≤ p < ∞, et G possède la propriété (H), alors G possède une action
propre par isométries affines sur Lp([0, 1]).

2. Si 1 < p < 2, et G possède une action propre par isométries affines sur
Lp([0, 1]), alors G possède la propriété (H).

2 Plan détaillé de la thèse et résultats

Dans cette partie, nous présentons nos principaux résultats et les motivations qui
nous y ont amené à travers un plan détaillé de cette thèse. Pour chaque résultat
énoncé dans cette introduction, nous donnons la numérotation correspondante
intervenant dans le corps du texte.

2.1 Les espaces Lp non-commutatifs

Une algèbre de von Neumann M joue le même rôle pour l’espace non-commutatif
Lp(M) associé que l’algèbre L∞(X,µ) pour l’espace Lp(X,µ) classique. Les ex-
emples d’algèbres de von Neumann sont nombreux : les algèbres de von Neumann
commutatives L∞(X,µ), l’algèbre Mn des matrices de taille n×n, l’algèbre B(H)
des opérateurs bornés sur un espace de Hilbert H, le facteur hyperfini R de type
II1, les algèbres de von Neumann de groupes, les algèbres de von Neumann as-
sociés à des actions de groupes,...

Soit M une algèbre de von Neumann. On peut définir Lp(M) pour tout
1 ≤ p < ∞. Nous nous contentons de rappeler cette construction dans le cadre
des algèbres de von Neumann semi-finies. Une telle algèbre de von Neumann
M possède une trace τ fidèle et semi-finie (τ joue un rôle analogue à celui de
l’intégrale dans le cadre commutatif). L’espace Lp non-commutatif Lp(M, τ) ,
noté Lp(M) lorsqu’il n’y a pas de confusion possible, associé à l’espace mesuré
non-commutatif (M, τ), est obtenu comme le complété de l’ensemble

{x ∈ M | ||x||p <∞ }

pour la norme ||x||p = τ(|x|p) 1
p . Quelques exemples de tels espaces sont :

- les espaces Lp(X,µ) classiques obtenus avec les algèbres de von Neumann com-
mutatives L∞(X,µ);
- les idéaux de Schatten Cp = { x ∈ B(H) | Tr(|x|p) <∞ } pour l’algèbre de von
Neumann M = B(H);
- l’espace Sp = {x = ⊕nxn | xn ∈ Mn,

∑
n Trn(|xn|p) < ∞ } pour l’algèbre de
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von Neumann (⊕Mn)∞ = {x = ⊕nxn | supn ||xn|| <∞ }.

L’étude des représentations orthogonales sur les espaces Lp passe par l’étude
de leurs groupes d’isométries O(Lp). Nous rappelons les nombreux résultats con-
cernant la description de ces isométries : pour les isométries sur lp, L

p(X,µ) et
les idéaux de Schatten Cp = { x ∈ B(H) | Tr(|x|p) < ∞ }, jusqu’au théorème
de Yeadon [84] donnant une description simple et générale des isométries surjec-
tives sur Lp(M), dans le cas où M est une algèbre semi-finie. Plus précisément,
une isométrie U sur un tel espace admet une unique décomposition U = uBJ
avec u un certain opérateur unitaire, B un certain opérateur positif, et J un
isomorphisme de Jordan. En utilisant la description des isométries donnée par
Sherman dans [74] sur les éléments positifs, et une technique de prolongement
d’un isomorphisme de Jordan sur M à un isomorphisme de Jordan sur son produit
croisé, utilisée par Watanabe dans [81], nous donnons une description analogue
des isométries sur Lp(M) pour M une algèbre de von Neumann quelconque, non
nécessairement semi-finie.

Soient 1 ≤ p, q < ∞. Un outil crucial pour le passage d’une représentation
sur Lp(M) à une représentation sur Lq(M), déjà utilisé dans [4] dans le cas
commutatif, est l’application suivante, appelée application de Mazur :

Mp,q : Lp(M) → Lq(M)

x = α|x| 7→ α|x| p
q

avec x = α|x| la décomposition polaire de x. L’inégalité suivante, qui généralise
l’inégalité de Ando pour des matrices (voir [1]), montre que Mp,q est localement
uniformément continue en restriction aux éléments positifs.

Proposition 2.1. (Proposition 1.1.4) Pour a, b ∈ Lp(M)+, et 1 ≤ p < q < ∞,
on a l’inégalité suivante :

||a p
q − b

p
q ||q ≤ ||a− b||

p
q
p .

On montre aussi que, si J est un isomorphisme de Jordan de M, alors
l’application Mp,q satisfait à la relation suivante :

Mp,q ◦ J ◦Mq,p = J.

En particulier, cet outil crucial permet le passage de représentations orthogonales
sur Lp(M) à des représentations unitaires sur un espace de Hilbert.

Certains résultats valables dans le cas commutatif ne se généralisent pas au cas
non-commutatif. Nous remarquons en particulier que la structure d’une isométrie
sur un sous-espace fermé d’un espace Lp(M) non-commutatif n’est connue que
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dans certains cas très particuliers (voir le théorème 1.6.4). D’autre part, lorsque
1 ≤ p ≤ 2, l’espace Lp(X,µ) classique se plonge dans un espace de Hilbert H,
ce qui permet un passage entre représentations sur Lp(X,µ) et représentations
sur H. Ce plongement n’est plus possible pour de nombreux espaces Lp(M)
non-commutatifs, par exemple pour les idéaux de Schatten Cp (voir la section 4.2
dans le chapitre 1).

2.2 La propriété (T ) pour les représentations sur Lp(M)

La propriété (T ) implique la propriété (TLp(M))

Trouver les liens entre la propriété (T ) de Kazhdan et sa variante (TLp(M))
nécessite d’avoir des transports entre les représentations sur un espace de Hilbert
H et les représentations sur ces espaces Lp. Comme nous l’avons indiqué plus
haut, la conjugaison par l’application de Mazur permet ce transport. Nous
obtenons ainsi le théorème suivant, ayant fait l’objet d’une publication acceptée
dans les Proceedings de l’AMS.

Théorème 2.2. (Theorem 2.5.3) Soit G un groupe topologique et H un sous-
groupe fermé normal de G. Si la paire (G,H) possède la propriété (T ) relative,
alors (G,H) possède la propriété (TLp(M)) relative pour toute algèbre de von Neu-
mann M, et tout 1 < p <∞. En particulier, si G possède la propriété (T ), alors
il possède la propriété (TLp(M)) pour toute algèbre de von Neumann M, et tout
1 < p <∞.

Dans [59], M.Mimura a démontré indépendamment et simultanément ce théorème
pour les espaces de Schatten Cp, avec des méthodes pouvant se généraliser au cas
semi-fini. Nos méthodes couvrent également le cas des algèbres de type III, qui
présente de considérables difficultés techniques.

Une étape-clé de la démonstration du Théorème 2.2 est la proposition suiv-
ante, qui est basée sur une analyse approfondie des représentations orthogonales
de groupes sur les espaces Lp(M).

Proposition 2.3. (Proposition 2.5.1) Soient G un groupe topologique, M une
algèbre de von Neumann, 1 ≤ p < ∞, p 6= 2. Soit πp une représentation orthog-
onale de G sur Lp(M). Si πp possède une suite de vecteurs presque invariants
dans le complément Lp(M)′ des vecteurs πp(G)-invariants, alors π2 possède une
suite de vecteurs presque invariants dans le complément L2(M)′.

Etude de (TLp(M)) pour des algèbres M “diffuses”

Concernant la réciproque du Théorème 2.2, on ne peut espérer obtenir un résultat
général pour toute algèbre de von Neumann M. En effet, si le groupe d’isométries
O(Lp(M)) est “petit”, comme par exemple le groupe O(lp), un groupe G pourra
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avoir la propriété (TLp(M)) sans posséder la propriété (T ). A l’opposé, si on
considère certaines algèbres M plus “diffuses”, on peut montrer que (TLp(M))
implique (T ) ; cela a déjà été démontré dans [4] pour le cas M = L∞(X,µ).
Nous prouvons le résultat suivant.

Théorème 2.4. (Theorem 2.5.6) Soit M = B(H), ou M le facteur II1 hyperfini
R. Soit G un groupe topologique localement compact à base dénombrable. Si G a
la propriété (TLp(M)), alors G a la propriété (T ) de Kazhdan.

La propriété (TLp(M)) pour des algèbres M discrètes telle que M = l∞ est sou-
vent strictement plus faible que la propriété (T ) et mérite une étude indépendante.
Nous avons mené une telle étude pour la propriété (Tlp). Elle fait l’objet d’une
publication en cours de rédaction avec B.Bekka.

Etude de (Tlp)

Nous caractérisons pour un groupeG la propriété (Tlp) par la propriété d’isolation
de la représentation triviale 1G de G dans l’ensemble des représentations mono-
miales de G. On rappelle qu’une représentation unitaire σ de G est monomiale
si σ est unitairement équivalente à une représentation induite IndG

Hχ, où H est
un sous-groupe fermé de H et χ : H → S1 est un caractère untitaire sur H .

Théorème 2.5. (Theorems 2.6.5 and 2.6.9) Soit G un groupe localement com-
pact à base dénombrable.
(i) G possède (Tlp) pour 1 < p <∞ et p 6= 2 si et seulement si 1G est isolée dans

l’ensemble des représentations monomiales IndG
Hχ, associées aux sous-groupes ou-

verts H de G.
Si de plus, G est un groupe totalement discontinu, on a :
(ii) G possède (Tlp) pour 1 < p < ∞ et p 6= 2 si et seulement si 1G est isolée
dans l’ensemble des représentations quasi-régulières (λG/H , l2(G/H)), associées
aux sous-groupes ouverts H de G.

Pour G totalement discontinu, le Théorème 2.5 montre bien la différence entre
(T ) et (Tlp) : (T ) fait intervenir toutes les représentations unitaires de G alors
que (Tlp) ne concerne que les représentations quasi-régulières associées à des sous-
groupes ouverts. On déduit de ces caractérisations que certains groupes sans la
propriété (T ) possèdent la propriété (Tlp) pour p 6= 2. C’est, par exemple, le
cas de SL2(Ql), où Ql est l’ensemble des nombres l-adiques, avec l un nombre
premier.

(TF ) pour F un sous-espace fermé de Lp(M)

Nous avons également cherché à étendre le Théorème 1.3 aux représentations sur
des sous-espaces fermés de Lp(M). Cependant, comme mentionné précédemment,
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la structure des isométries d’un tel sous-espace n’est pas très bien connue. Un
cadre naturel plus adapté dans le cas non-commutatif est celui des isométries
complètes. Ceci nous conduit à introduire une variante plus faible de (TF ).

Définition 2.6. Soit M une algèbre de von Neumann finie et 1 ≤ p <∞. Soit F
un sous-espace fermé de Lp(M) tel que 1 ∈ F . Un groupe topologique G possède
la propriété (T c.i.

F ) si, pour toute représentation orthogonale G → Oc.i.(F ) de G
par isométries complètes de F préservant l’unité 1, la restriction π|F ′(π) de π sur
F ′(π) n’a pas presque des vecteurs invariants.

Nous avons obtenu l’analogue suivant du point 2. dans le Théorème 1.3.

Théorème 2.7. (Theorem 2.7.4) Soit 1 ≤ p < ∞, p /∈ 2N. Soit M une algèbre
de von Neumann finie, et F un sous-espace fermé de Lp(M) tel que F ⊂ M et
1 ∈ F . Supposons que G soit un groupe topologique avec la propriété (T ). Alors
G a la propriété (T c.i.

F ).

2.3 Propriétés de point fixe pour les actions sur Lp(M)

Nous nous sommes aussi intéressés aux propriétés de point fixe (FLp(M)), et
plus généralement aux actions par isométries affines sur les espaces Lp non-
commutatifs. Les groupes de rang supérieur et leurs réseaux fournissent des
exemples de groupes avec (FLp(M)). Nous rappelons leur définition.

Définition 2.8. Pour 1 ≤ i ≤ m, soient ki des corps locaux et Gi(ki) les ki-points
de groupes Gi algébriques sur ki, connexes et simples. Si chacun des facteurs
simples Gi est de rang supérieur ou égal à 2 sur ki, le groupe G =

∏m
i=1 Gi(ki)

est appelé groupe de rang supérieur.

En utilisant le Théorème 2.2, ainsi que les techniques développées dans [4],
on obtient le résultat suivant.

Théorème 2.9. (Theorem3.2.3) Soit G un groupe de rang supérieur et M une
algèbre de von Neumann. Alors G, ainsi que les réseaux dans G, possèdent la
propriété (FLp(M)) pour 1 < p <∞.

Ces mêmes techniques ont été utilisées dans [59] pour montrer que les groupes
SLn(Z[x1, ...xk]) possédaient la propriété (FLp(M)) pour n ≥ 4. Le résultat du
théorème précédent a été démontré par Puschnigg dans [68] dans le cas particulier
où M = B(H), et donc Lp(M) = Cp. Il en a donné une application à l’existence
de modules de Fredholm au sens de Connes.

Nous avons déjà mentionné que la propriété (FB) implique la propriété (TB)
dans le cadre des groupes localement compacts σ-compacts, et que la réciproque
est fausse pour B = Lp([0, 1]) et p > 2. Nous avons cherché à généraliser au
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cadre non-commutatif le point 2. dans le Théorème 1.4. La preuve des auteurs
de [4] dans le cas commutatif est basée sur le fait que Lp se plonge dans L2 pour
1 < p < 2. Ceci n’est plus le cas pour les espaces Lp non-commutatifs : un es-
pace Lp(M) contenant M2(R) ne se plonge pas dans un espace de Hilbert. Nous
ignorons si le résultat reste quand même valable dans le cadre non-commutatif.

Par contre, le point 3. du théorème 1.4 se généralise parfaitement au cas
non-commutatif, en adaptant la preuve donnée dans [4].

Théorème 2.10. (Theorem 3.3.1) Soit M une algèbre de von Neumann. Soit
G un groupe topologique avec la propriété (T ), alors il existe une constante ǫ > 0
telle que G a la propriété de point fixe (FB) , pour tout p ∈]2 − ǫ, 2 + ǫ[, et pour
tout sous-espace fermé B de Lp(M).

2.4 La propriété de Haagerup pour des actions sur les

espaces Lp

Une autre propriété de groupes, qui a été beaucoup étudiée, est la propriété (H)
de Haagerup. Elle est partagée par de nombreux groupes : groupes moyennables,
groupes libres, groupes de Coxeter...Une obstruction bien connue à la propriété
(H) est l’existence d’une paire de groupes (G,H) avec la propriété (T ), où H
est un sous-groupe non-compact de G 1. En ce sens, la propriété (H) peut être
considérée comme une négation forte de la propriété (T ).

Rappelons qu’un groupe G localement compact à base dénombrable possède
la propriété (H) de Haagerup (ou est a-T -menable) s’il existe une représentation
unitaire de G, sur un espace de Hilbert H, qui est C0 (voir la définition plus
bas) et qui possède presque des vecteurs invariants. Il est connu que ceci est
équivalent à l’existence d’une action propre de G par isométries affines sur un
espace de Hilbert H.

Nous nous sommes donc intéressés à la traduction de ces deux variantes de
la propriété (H) de Haagerup dans le cadre des espaces Lp(M) non-commutatifs
associés à des algèbres de von Neumann M semi-finies.

On rappelle qu’une fonction f : X → C sur un espace topologique X est C0

si :

∀ǫ > 0, ∃K ⊂ X compact tel que |f(x)| < ǫ pour tout x ∈ X\K.
Les coefficients matriciels d’une représentation π d’un groupe G sur un espace
vectoriel V sont les fonctions g 7→< π(g)v, w > de G dans C, pour v ∈ V et

1ce n’est pas la seule obstruction, voir par exemple le résultat de Cornulier [21]
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w ∈ V ∗. On dit qu’une représentation π est C0 si tous ses coefficients matriciels
sont C0.

Définition 2.11. Soit M une algèbre de von Neumann semi-finie.
On dit que G a la propriété (HLp(M)) s’il existe une représentation π : G →
O(Lp(M)) qui est C0 et avec presque des vecteurs invariants.

A notre connaissance, la propriété (HLp(M)) n’a pas été étudiée jusqu’à présent,
même dans le cas des espaces Lp commutatifs. L’existence d’une paire de groupes
(G,H) avec la propriété (TLp(M)), où H est un sous-groupe normal fermé non-
compact de G, est là aussi une obstruction à la propriété (HLp(M)). Il est bien
connu que les sous-groupes fermés d’un groupe du type

∏
i∈I Si, où I est fini

et chaque Si est soit le groupe SO(ni, 1), soit le groupe SU(mi, 1), possède la
propriété (H). Nous montrons un résultat plus fort.

Théorème 2.12. (Theorem 4.4.1) Soit G un sous-groupe fermé d’un groupe du
type

∏
i∈I Si, où I est fini et chaque Si est soit le groupe SO(ni, 1), soit le groupe

SU(mi, 1) pour ni ≥ 2, mi ≥ 1. Alors G possède la propriété (HLp([0,1])) pour
tout 1 < p <∞.

Les liens entre la propriété (H) et celles pour des espaces Lp non-commutatifs
dépendent de l’algèbre de von Neumann considérée, comme l’indiquent les résultats
que nous allons énoncer. En particulier, concernant la question de savoir si (H)
implique (HLp(M)), nos résultats montrent que la réponse est positive pour cer-
taines algèbres de von Neumann, et négatives pour d’autres.

Considérons d’abord le cas de l’algèbre M = l∞. Nous montrons que seule
une classe restreinte de groupes possède la propriété (Hlp).

Théorème 2.13. (Theorems 4.3.1 and 4.3.2) Soit G un groupe localement com-
pact à base dénombrable.
(i) Si G est connexe, alors G possède (Hlp) si et seulement si G est compact.
(ii) Si G est totalement discontinu, alors G possède (Hlp) si et seulement si G
est moyennable.

Lorsque le groupe d’isométries de l’espace Lp(µ) considéré est plus “gros”, la
propriété (HLp(µ)) est plus fortement liée à la propriété (H). C’est ce que montre
le théorème qui suit, où nous caractérisons les groupes de Lie connexes linéaires
ayant la propriété (HLp([0,1])).

Théorème 2.14. (Theorem 4.4.1) Soit G un groupe de Lie connexe linéaire.
Soit 1 < p <∞. Alors les assertions suivantes sont équivalentes :
(i) G possède la propriété (HLp([0,1])) ;
(ii) G possède la propriété (H) de Haagerup ;
(iii) G est localement isomorphe à un produit

∏
i∈I Si ×M , où I est fini, M est

un groupe moyennable, et pour tout i ∈ I, Si est soit le groupe SO(ni, 1) soit
SU(mi, 1) avec ni ≥ 2, mi ≥ 1.
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L’exemple suivant traite le cas des algèbres discrètes B(H) et (⊕Mn)∞ =
{x = ⊕nxn | supn ||xn|| < ∞ } pour lesquelles les espaces Lp correspondants
sont Cp et Sp.

Théorème 2.15. (Theorems 4.5.1 and 4.5.2) Soit G un groupe localement com-
pact à base dénombrable. Soit 1 < p <∞, p 6= 2. Alors on a
(i) G possède (HCp) si et seulement si G possède (H).
(ii) G possède (HSp) si et seulement si G est compact.

Les groupes apparaissant dans le Théorème 2.12 possèdent en fait des versions
plus fortes de (HLp([0,1])), que nous définissons pour des classes plus restreintes de
représentations sur les espaces Lp(M).

Définition 2.16. Soit M une algèbre de von Neumann semi-finie, munie d’une
trace fidèle, normale et semi-finie τ .
On dit queG a la propriété (HLp(M),+) (resp. (HLp(M),τ )) s’il existe une représentation
positive (resp. une représentation préservant la trace) π : G → O(Lp(M)) qui
est C0 et avec presque des vecteurs invariants.

Notre prochain résultat montre que les propriétés (HLp(M),+) et (HLp(M),τ )
impliquent la propriété (H).

Théorème 2.17. (Theorem 4.6.4) Soient 1 ≤ p <∞, et G un groupe localement
compact à base dénombrable.
(i) Soit M une algèbre de von Neumann semi-finie. Si G possède la propriété
(HLp(M),τ ), alors G possède la propriété (H).
(ii) Soit M une algèbre de von Neumann finie. Si G possède la propriété (HLp(M),+),
alors G possède la propriété (H).

2.5 Actions fortement mélangeantes sur Lp(M)

Nous nous sommes aussi intéressés aux représentations fortement mélangeantes
sur les espaces Lp(M) associés à des algèbres de von Neumann finies. On peut
introduire la variante suivante de la propriété (H), déjà considérée par Jolissaint
dans [13].

Définition 2.18. Soit M une algèbre de von Neumann finie. On dit que G
a la propriété (Hmix

Lp(M)) s’il existe une représentation π : G → O(Lp(M)) qui
est fortement mélangeante et qui possède presque des vecteurs invariants dans le
complément Lp(M)′ des vecteurs π(G)-invariants.

Les résultats suivants semblent indiquer que la propriété (Hmix
Lp(M)) est plus

étroitement liée à la propriété (H) que la propriété (HLp(M)).

Théorème 2.19. (Theorems 5.2.3 and 5.2.4) Soit 1 ≤ p < ∞ et G un groupe
localement compact à base dénombrable.
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1. Si G a la propriété de Haagerup (Hmix
Lp(M)), alors il a la propriété de Haagerup

(H).

2. Si G a la propriété de Haagerup (H), alors il a la propriété (Hmix
Lp(R)) pour

le facteur hyperfini R de type II1.

3. Si G a la propriété de Haagerup (H), alors il a la propriété (Hmix
Lp([0,1])).

2.6 Actions propres par isométries affines sur Lp(M)

Nous nous intéressons maintenant aux liens entre la propriété (H) et les actions
propres par isométries affines sur les espaces Lp. Nous reprenons dans cette
définition la terminologie utilisée dans [12].

Définition 2.20. Soit M une algèbre de von Neumann et 1 ≤ p < ∞. Un
groupe G localement compact à base dénombrable est dit a-FLp(M)-menable
s’il existe une action propre de G par isométries affines sur Lp(M).

Pour p = 2, c’est la propriété de Haagerup.

Nous montrons le résultat suivant qui donne un lien entre la propriété (HLp(M))
et l’a-FLp(M)-menabilité pour certains facteurs M.

Théorème 2.21. (Proposition 6.2.2) Soit G un groupe localement compact à base
dénombrable. Soit M un facteur de type II∞, et 1 ≤ p < ∞. Si G possède la
propriété (HLp(M)), alors G est a-(FLp(M))-menable.

Rappelons que le Théorème 1.6 de Nowak montre l’équivalence entre a-FLp([0, 1])-
menabilité et la propriété (H) pour 1 ≤ p < 2. Nous avons obtenu une extension
de la première partie de ce résultat pour le cas M = l∞ ⊗R, où R est le facteur
hyperfini de type II1.

Théorème 2.22. (Theorem 6.2.5 and Corollary 6.2.6) Soit G un groupe locale-
ment compact à base dénombrable avec la propriété de Haagerup (H), et soit
1 ≤ p < ∞. Alors il existe une action propre de G par isométries affines
sur Lp(M), où M = l∞ ⊗ R. De même, il existe une action propre de G par
isométries affines sur Lp(M), où M = B(l2)⊗R est le facteur hyperfini de type
II∞.

Nous ignorons si l’analogue du résultat 2. dans le Théorème 1.6 est vrai dans
ce cadre, la difficulté étant, comme mentionné plus haut, que les distances as-
sociées aux normes ||.||p n’induisent pas de noyau conditionnellement de type
négatif.

L’a-FLp(M)-menabilité et (H) sont des propriétés distinctes : en effet, il
existe des groupes de Kazhdan avec des actions propres par isométries affines
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sur Lp([0, 1]) (voir [11], [66], [85], [23], [62]). Soit Γ est un groupe hyperbolique.
Utilisant des techniques développées par Mineyev [60], Yu [85] a montré que Γ
possède une action propre par isométries affines sur lp(Γ×Γ) pour p suffisamment
grand. Nous adaptons sa construction pour montrer que Γ possède une action
propre par isométries affines sur Cp.

3 Quelques questions ouvertes

Nous donnons ici une liste non-exhaustive de questions qui sont intervenues au
cours de ce travail, et qui restent actuellement sans réponse.

- Pour p 6= 2, existe-t-il des groupes discrets possédant la propriété (Tlp) et la
propriété (H) (pour des exemples de groupes discrets avec (Tlp) et sans la pro-
priété (T ), voir le preprint [9]) ?

- Pour 1 < p < 2 et M une algèbre non-commutative, les groupes G avec la
propriété (T ) possèdent-t-il la propriété (FLp(M)) ?

- Pour p 6= 2, le revêtement universel de SU(n, 1) possède-t-il la propriété
(HLp([0,1])) (voir le Theorem 4.4.1 et la remarque qui suit) ?

- Pour p 6= 2 et q 6= 2, les propriétés (HLp(M)) et (HLq(M)) sont-elles équivalentes?
Plus précisément, la conjugaison par l’application de Mazur préserve-t-elle le car-
actère C0 d’une représentation orthogonale sur Lp(M) (voir Remark 4.6.6) ?

- Les propriétés (H) et (Hmix
Lp(M)) sont-elles équivalentes pour tout 1 < p <∞

et toute algèbre de von Neumann finie M (voir Chapter 5 section 2) ?



Chapter 1

Non-commutative Lp-spaces

Non-commutative Lp-spaces were introduced by Dixmier [26] and studied by var-
ious authors, among them Yeadon [83] and Haagerup [35]. We recall in this
chapter some basic facts on these Lp-spaces, which share some common prop-
erties with their commutative brothers, but have sometimes strong differences
with them. The survey here is far from exhaustive; for a more complete sur-
vey on these spaces, see Pisier and Xu [67]. Since the variant of property (T )
on Lp-spaces strongly depends on the structure of isometries on such spaces, we
are going to study in this thesis the structure of such isometries. Moreover, we
will prove a few results (among them a generalization of Ando’s inequality) and
present some tools (Mazur map, structure of the group of isometries of Lp-spaces,
non-embeddability of some non-commutative Lp-spaces in Hilbert spaces) which
will be needed in later chapters.

1.1 Lp(M)-spaces associated with semi-finite von

Neumann algebras M
We first review some basic properties of Lp(M) in the case of semi-finite von
Neumann algebras M.

1.1.1 Definition and examples

Let M be a von Neumann algebra acting on a Hilbert space H.

M is said to be semi-finite if it admits a normal semi-finite trace τ , that is,
a linear map τ : M+ → [0,+∞] with the following properties :
- for all u ∈ M, τ(u∗u) = τ(uu∗),
- for any bounded increasing net (xα) in M+, supα τ(xα) = τ(supα xα),
- for any non-zero x ∈ M+, there is a non-zero y ∈ M+ such that y ≤ x and
τ(y) < +∞,

15
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- if τ(x) = 0, then x = 0.
If τ(1) < +∞, the von Neumann algebra M is said to be finite.

M is said to be hyperfinite if there exists an increasing sequence of finite
dimensional von Neumann algebras with dense (in the strong operator topology)
union in M.

Let us denote by M′ the commutant of M. The von Neumann algebra M is
called a factor if M∩M′ = C1.

Let M be a semi-finite von Neumann algebra and 1 ≤ p < +∞. We define
the Lp(M, τ)-space as the completion of the set

{x ∈ M | ||x||p <∞ }

with respect to the norm ||x||p = τ(|x|p) 1
p .

We now give some examples of such spaces, and set some notations. If 1 ≤
p ≤ +∞, then we will always denote by p′ the conjugate exponent of p.

Examples

1. Let (X,µ) be a measured space, and let M = L∞(X,µ) be the commuta-
tive von Neumann algebra, equipped with the trace τ : f →

∫
X
f dµ. Then

the associated Lp-space is the classical Lp-space Lp(M, τ) = Lp(X,µ).

2. The p-Schatten ideals Cp are the Lp(M, τ)-spaces associated to M = B(H)
where H is a separable Hilbert space, and τ = Tr the usual trace on H;
thus,

Cp = {x ∈ B(H) | Tr(|x|p) <∞ }.

3. Denote by Mn the algebra of complex n × n matrices. Consider the von
Neumann algebra

M = (⊕nMn)∞ = {⊕nxn | xn ∈ Mn, sup
n

||xn|| <∞},

equipped with the trace τ =
∑

n Trn, where Trn is the usual trace on Mn.
The associated Lp-space Lp(M, τ) will be denoted by Sp.

4. The space Lp(R) associated with the hyperfinite II1 factor R. Recall that
the hyperfinite II1 factor R can be described as the von Neumann algebra
R = ⊗nM2, the von Neumann infinite tensor product of copies of M2. R
is equipped with the trace τ = ⊗nTrn.
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A few general properties of non-commutative Lp-spaces

As in the commutative case, a basic property of non-commutative Lp-spaces are
the following Clarkson type inequalities (for a proof in the more general case of
Haagerup Lp-spaces, see [50]; see also [70] for the proof of the equality case when
1 ≤ p < 2).

Proposition 1.1.1. Let M be a von Neumann algebra. For all x, y ∈ Lp(M)
we have

(
1

2
(||x+ y||p′p + ||x− y||p′p ))

1
p′ ≤ (||x||pp + ||y||pp)

1
p for 1 ≤ p ≤ 2

and

(
1

2
(||x+ y||pp + ||x− y||pp))

1
p ≤ (||x||p′p + ||y||p′p )

1
p′ for 2 ≤ p ≤ +∞.

The equality case occurs in the previous inequalities if and only if xy∗ = y∗x = 0

The equality case in these inequalities is a crucial tool in the study of the
structure of O(Lp(M)), the group of bijective linear isometries of Lp(M).
Recall the usual following formula, for x ∈ Lp(M, τ),

||x||p = sup
y∈Lp′(M,τ),||y||p′=1

τ(xy).

Now let 1 < p < ∞. The dual of Lp(M) can be identified to Lp′(M) by means
of the duality map (x, y) 7→ τ(xy). A straightforward consequence of the Clark-
son’s inequalities is that Lp(M) is uniformly convex, and uniformly smooth. We
now recall the notions of uniformly convexity, uniformly smoothness for Banach
spaces, since this properties of convexity about Lp-spaces are a crucial fact for
our study of property (TLp).

Some definitions about uniformly convex Banach spaces

Let B be a Banach space. The convexity modulus of B is the function ǫ 7→ δ(ǫ)
defined by

δ(ǫ) = inf{1 − ||u+ v

2
|| | ||u||, ||v|| ≤ 1 and ||u− v|| ≥ ǫ }.

B is said to be uniformly convex if δ(ǫ) > 0, whenever ǫ > 0. B is said to be
uniformly smooth if its dual space B∗ is uniformly convex. We will say that B is
ucus if it is uniformly convex and uniformly smooth.

Let B be a stricly convex Banach space, that is a Banach space satisfying

||x+ y

2
|| < 1 for all x, y in the unit sphere S(B) of B.
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The duality map ∗ : S(B) → S(B∗) is the unique map that associates to each
unit vector x ∈ B, the unit vector x∗ in B∗ such that < x, x∗ >= 1. Moreover,
if B is a ucus Banach space, then the map ∗ is uniformly continuous with a
uniformly continuous inverse (see [10] for more details). We will describe this
map in Section 1.3 of this chapter in the special case of the Lp-spaces, and we
will use it in our proofs later.

1.1.2 τ-measurable operators and s-generalized numbers

Let M be a semi-finite von Neumann algebra acting on a Hilbert space H, and
equipped with a trace τ . Let us denote by P(M) the set of projections in M.
The elements of Lp(M, τ) can be seen as closed densily defined operators on
H. Recall that a densily defined closed operator x on H is affiliated with M
if xu = ux for every unitary u in the commutant M′

of M. A densily defined
closed operator x with domain D(x) affiliated with M is called τ -measurable if
for every t > 0, there exists P ∈ P(M) such that τ(P ) ≤ t, (1− P )(H) ⊂ D(x),
and x(1−P ) ∈ M. We will denote by L0(M, τ) the set of τ -measurable operators
and L0(M, τ)+ the set of positive operators in L0(M, τ). In particular, elements
of Lp(M, τ) can be seen as elements of L0(M, τ).

Recall that the measure topology on L0(M, τ) is by definition the topology
whose fundamental system of neighborhoods of 0 is given by

V (ǫ, δ) = {x ∈ L0(M, τ) | ∃P ∈ P(M), ||xP || ≤ ǫ and τ(1 − P ) ≤ δ }.

For details on the τ -measurable operators and the measure topology, we refer to
the preliminaries in [29], and Chapter I in [79].

In order to generalize Ando’s inequality, we need to introduce the notion of
s-generalized numbers (see the article [29] by Fack and Kosaki for more details
on s-numbers). These numbers are a generalization of the singular values of
matrices or the singular values of operators in B(H). The s-generalized numbers
are defined for x ∈ L0(M, τ), and s > 0, by

µs(x) = inf
P∈P(M),τ(1−P )≤s

(||xP ||).

For x ∈ L0(M, τ)+, we have

µs(x) = inf
P∈P(M),τ(1−P )≤s

( sup
ξ∈P (H),||ξ||=1

< xξ, ξ >).

In the next proposition, we recall some useful properties of the s-numbers.

Proposition 1.1.2. [29] Let x, y ∈ L0(M, τ). Let 1 ≤ p <∞. Then :
(i) µs(xy) ≤ ||x||µs(y).
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(ii) µs(x) ≤ µs(y) if 0 ≤ x ≤ y.
(iii) µs(f(|x|)) = f(µs(|x|)) for every continuous increasing function f on R+

such that f(0) ≥ 0.

(iv) For x ∈ Lp(M, τ), we have ||x||p = (
∫ ∞

0
µs(x)

pds)
1
p .

(v) If xy ∈ L1(M, τ), we have |τ(xy)| ≤
∫ ∞

0
µs(x)µs(y)ds.

(vi) µs(xy) = µs(yx) for x, y ≥ 0 such that xy ≥ 0.

Properties (i) − (v) are established in [29]. Notice that if x, y are positive
operators such that xy ≥ 0, then

< yxξ, ξ >=< ξ, xyξ >≥ 0

hence yx ≥ 0 and (vi) follows from the definition of µs.

We need to recall a few basic properties of elements in the Lp(M, τ)-spaces.

Lemma 1.1.3. Let x, y be self-adjoint elements in Lp(M, τ). Let 1 ≤ p <∞.
(i) If x ≥ y then ||x+||p ≥ ||y+||p( with x+ = max{x, 0} ).
(ii) If xy = yx = 0 then ||x+ y||pp = ||x||pp + ||y||pp.

Proof. (i) If x ≥ y and r = (p− 1)/2, then

||y+||pp = τ(y+ryy+r)

≤ τ(y+rxy+r)

≤ τ(y+rx+y+r)

≤ ||y+||p−1
p ||x+||p (using Hölder’s inequality) .

(ii) Observe that xy = yx = 0 implies that the C∗-algebra generated by {x, y} is
abelian. Hence, we can assume that x and y are functions with disjoint supports
C0(X), X being a topological space. It is then obvious that |x + y|p = |x|p +
|y|p.

1.1.3 Generalization of Ando’s inequality

In [1], Ando proved the following inequality : let a, b be positive n × n-complex
matrices, f a non-negative operator monotone function, and || · || a unitarily
invariant norm on Mn(C); then

||f(a) − f(b)|| ≤ ||f(|a− b|)||.

We extend this inequality to measurable operators in the special case of the
operator monotone function f : λ 7→ λ

p
q and the norm || · ||q when p < q. This

will be used later in order to show the local uniformly continuity of the Mazur
map in the case of a semi-finite von Neumann algebra.
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Proposition 1.1.4. Let M be a semi-finite von Neumann algebra. For a, b ∈
L0(M, τ)+, and 1 ≤ p < q <∞, we have

||a p
q − b

p
q ||q ≤ ||a− b||

p
q
p .

Recall the following integral representation for operator monotone functions,
called the Löwner integral representation.

Proposition 1.1.5. [71] Let f be a real-valued continuous function on (0,∞).
Then f is operator monotone if and only if

f(λ) = αλ+ β +

∫ ∞

0

λt

λ+ t
dν(t)

for some α ∈ R, β ≥ 0 and a positive measure ν on (0,∞) such that
∫ ∞

0
t

1+t
dν(t) <

∞.

Remark 1.1.6. If p < q, the mapping λ 7→ λ
p
q is operator monotone, and by

the previous Proposition 1.1.5, it admits a Löwner decomposition. In fact, the
decomposition in this case is well-known and we have

λ
p
q =

sin(p
q
π)

π

∫ ∞

0

λt

λ+ t
t

p
q
−2dt.

Proof of Proposition 1.1.4. We first prove the inequality in the case a ≥ b ≥ 0.

We have, by Remark 1.1.6, an integral representation of the following form
for the operator monotone mapping λ 7→ λ

p
q :

λ
p
q =

∫ ∞

0

λt

λ + t
dν(t) ,

where ν is a positive measure on (0,∞) such that
∫ ∞

0
t

1+t
dν(t) <∞.

Let c = a− b ≥ 0. We have to prove that

||(b+ c)
p
q − b

p
q ||q ≤ ||c p

q ||q. (1.1)

For simplicity, let us denote by a(t) the operator t((b+ c)(b+ c+ t1)−1 − b(b+
t1)−1), coming from the Löwner integral representation of (b+ c)

p
q − b

p
q .

Now we check that

µs(a(t)) ≤ µs(tc(c+ t1)−1) for t > 0 and s > 0. (1.2)
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To prove this, observe that we can assume that t = 1 by replacing b, c by 1
t
b, 1

t
c.

As x(x + 1)−1 = 1 − (x + 1)−1, inequality (1.2) is equivalent to the following
inequality :

µs((b+ 1)−1 − (b+ c+ 1)−1) ≤ µs(1 − (c+ 1)−1). (1.3)

Since

(b+ 1)−1 − (b+ c+ 1)−1 = (b+ 1)−
1
2 (1 − (1 + (b+ 1)−

1
2 c(b+ 1)−

1
2 )−1)(b+ 1)−

1
2

and ||(b + 1)−1|| ≤ 1, using successively Properties (vi) and (i) of Proposition
1.1.2, we get

µs((b+ 1)−1 − (b+ c+ 1)−1) ≤ µs(1 − (1 + (b+ 1)−
1
2 c(b+ 1)−

1
2 )−1).

Since (b+ 1)−1 ≤ 1, we have c
1
2 (b+ 1)−1c

1
2 ≤ c and therefore

1 − (1 + c
1
2 (b+ 1)−1c

1
2 )−1 ≤ 1 − (1 + c)−1.

Now with Properties (vi) (applied to (b + 1)−
1
2 and c) and (ii) of Proposition

1.1.2, we obtain

µs(1−(1+(b+1)−
1
2 c(b+1)−

1
2 )−1) = µs(1−(1+c

1
2 (b+1)−1c

1
2 )−1) ≤ µs(1−(c+1)−1).

This proves inequality 1.3 and hence inequality 1.2.

Let y ∈ Lq′(M); using the inequality 1.2 and inequality (v) in 1.1.2, we have

τ(((b+ c)
p
q − b

p
q )y) =

∫ ∞

0

τ(a(t)y)dν(t)

≤
∫ ∞

0

∫ ∞

0

µs(a(t))µs(y)dν(t)ds

≤
∫ ∞

0

∫ ∞

0

µs(tc(c + t1)−1)µs(y)dν(t)ds

=

∫ ∞

0

µs(c
p
q )µs(y)ds

≤ ||c p
q ||q||y||q′

where we used Hölder inequality (iv) in Proposition 1.1.2 in the last inequality.
The inequality (1.1) follows by taking the supremum over y in the unit sphere of
Lq′(M).

Next, we consider the general case of arbitrary a, b ∈ L0(M, τ)+. For this, we
proceed as in the proof of Theorem 1 in [1].
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Let a, b ≥ 0. Since a + (b− a)+ ≥ b, we have

b
p
q − a

p
q ≤ (a + (b− a)+)

p
q − a

p
q .

The operator (a+(b−a)+)
p
q −a

p
q is positive since x 7→ x

p
q is operator monotone.

Hence
((a+ (b− a)+)

p
q − a

p
q )+ = (a+ (b− a)+)

p
q − a

p
q .

Therefore, by (i) in Lemma 1.1.3, we obtain that

||(bp
q − a

p
q )+||q ≤ ||(a+ (b− a)+)

p
q − a

p
q ||q.

Applying the first case to a and a+ (b− a)+, it follows that

||(a+ (b− a)+)
p
q − a

p
q ||q ≤ ||(b− a)+ p

q ||q

and hence
||(bp

q − a
p
q )+||q ≤ ||(b− a)+ p

q ||q.
Exchanging the role of a and b, we also get

||(a
p
q − b

p
q )+||q ≤ ||(a− b)+ p

q ||q.

Using part (ii) of Lemma 1.1.3 and the inequalities above, we have

||a p
q − b

p
q ||qq = ||(a p

q − b
p
q )+||qq + ||(bp

q − a
p
q )+||qq

≤ ||(a− b)+ p
q ||qq + ||(b− a)+ p

q ||qq
= ||(a− b)+ p

q + (b− a)+ p
q ||qq

= |||a− b| p
q ||qq

since (a − b)+ p
q (b − a)+ p

q = 0 and (a − b)+ p
q + (b − a)+ p

q = |a − b| p
q . The result

follows.

1.2 General Haagerup Lp-spaces

The previous construction of non-commutative Lp-spaces associated with semi-
finite von Neumann algebras does not apply to von Neumann algebras of type
III, which do not admit a normal faithful semi-finite trace. However, it is known
that any von Neumann algebra admits a faithful semi-finite weight (an additive
homogeneous functional on the positive cone with values in [0,+∞]). In [35],
Haagerup gave a construction of Lp-spaces using a crossed product to reduce von
Neumann of type III to semi-finite von Neumann algebras with a trace. Another
construction, using complex interpolation, is due to Kosaki (see[49] and [79]). We
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recall here the construction given by Haagerup.

Let M be a von Neumann algebra, acting on a Hilbert space H, and equipped
with a normal faithful semi-finite weight ϕ0. Let t 7→ σϕ0

t be the one-parameter
group of modular automorphisms of M associated with ϕ0 (see chapter VIII and
theorem 1.2 in [78] for more details). We denote by

Nϕ0 = M ⋊ϕ0 R

the crossed product von Neumann algebra, which is a von Neumann algebra
acting on L2(R,H), and generated by the operators πϕ0(x) and λs, defined for
x ∈ M and s ∈ R by

πϕ0(x)(ξ)(t) = σϕ0
−t(x)ξ(t)

λs(ξ)(t) = ξ(t− s) for any ξ ∈ L2(R,H) and t ∈ R.

Denote by s 7→ θs the dual action of R on Nϕ0 , which is defined by

θs(πϕ0(x)) = πϕ0(x), θs(λt) = e−itsλt for all x ∈ M and t, s ∈ R.

By Lemma 5.2 in [37], there exists a semi-finite normal trace τϕ0 on Nϕ0

satisfying
τϕ0 ◦ θs = e−sτϕ0for all s ∈ R.

We denote by L0(Nϕ0, τϕ0) the *-algebra of τϕ0-measurable operators affiliated
with Nϕ0 . For 1 ≤ p ≤ ∞, the Haagerup non-commutative Lp-space associated
with M is defined by

Lp(M) = { x ∈ L0(Nϕ0 , τϕ0) | θs(x) = e−s/px for all s ∈ R}.

It is known that this space is independent of a weight ϕ0 up to isomorphism.

The space L1(M) is isomorphic to M∗ (see Chapter 2 in [79] for more details).
The identification is as follows : there exists a normal faithful semi-finite operator
valued weight from Nϕ0 to M defined by

Φϕ0(x) = π−1
ϕ0

(

∫

R

θs(x)ds) , for x ∈ Nϕ0.

Now, if ϕ ∈ M+
∗ , and ϕ̂ denotes the extension of ϕ to a normal weight on M̂+,

the extended positive part of M (see Definition 1.1 in [36]), we then put

ϕ̃ϕ0 = ϕ̂ ◦ Φϕ0 .

We associate to ϕ the Radon-Nikodym derivative hϕ = dϕ̃ϕ0

dτϕ0
of ϕ̃ϕ0 with respect

to the trace τϕ0 , which is the unique operator in L1(M)+ satisfying

ϕ̃ϕ0(y) = τϕ0(hϕy) for all y ∈ Nϕ0.
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The map ϕ 7→ hϕ0 = dϕ̃ϕ0

dτϕ0
gives an isomorphism between M+

∗ and L1(M)+,

which extends to the whole spaces by linearity.

If x ∈ L1(M), and ϕx is the element of M+
∗ associated to x, we define a linear

functional Tr by

Tr(x) = ϕx(1)

and we have, p′ being the conjugate exponent of p,

Tr(xy) = Tr(yx) for x ∈ Lp(M), y ∈ Lp′(M)

For 1 ≤ p <∞, if x = u|x| is the polar decomposition of x ∈ Lp(M), we define

||x||p = Tr(|x|p)1/p.

Equipped with ||.||p, Lp(M) is a Banach space. The dual space of Lp(M) is
isometrically isomorphic to Lp′(M). For 1 < p <∞, the space Lp(M) is ucus.

If M is a von Neumann algebra with a semi-finite trace τ , Lp(M, τ) is iso-
metrically isomorphic to the Haagerup Lp-space constructed with the weight τ .

1.3 The Mazur map

Let M be a von Neumann algebra, and ϕ0 a normal faithful semi-finite weight
on M. Let (Nϕ0 , τϕ0) be the crossed-product von Neumann algebra associated to
ϕ0, and equipped with the corresponding trace τϕ0 , as described in the previous
section 1.2.

A useful tool which relates isometries of Lp(M) to isometries of Lq(M) is the
Mazur map.

Definition 1.3.1. Let 1 ≤ p, q < ∞. For an operator x, let α|x| be its polar
decomposition. The map

Mp,q :L0(Nϕ0, τϕ0) → L0(Nϕ0 , τϕ0)

x = α|x| 7→ α|x| p
q

is called the Mazur map.

We now give a few useful properties of the Mazur map.

Lemma 1.3.2. Let 1 ≤ p, q, r <∞. Then Mr,q ◦Mp,r = Mp,q.
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Proof. Let α|x| be the polar decomposition of x ∈ L0(Nϕ0 , τϕ0). Let β > 0, and
set y = α|x|β. We claim that the polar decomposition of y is given by α and |x|β.
To show this, it suffices to prove that Im(|x|β) = Im(|x|).
By taking orthogonals, we have to show that Ker(|x|) = Ker(|x|β) for all β > 0.
Let β > 0. Recall that the domain D(|x|β) of |x|β is

D(|x|β) = {ξ |
∫ ∞

0

λ2βdµξ(λ) <∞}

where µξ denotes the spectral measure associated to ξ.
If ξ ∈ Ker(|x|), we have

< |x|ξ, ξ >=

∫ ∞

0

λdµξ(λ) = 0.

In particular, µξ(]0,∞[) = 0. So ξ ∈ D(|x|β) and ξ ∈ Ker(|x|β) thanks to

|| |x|βξ ||2 =< |x|βξ, |x|βξ >=

∫ ∞

0

λ2βdµξ(λ) = 0.

By exchanging the role of |x| and |x|β, we get the equality.
Let 1 ≤ p, q, r <∞, and β = p/r; then Mp,r(x) = α|x|β. It follows from what we

have just seen that Mr,q(Mp,r(x)) = α|x|
p
q = Mp,q(x).

Proposition 1.3.3. Let 1 ≤ p, q <∞, and x ∈ Lp(M). Then

||Mp,q(x)||qq = ||x||pp.

Moreover, Mp,q(Lp(M)) ⊂ Lq(M).

Proof. Let x = α|x| be the polar decomposition of x ∈ Lp(M) and s ∈ R. We

have already seen that |Mp,q(a)| = |a| p
q . So we have

Tr(|Mp,q(a)|q) = Tr(|a|p).

By uniqueness in the polar decomposition, we have θs(α) = α and θs(|x|) =
e−s/p|x|, and then

θs(Mp,q(x)) = θs(α)θs(|x|
p
q )

= α(θs(|x|)
p
q )

= e−s/qMp,q(x).

In the case of Lp-spaces, an explicit formula gives the duality map, by means
of the Mazur map.
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Proposition 1.3.4. Let p ∈]1,∞[ and p′ its conjugate exponent. The map

S(Lp(M)) → S(Lp′(M))

x 7→Mp,p′(x)
∗

is the duality map from S(Lp(M)) to S(Lp′(M)).

Proof. Thanks to the defining property of the duality map, we just have to check
that Tr(Mp,p′(x)

∗x) = 1 for x in the unit sphere S(Lp(M)) of Lp(M).

Let x = α|x| ∈ S(Lp(M)); then Mp,p′(x) = α|x|
p
p′ . Since α∗α|x| = |x|, it follows

that
Tr(|x|

p
p′ α∗α|x|) = Tr(|x|

p
p′ |x|) = Tr(|x|p) = 1.

Proposition 1.3.5. Let a, b ∈ L0(Nϕ0 , τϕ0) and let e, f be two central projections
in Nϕ0 such that ef = 0. Then Mp,q(ae+ bf) = Mp,q(ae) +Mp,q(bf).

Proof. As is easily checked, we have

|ae+ bf | = |a|e+ |b|f.

Let γ be the partial isometry occuring in the polar decomposition of ae+ bf , and
let a = α|a|, b = β|b| be the polar decompositions of a and b. We claim that
γ = αe+ βf . Indeed, we have

ae+ bf = γ|ae+ bf | and

ae+ bf = (αe)(|a|e) + (βf)(|b|f) = (αe+ βf)|ae+ bf |.

Since αe is zero on Ker(|a|e) and βf is zero on Ker(|b|f), αe + βf is zero on
Im(|ae+ bf |)⊥ = Ker(|ae+ by|) = Ker(|a|e)∩Ker(|b|f), since ef = 0. This shows
that

ae+ bf = (αe+ βf)|ae+ bf |
is the polar decomposition of ae+ bf .
Using again the fact that ef = 0 and that e, f are central elements, we deduce
that

Mp,q(ae+ bf) = (αe+ βf)|ae+ bf | p
q

= (αe+ βf)(e|a| p
q + f |b| p

q )

= Mp,q(ae) +Mp,q(bf).

Recall that a Jordan-homomorphism from a C∗-algebra A to a C∗-algebra
B is a ∗-preserving linear map J : A → B such that J(a2) = (J(a))2 for every
a ∈ A. The structure of a Jordan isomorphism between von Neumann algebra is
given in the following theorem (see Theorem 10 in [46] and Lemma 3.2 in [75].
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Theorem 1.3.6. ([46]) Let M, N von Neumann algebras, and J : M → N be a
Jordan isomorphism from M to N . Then we have a decomposition J = J1 + J2

with the following properties : J1 is a *-homomorphism of algebra on M, J2

is a *-anti-homomorphism of algebra, and J1(x) = J(x)e, J2(x) = J(x)f for all
x ∈ M, with e, f two orthogonal and central projections in N such that e+f = I.

The previous decomposition and elementary properties of the Mazur map al-
low us to show that a Jordan-homomorphism on a von Neumann algebra remains
unchanged after conjugation by the Mazur map.

Proposition 1.3.7. Let J be a Jordan-isomorphism of Nϕ0, and let 1 ≤ p, q <
∞. Then we have

J(x) = Mp,q ◦ J ◦Mq,p(x) for all x ∈ Nϕ0.

Proof. Take the decomposition J = J1 + J2 as in the previous Theorem 1.3.6.
Observe first that, for a ∈ Nϕ0 with a ≥ 0 and a positive real number r, we have

J1(a
r) = J1(a)

r

and the same is true for J2.
If α is a partial isometry, then J1(α) and J2(α) are partial isometries with initial
supports J1(α

∗α) and J2(αα
∗), and final supports J1(αα

∗)) and J2(α
∗α)) respec-

tively.
Let x = α|x| ∈ Nϕ0. Since the supports of J1 and J2 are orthogonal, it follows
from Proposition 1.3.5 that

Mp,q ◦ J ◦Mq,p(x) = Mp,q(J1(Mq,p(x)) + J2(Mq,p(x)))

= Mp,q(J1(Mq,p(x))) +Mp,q(J2(Mq,p(x))).

Moreover, we have

Mp,q(J1(Mq,p(x))) = Mp,q(J1(α|x|
q
p ))

= Mp,q(J1(α)J1(|x|)
q
p )

= J1(x)

and

Mp,q(J2(Mq,p(x))) = Mp,q(J2(α|x|
q
p ))

= Mp,q(J2(α|x|
q
pα∗α))

= Mp,q(J2(α)J2(α|x|
q
pα∗))

= Mp,q(J2(α)J2((α|x|α∗)
q
p ))

= Mp,q(J2(α)J2(α|x|α∗)
q
p )

= J2(x).
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The following result about the local uniform continuity of Mp,q is proved for
general Haagerup Lp-spaces in Lemma 3.2 of [69] (for an independent proof in
the case Lp(M, τ) = Sp, see [68]). We give a proof in the semi-finite case, using
Ando’s inequality .

Theorem 1.3.8. [69] For 1 ≤ p, q < ∞, the Mazur map Mp,q is uniformly
continuous on the unit sphere S(Lp(M)).

Until the end of the section, M will always denote a semi-finite von Neumann
algebra. We will need the following elementary lemma.

Lemma 1.3.9. For r ≥ 2, and a, b ∈ Lr(M), the following inequality holds :

|||a|2 − |b|2|| r
2
≤ (||a||r + ||b||r)||a− b||r

Proof. Notice that
a∗a− b∗b = a∗(a− b) + (a∗ − b∗)b

and use successively the triangle inequality and Hölder ’s inequality.

Proof of Theorem 1.3.8 in the semi-finite case. Let us first establish the uniform
continuity on the subset of positive elements of S(Lp(M)). Denote by p

′

, q
′

the
conjugate exponents of p and q. To simplify notation, let denote until the end of
the proof by Mp,q the restriction of the Mazur map to the unit sphere.
• First case : p < q.
In this case, the uniform continuity of Mp,q is a consequence of the generalization
of Ando’s inequality ( Proposition 1.1.4).
• Second case : p > q and q ≥ 2.
Since p and p′ are conjugate, Mp,p′ is uniformly continuous by Proposition 1.3.4.
By the first case, Mp′,q is uniformly continuous (p′ < q). Since, by Lemma 1.3.2,
we have

Mp,q = Mp
′
,q ◦Mp,p

′ ,

it follows that Mp,q is uniformly continuous.
• Third case : p > q and q < 2.
Assume that p < q

′

. Then Mp′,q and Mp,p′ are uniformly continuous, as before.
Hence Mp,q = Mp′ ,q ◦Mp,p′ is also uniformly continuous. Assume now that p > q

′

.

Since p
′

< q
′

, Mp′,q′ is uniformly continuous and so is Mp,q = Mq′ ,q ◦Mp′ ,q′ ◦Mp,p′ .

Let us prove now the uniform continuity on the whole sphere S(Lp(M, τ)).
Let us first consider the case p > q.
Assume also that p > 2. We have

Mp,q(a) −Mp,q(b) = a|a| p
q
−1 − b|b| p

q
−1

= (a− b)|a| p
q
−1 + b(|a| p

q
−1 − |b| p

q
−1)
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It follows from the triangle inequality and Hölder’s inequality that

||Mp,q(a) −Mp,q(b)||q ≤ ||a− b||p + |||a| p
q
−1 − |b| p

q
−1|| pq

p−q
.

The uniform continuity of Mp,q follows from the uniform continuity of the map

a 7→ |a| p
q
−1 on the sphere ( see Lemma 1.3.9) and from the uniform continuity of

M p
2
, pq
p−q

on positive elements (here, we require p > 2).

Now assume that 2 > p > q. Then we have p′ > 2 > q, and by the previous
case Mp′,q is uniformly continuous. Hence Mp,q = Mp′,q ◦Mp,p′ is also uniformly
continuous.

The case p < q is proved by similar arguments as the second and third cases
above (by exchanging the roles of p and q).

1.4 On classification and embeddings of non-

commutative Lp-spaces

1.4.1 A result on classification of non-commutative Lp-
spaces

Since we study groups actions by isometries on Lp-spaces, we are interested in
classifying Lp-spaces up to isometric isomorphism. In the commutative case for
Lp(X,µ), with (X,µ) a Borel standard space, the situation is simple : if the
measure µ is atomic, then Lp(X,µ) is isometrically isomorphic to a discrete lp ;
if the measure is non-atomic, Lp(X,µ) is isometrically isomorphic to Lp([0, 1], λ),
denoted once and for all Lp. Thus, a general Lp(X,µ) is isometrically isomorphic
to a sum lp ⊕p Lp.

The situation in the non-commutative case is much more complicated, and
despite new important results in the recent years, we don’t have a complete classi-
fication of these spaces up to isomorphism. The classification up to isomorphism
of the Lp(M)-spaces is not complete but a remarkable classification was obtained
by Haagerup, Rosenthal, and Sukochev in [39] when M is hyperfinite (see also
[77] for a survey on such classifications for semi-finite von Neumann algebras, and
[76] for proofs in the type I case).

Theorem 1.4.1. [39] Let M be a hyperfinite semi-finite Von Neumann algebra.
Let 1 ≤ p < ∞, p 6= 2. Then Lp(M) is isomorphic to precisely one of the
following spaces :

lp, Lp, Sp, Cp, Lp ⊕ Sp, Lp ⊕ Cp, Lp(Sp), Cp ⊕ Lp(Sp),

Lp(Cp), Lp(R), Cp ⊕ Lp(R), Lp(Cp) ⊕ Lp(R), Lp(R⊗ B(l2)).
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For 1 ≤ p < 2, we have the following refinement of this theorem (see [67] for
remarks on these theorems and accurate references).

Theorem 1.4.2. Let 1 ≤ p < 2 and M as in Theorem 1.4.1. If X 6= Y are
spaces listed in the following figure, then Y contains an isomorphic copy of X if
and only if X can be joined to Y by descending arrows :

lp

Sp Lp

Cp Sp ⊕p Lp

Cp ⊕p Lp Lp(Sp)

Cp ⊕p Lp(Sp) Lp(R)

Lp(Cp) Cp ⊕p Lp(R)

Lp(Cp) ⊕p Lp(R)

Lp(R⊗ B(l2))

The following theorem, due to Sherman in [74], exactly gives the condition on
the von Neumann algebras M and N in order to have isometrically isomorphic
Lp-spaces for p 6= 2 : the von Neumann algebras M and N have to be Jordan-*-
isomorphic.

Theorem 1.4.3. ([74]) Let M and N be von Neumann algebras. Let 1 ≤ p <∞.
The following propositions are equivalent.
(i) M and N are Jordan-*-isomorphic.
(ii) Lp(M) and Lp(N ) are isometrically isomorphic.

Remark 1.4.4. 1. Let M and N be factors. Then a Jordan-*-isomorphism
J : M → N is a *-algebra morphism or a *-algebra antimorphism (see
Theorem 1.3.6). Hence, in this case, Lp(M) and Lp(N ) can be isometri-
cally isomorphic only if M and N are isomorphic as *-algebras, or anti-
isomorphic.
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2. There exists esamples of von Neumann algebras which are Jordan-*-isomorphic,
but not isomorphic as *-algebras. Indeed, in [16], Connes constructed a fac-
tor M of type III such that M is not anti-isomorphic to itself. Then, M
and N = Mop (the algebra M with the opposite algebra law a.b := ba) are
not isomorphic as *-algebras, but they are Jordan-*-isomorphic.

1.4.2 Embeddings of Lp-spaces into Hilbert spaces

It is well-known that Lp([0, 1]) equipped with the metric (f, g) 7→ ||f − g||p/2
p

embeds isometrically in L2([0, 1]) for 1 ≤ p ≤ 2 (see [82]). We will see here that
it is no longer true for non-commutative Lp-spaces.

Embeddings of metric spaces in Hilbert spaces are intimatly linked to the
notion of kernels conditionally of negative type.

Definition 1.4.5. A kernel conditionally of negative type on a set X is a function
ρ : X ×X → R with the following properties :
(i) ρ(x, x) = 0 for all x ∈ X.
(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(iii) for any n ∈ N, any x1, ..., xn in X, and any real numbers λ1, ...λn such that∑n

k=1 λk = 0, the following equality holds :

n∑

i=1

n∑

j=1

λiλjρ(xi, xj) ≤ 0.

If f : X → H is a mapping with values in a Hilbert space, then (x, y) 7→
||f(x)− f(y)||2 defines a kernel conditionally of negative type on X. Conversely,
if ρ is conditionally of negative type on X, then there exists a Hilbert space H
and an embedding f : X → H such that ρ(x, y) = ||f(x) − f(y)||2 (see [8]). The
isometric embedding of a commutative Lp-space into L2 for 1 ≤ p ≤ 2, mentioned
above, can be rephrased as follows.

Theorem 1.4.6. Let 1 ≤ p ≤ 2, let (X,µ) be a measure space and Lp(X,µ) the
associated commutative Lp-space. The kernel (x, y) 7→ ||x− y||pp is conditionally
of negative type on Lp(X,µ).

The previous theorem does not longer hold for non-commutative Lp-spaces.
The following fact is well-known (see [57] where similar computations occur).

Theorem 1.4.7. Let p 6= 2, and let M be a von Neumann algebra such that
Lp(M) contains an isometric copy of (M2(R), ||.||p). Then the kernel

(x, y) 7→ ||x− y||pp
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is not conditionally of negative type on Lp(M). Therefore there is no embedding
j of Lp(M) into a separable Hilbert space H such that

||j(x) − j(y)||2 = ||x− y||pp for all x, y ∈ Lp(M).

Proof. We can assume that H = l2. Suppose that such an embedding j :
Lp(M) → l2 exists. Then we consider M2(R) as a 4-dimensional subspace of
Lp(M). We can suppose that j(0) = 0. Then, by the Mazur-Ulam Theorem (see
Theorem 2 in chapter XI of [6]), j is R-linear on M2(R). The subspace M2(R) is
embedded as a subspace of l2 generated by four sequences (an)n, (bn)n, (cn)n, (dn)n

as follows :

(an)n = j

(
1 0
0 0

)
, (bn)n = j

(
0 1
0 0

)
, (cn)n = j

(
0 0
1 0

)
, (dn)n = j

(
0 0
0 1

)
,

||
(
a b
c d

)
||pp = ||a(an) + b(bn) + c(cn) + d(dn)||2 for all a, b, c, d ∈ R. (∗)

By simple computations, we have ||(an)n|| = ||(bn)n|| = ||(cn)n|| = ||(dn)n|| =
1.

On the one hand, we have

||
(

1 0
1 0

)
||pp = Tr

(
2 0
0 0

) p
2

= 2
p
2

and

||
(

1 0
−1 0

)
||pp = Tr

(
2 0
0 0

) p
2

= 2
p
2 .

But

||(an)n + (cn)n||2 + ||(an)n − (cn)n||2 = 2 (||(an)n||2 + ||(cn)n||2) = 4.

Since j

(
1 0
1 0

)
= (an)n + (cn)n and j

(
1 0
−1 0

)
= (an)n − (cn)n, it follows from

(∗) that 4 = 2.2
p
2 . This is a contradiction since p 6= 2.

1.5 Isometries on non-commutative Lp-spaces

Let O(Lp(M)) be the group of linear bijective isometries of Lp(M). We need
to know the structure of O(Lp(M)). We will state in this section some general
results on O(Lp(M)), and will give a more precise description of this group in a
few special cases.

Let us start with the description of the group O(lp) for the usual space lp of
p-summable sequences. The following result appears in [6] (see chapter XI).
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Theorem 1.5.1. Let 1 ≤ p < +∞ and p 6= 2. Let U ∈ O(lp). There exist a
sequence (c(n))n∈N with values in S1 and a permutation σ : N → N such that

U(f(n)) = c(n)f(σ(n)) for all f ∈ lp(N).

More generally, one has the following description of O(Lp(X,µ)) due to Ba-
nach and Lamperti.

Theorem 1.5.2. ([7] and [53]) Let 1 < p < ∞ and p 6= 2. Let U ∈ Lp(X,µ).
There exist a measurable, measure-class preserving map T of (X,µ), and a mea-
surable function h with |h(x)| = 1 almost everywhere, such that

(U(f))(x) = h(x)(
dT∗µ

dµ
(x))

1
pf(T (x)) for all f ∈ Lp(X,µ).

On the non-commutative side, the first result is due to Arazy, who describes
O(Cp) for the Schatten ideals Cp.

Theorem 1.5.3. [3] Let 1 ≤ p < +∞ and p 6= 2, and let U ∈ O(Cp). Then there
exist two unitaries u and v in B(H) such that :

U(x) = uxv or U(x) = utxv for all x ∈ Cp.

The next description was given by Yeadon, who described O(Lp(M)) for
Lp(M) the non-commutative Lp-space associated to a semi-finite von Neumann
algebra M. Here is the result.

Theorem 1.5.4. [84] Let 1 ≤ p < ∞ and p 6= 2. Let M be a Von Neumann
algebra equipped with a semi-finite trace τ . A linear map

U : Lp(M, τ) → Lp(M, τ)

is a surjective isometry if and only if there exist

1. a normal Jordan *-isomorphism J : M → M,

2. a unitary u ∈ M,

3. a positive self-adjoint operator B affiliated with M such that the spectral
projections of B commute with M, the support of B is s(B) = 1, and
τ(x) = τ(BpJ(x)) for all x ∈ M+,

satisfying
U(x) = uBJ(x) for all x ∈ M∩ Lp(M).

Moreover, such a decomposition is unique.

Remark 1.5.5. Notice that if M is a factor, the operator B in the previous
decomposition is a scalar multiple of 1. Indeed, since B is affiliated to M, its
spectral projections are elements in M. Moreover, they commute with M since B
commutes with M. Therefore every spectral projection of B is a scalar multiple
of 1, and hence B itself is a scalar multiple of 1.
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Explicit description of O(Lp(M)) in a few special cases

We now give an explicit description of the isometries of Sp. Recall that Sp =
{⊕n∈N∗xn | xn ∈ Mn,

∑
n Tr(|xn|p) <∞}.

Proposition 1.5.6. Let U ∈ O(Sp). There exist bijective isometries Un of Mn

such that U = ⊕nUn. More precisely, there exist sequences (un), (vn) of unitaries
in Mn such that

Un(x) = unxvn or Un(x) = un(tx)vn for all x ∈ Sp.

We will need the two following lemmas for the proof of the previous proposi-
tion.

Lemma 1.5.7. The two-sided ideals of (⊕nMn)∞ are the subspaces ⊕i∈IMi for
I ⊂ N∗.

Proof. For every subset I ⊂ N∗, it is clear that ⊕i∈IMi is a two-sided ideal of M.

Conversely, let A is a two-sided ideal of M. Let I ⊂ N∗ be a minimal subset
of N∗ such that A ⊂ ⊕i∈IMi. Let i ∈ I. Then Mi∩A is a two-sided ideal of Mi.
By minimality of I, Mi∩A is non-zero. So Mi∩A = Mi. Thus ⊕iMi ⊂ A.

Lemma 1.5.8. If N is a von Neumann algebra, J a Jordan isomorphism of N ,
and A an ideal of N , then J(A) is an ideal in J(N ).

Proof. Recall from Theorem 1.3.6 that J = J1 + J2 with J1 an algebra iso-
morphism and J2 an algebra anti-isomorphism. More precisely, there exist two
central projections P1, P2 ∈ N such that J1(x) = J(P1x) and J2(x) = J(P2x)
for all x ∈ N . We also have P1P2 = 0 which implies that J1(x)J2(y) = 0 for all
x, y ∈ N . Let a ∈ A, and b, c ∈ N . Then J(a) ∈ J(A), J(b), J(c) ∈ J(N ), and
we have

J(b)J(a)J(c) = J(b)J1(a)J(c) + J(b)J2(a)J(c)

= J1(b)J1(a)J1(c) + J2(b)J2(a)J2(c)

= J1(bac) + J2(cab)

= J(P1bacP1 + P2cabP2) ∈ J(A).

Proof of Proposition 1.5.6. Set M = (⊕nMn)∞ = {⊕nxn | xn ∈ Mn, supn ||xn|| <
∞}. Let U ∈ O(Sp). By Theorem 1.5.4, we know that U is given by the formula
U(x) = uBJ(x) for all x ∈ M∩ Lp(M), with u a unitary in M and J a Jordan
isomorphism of M.
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Write u = ⊕nun with un ∈ Mn for all n. Let v = u−1 = u∗. Then v ∈ M
and v = ⊕nvn. It follows that vn = u∗n, and that unvn = 1 for all n. Hence all
the un’s are unitaries.

Since B belongs to the commutant M′ of M and since the support of B is
s(B) = 1, there exist non-zero scalars λn such that B =

∑
n λn1.

Let n ≥ 1. By Lemma 1.5.8, J(Mn) is a two-sided ideal of M. Hence

J(Mn) = ⊕i∈InMi

for In ⊂ N∗ by Lemma 1.5.7. For every i ∈ In, J−1(Mi) is an ideal of Mn (since
Mi 6= 0 and J is bijective) and therefore J−1(Mi) = Mn. For dimension reasons,
it follows that i = n, that is In = {n} and J(Mn) = Mn.

In summary, we have

U(x) = ⊕nλnunJ(xn) for all (xn) ∈ M.

Therefore U = ⊕nUn for a sequence (Un)n with Un ∈ O(Mn). Since isometries
of Mn are of the form given in Proposition 1.5.6, this completes the proof.

Now we give a description of the group O(Lp ⊕p Sp).

Proposition 1.5.9. We have the following decomposition O(Lp⊕pSp) = O(Lp)⊕
O(Sp).

Proof. By Theorem 1.5.4, it suffices to prove such a decomposition on a Jordan
isomorphism J of the von Neumann algebra N = L∞ ⊕ (⊕nMn)∞.

Recall that a projection P in a von Neumann algebra N is said to be minimal
if there is no projection Q in N such that 0 < Q < P . Since a Jordan morphism
preserves the projections and the order on the set of projections, J preserves the
minimal projections.

Clearly, the minimal projections of L∞ ⊕ (⊕nMn)∞ are the rank one projec-
tions in (⊕nMn)∞ and they generate the algebra (⊕nMn)∞. Then we have

J((⊕nMn)∞) ⊂ (⊕nMn)∞

and the same argument for J−1 gives the equality J((⊕nMn)∞) = (⊕nMn)∞.
Since J is an isomorphism of N , we have also J(L∞) = L∞.
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Description of O(Lp(M)) for a von Neumann algebra M of type III

We are now interested in the general case, that is the case of general Haagerup
Lp-spaces. The following result, which we proved in [65], is a consequence of the
description given in [74] and [81] of the action of isometries of Haagerup Lp-spaces
on positive elements.

Theorem 1.5.10. Let 1 ≤ p <∞ and p 6= 2. Let M be a von Neumann algebra
equipped with a normal faithful semi-finite weight ϕ0, and U a linear bijective
isometry of the Haagerup Lp-space Lp(M). Then there exist a unitary w ∈ M
and a Jordan-isomorphism J of L0(M ⋊ϕ0 R) such that U extends to the whole
L0(M ⋊ϕ0 R) with the form

U(x) = wJ(x) for all x ∈ L0(M ⋊ϕ0 R).

Proof. We recall that for ϕ ∈ M+
∗ , hϕ is the unique operator in L1(M)+ satisfying

ϕ̃ϕ0(y) = τϕ0(hϕy) for all y ∈ Nϕ0 = M ⋊ϕ0 R.

By Theorem 1.2 in [74], there exist a Jordan-isomorphism J of M and a unitary
w ∈ M such that

U(h1/p
ϕ ) = w(hϕ◦J−1)1/p for all ϕ ∈ M+

∗ .

It was shown in [81] that J extends to a Jordan-*-isomorphism J̃ between L0(Nϕ0 , τϕ0)

and L0(Nϕ0◦J−1 , τϕ0◦J−1); moreover, J̃ is an extension of an isomorphism be-
tween Nϕ0 and Nϕ0◦J−1 as well as a homeomorphism for the measure topology on

L0(Nϕ0, τϕ0) and L0(Nϕ0◦J−1 , τϕ0◦J−1). The isomorphism J̃ satisfies the relations

τϕ0 ◦ J̃−1 = τϕ0◦J−1

J−1 ◦ Φϕ0◦J−1 = Φϕ0 ◦ J̃−1

We claim that for ϕ ∈ M+
∗ , we have

dϕ̃ϕ0

dτϕ0

= J̃−1(
d ˜ϕ ◦ J−1

ϕ0◦J−1

dτϕ0◦J−1

). (1)
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Indeed, let ϕ ∈ M+
∗ . We have

τϕ0(
dϕ̃ϕ0

dτϕ0

. ) = ϕ ◦ Φϕ0

= ϕ ◦ J−1 ◦ Φϕ0◦J−1 ◦ J̃

= τϕ0◦J−1(
d ˜ϕ ◦ J−1

ϕ0◦J−1

dτϕ0◦J−1

J̃( . ))

= τϕ0 ◦ J̃−1(
d ˜ϕ ◦ J−1

ϕ0◦J−1

dτϕ0◦J−1

J̃( . ))

= τϕ0(J̃
−1(

d ˜ϕ ◦ J−1
ϕ0◦J−1

dτϕ0◦J−1

) . ) ,

where in the last equality we used the fact that J̃ is Jordan homomorphism.

In Lemma 2.1 in [80], it is shown that there exists a ∗-isomorphism K̃ be-
tween L0(Nϕ0 , τϕ0) and L0(Nϕ0◦J−1 , τϕ0◦J−1), which is continuous with respect to
the measure topology, and which satisfies the following relation for the Radon-
Nikodym derivatives :

K̃(
dϕ̃ϕ0

dτϕ0

) =
dϕ̃ϕ0◦J−1

dτϕ0◦J−1

for all ϕ ∈ M+
∗ .

From the equality (1), we obtain

d ˜ϕ ◦ J−1
ϕ0

dτϕ0

= K̃−1 ◦ J̃(
dϕ̃ϕ0

dτϕ0

) for all ϕ ∈ M+
∗ .

This last equality shows that

hϕ◦J−1 = K̃−1 ◦ J̃(hϕ) for all ϕ ∈ M+
∗

and, since K̃−1 ◦ J̃ is a Jordan isomorphism, we have also

(hϕ◦J−1)
1
p = K̃−1 ◦ J̃(h

1
p
ϕ) for all ϕ ∈ M+

∗ .

As a consequence, the linear and bijective isometry U of Lp(M) is given by the
following relation on positive elements :

U(x) = w (K̃−1 ◦ J̃(x)) for all x ∈ Lp(M)+.

This relation extends by linearity to the whole space Lp(M).
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1.6 Isometries of closed subspaces of Lp-spaces

In this section, we are interested in O(F ) for F a closed subspace of Lp(M). We
first recall the results in the commutative case.

1.6.1 The commutative case

The following Theorem due to Hardin shows that every isometry of a closed sub-
space of Lp(X,µ) extends uniquely to Lp(X

′, µ′) for some measure space (X ′, µ′).

Theorem 1.6.1. [40] Let (X,B, µ) be a measure space. For every closed subspace
F ⊂ Lp(X,µ), there is a canonical extension F ⊂ F̃ ⊂ Lp(µ) which is isometric to
Lp(X ′, µ′) for som other measure space (X ′, µ′). Furthermore, if 1 < p /∈ 2N, then
every linear isometry U : F → Lp(Y, ν) extends to a surjective linear isometry

Ũ : F̃ → ŨF ⊂ Lp(Y, ν).

As a consequence of the previous Theorem 1.6.1, we have that a linear bijective
isometry of a closed subspace of Lp has the form given in Theorem 1.5.2.

1.6.2 The non-commutative case

There is no general result about the description of isometries of closed subspaces
in non-commutative Lp-spaces. In the non-commutative context, it is natural
to consider complete isometries instead of isometries. Recall the definition of
n-isometries and complete isometries.

Definition 1.6.2. Let 1 ≤ p < ∞. Let M and N be finite von Neumann
algebras. A linear map U : Lp(M) → Lp(N ) is said to be a n-isometry from
Lp(M) to Lp(N ) if the map

id⊗ U : Lp(Mn ⊗M) → Lp(Mn ⊗N )

is an isometry.
U is said to be a complete isometry if U is a n-isometry for all n ≥ 1. U is said
to be unital if U(1) = 1.

Example 1.6.3. (i) Let M = L∞(X,µ) be a commutative von Neumann al-
gebra. Let 1 ≤ p < ∞, p 6= 2. Let U ∈ O(Lp(X,µ)) be a linear bijective
isometry of Lp(X,µ). By Banach-Lamperti Theorem 1.5.2, there exist a measur-
able, measure-class preserving bijection T of (X,µ), and a measurable function
h with |h(x)| almost everywhere, such that

(U(f))(x) = h(x)(
dT∗µ

dµ
(x))

1
pf(T (x)) for all f ∈ Lp(X,µ).
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Let n ≥ 1. We can identify Lp(Mn⊗M) with the space Lp(X,Mn) of measurable
matrix functions F : X → Mn with finite norm

||F ||p = (

∫

X

Tr(|F (x)|p)dµ(x))
1
p .

Let F ∈ Lp(X,Mn). Then, for all x ∈ X,

(id⊗ U)F (x) = λ(x)F (Tx), where λ(x) = h(x)(
dT∗µ

dµ
(x))

1
p .

Hence,

||(id⊗ U)F ||p = (

∫

X

Tr(|λ(x)|p|F (Tx)|p)dµ(x))
1
p

= (

∫

X

Tr(|F (x)|p)dµ(x))
1
p

= ||F ||p.

This shows that U is completely isometric.

(ii) Let M = M2(C). Let p = n for n ∈ N, n ≥ 3. We claim that the isometry
of Lp(M) defined by the anti-isomorphism

T : M → M
x 7→t x

is not 2-isometric. Indeed, let

A =




1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1


 ∈ M2(M2(C)).

Then (id⊗ T )(A) = B for

B =




1 0
0 0

0 1
0 0

0 0
1 0

0 0
0 1


 .

We have A∗ = A and A2 = I. Hence

||A||pp = Tr(|A|n) = Tr(I) = 4.

On the other hand, B∗ = B and B2 = 2B. Hence

||B||pp = Tr(|B|n) = 2n−1Tr(B) = 2n.
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So, ||(id ⊗ T )(A)||p 6= ||A||p. This example can obviously be generalized to the
case M = Mn(C) or M = B(l2). In view of Arazy’s result ( Theorem 1.5.3), we
see that U : Cp → Cp is a complete surjective isometry of Cp if and only if there
exist two unitaries u and v in B(l2) such that U(x) = uxv for all x ∈ Cp.

When M is a finite von Neumann algebra, we have the following remarkable
result due to De La Salle about the extension of a unital complete isometry on a
closed subspace F of Lp(M).

Theorem 1.6.4. [24] Let M be a finite von Neumann algebra with normalized
trace τ . Let F be a subspace of Lp(M, τ) and let U : F → Lp(M, τ) be a linear
map. Let 1 ≤ p <∞ such that p /∈ 2N.
Assume that : F ⊂ M.
Assume also that for all n ∈ N and all X ∈ Mn(F ), the following equality holds

||1Mn ⊗ 1M +X||p = ||1Mn ⊗ 1M + (id⊗ U)(X)||p.

Let VN(F ) denote the von Neumann subalgebra generated by F in M. Then
U(F ) ⊂ M and U extends to a von Neumann algebra isomorphism U : VN(F ) →
VN(U(F )) that preserves the trace, and this extension is unique.

Remark 1.6.5. With the assumptions of the previous Theorem 1.6.4, if U :
F → F is a linear bijective complete isometry of F , then U extends uniquely
to M′ = VN(F ) and therefore extends uniquely to a linear bijective complete
isometry on Lp(M′) .



Chapter 2

Property (TLp(M))

Property (T ) for locally compact was introduced by D.Kazhdan in the end of
the 60’s in [47] to show that some lattices were finitely generated and have finite
abelianization. It is a rigidity property of the unitary representation theory of
the groups considered. Property (T ) found many applications in diverse areas :
ergodic theory, random walks, operator algebras, combinatorics, theoretical com-
puter science...Variants of property (T ) have been considered by several authors.
We will be interested in property (TB) defined by the authors of [4] for orthogonal
representations on a Banach space B. We will study the case where B is a non-
commutative Lp-space. In section 1, we recall some general facts about unitary
representations and property (T ). Section 2 is devoted to orthogonal representa-
tions on a Banach space B and the definition of property (TB). In section 3, we
recall the main result of the authors of [4] relative to property TLp for commu-
tative Lp-spaces. The conjugation of an orthogonal representation on Lp(M) by
the Mazur map, which is a crucial tool for our proofs, is explained in section 4.
In section 5, we give the proof of the main theorem of this chapter, which is that
property (T ) implies property (TLp(M)) for any von Neumann algebra M. We
study the special case of property (Tlp) in section 6. In section 7, we introduce
a weaker version of property (TLp(M)) for representations by complete isometries
on Lp(M).

2.1 Introduction

2.1.1 Unitary representations of groups

We recall here basic facts about unitary representations that we will need later.
For the general facts concerning unitary representations, see Part II in [8]. Let
G be a topological group, and let H be a Hilbert space. Let U(H) be the group
of all unitary operators on H.

41
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Definition 2.1.1. A unitary representation (π,H) of G on H is a group homo-
morphism π : G→ U(H) such that the mapping

G→ H
g 7→ π(g)ξ

is continuous for every ξ ∈ H.

We recall the notion of containment and weak containment of unitary repre-
sentations :

Definition 2.1.2. Let π and σ be unitary representations of G.

(i) We say that σ is contained in π (in symbols σ ⊂ π) if σ is unitarily equiv-
alent to a subrepresentation of π.

(ii) We say that σ is weakly contained in π (in symbols σ ≺ π) if every matrix
coefficient g 7→< π(g)ξ, ξ > can be approximated, uniformly on compact subsets
of G, by finite sums of matrix coefficients g 7→< σ(g)η, η >.

Let (π,H) be a unitary representation of G. We will denote by

Hπ(G) = {ξ ∈ H | π(g)ξ = ξ for all g ∈ G}

the closed subspace of π(G)-invariant vectors in H.

Definition 2.1.3. For a subset Q of G and a real number ǫ > 0, a vector ξ ∈ H
is called (Q, ǫ)-invariant if

sup
g∈Q

||π(g)ξ − ξ|| < ǫ||ξ||.

We say that the representation (π,H) almost has invariant vectors if it has
(Q, ǫ)-invariant vectors for every compact subset Q of G and every ǫ > 0.

We will sometimes use sequences of almost invariant vectors for π :

Definition 2.1.4. A sequence (ξn)n of vectors of H is called a sequence of almost
invariant vectors for the representation π if :
- ||ξn|| = 1 for all n ∈ N.
- limn supg∈K ||π(g)ξn − ξn|| = 0 for every compact subset K ⊂ G.

If π has a sequence of almost invariant vectors, then π almost has invariant
vectors. The converse is true when the group G is σ-compact.

In the special case where σ = 1G is the trivial representation of G, the notions
of containment and weak containment can be rephrased as follows :
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Proposition 2.1.5. Let (π,H) be a unitary representation of G.

(i) 1G ⊂ π ⇔ Hπ(G) 6= 0 ;

(ii) 1G ≺ π ⇔ π almost has invariant vectors.

Examples

1. The regular representation λG of a locally compact group G on L2(G, dg),
where dg stands for the left Haar measure on G, is given by

λG(g)f(h) = f(g−1h) for all f ∈ L2(G, dg), g, h ∈ G.

2. Let H be a closed subgroup of a locally compact group G. Then G/H
carries a quasi-invariant measure µ. The unitary representation λG/H of G
defined on L2(G/H, µ) by

λG/H(g)ξ(xH) = (
dg−1µ

dµ
(xH))1/2ξ(g−1xH) for all g, x ∈ G, ξ ∈ L2(G/H)

is called the quasi-regular representation of G associated to H .

3. Let G be a locally compact group and H a closed subgroup of G. Let X
be a Borel subset of G which is a fondamental domain for the action of H
by right translations on G; thus, G =

⋃
x∈X xH and xH ∩ yH has Haar

measure 0 if x 6= y.
For g ∈ G and x ∈ X, let α(g, x) ∈ H and g.x ∈ X be defined by

gx = (g.x)α(g, x).

Then G×X → X, (g, x) 7→ g.x is an action of G on X for which the Haar
measure on X is quasi-invariant. Moreover, α : G×X → H is a cocycle.
Let now (π,H) be a unitary representation of H . The induced representa-
tion IndG

Hπ is the unitary representation of G on L2(X,H, µ) defined by

IndG
H(g)ξ(x) = (

dg−1µ

dµ
(x))1/2π(α(g−1, x))ξ(g−1.x)

for all g ∈ G, x ∈ X, ξ ∈ L2(X,H).
The induced representation can also be realized on the Hilbert space H̃ of
measurable mappings f : G→ H such that :
(i) f(gh) = π(h−1)f(g) for all h ∈ H and almost every g ∈ G ,
(ii) ||f ||2 =

∫
G/H

||f(g)||2dµ(gH) <∞.

This realization is given by the formula

IndG
H(g)f(xH) = (

dg−1µ

dµ
(x))1/2f(g−1xH)

for all g ∈ G, x ∈ X and f ∈ H̃.
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Remark 2.1.6. In the particular case where π = 1H , IndG
H1H is equivalent to

the quasi-regular representation λG/H .

2.1.2 Kazhdan’s property (T )

For details concerning this section, see [8]. It is useful to introduce the definition
of property (T ) for pairs of groups.

Definition 2.1.7. Let G be a topological group and H a closed subgroup of G.
The pair (G,H) is said to have property (T ) (or G is said to have the relative
property (T ) with respect to H) if there exist a compact subset Q of G and ǫ > 0
such that : whenever a unitary representation π of G on a Hilbert space H has
a (Q, ǫ)-invariant vector, then π has a non-zero π(H)-invariant vector. The pair
(Q, ǫ) is called a Kazhdan pair.
A topological group G is said to have property (T ) if the pair (G,G) has property
(T ).

Property (T ) can be rephrased as follows :

Remark 2.1.8. Let G be a topological group.

1. G has property (T ) ⇔ For every unitary representation π of G, if 1G ≺ π,
then 1G ⊂ π.

2. G has property (T ) ⇔ For every unitary representation π of G on a Hilbert
space H, the restriction π′ of π to the orthogonal complement of Hπ(G) does
not almost have invariant vectors.

Consequences of property (T )

Here are some important consequences properties of property (T ).

Proposition 2.1.9. Let G be a locally compact topological group with property
(T ). Then G has the following properties :
(i) G is compactly generated ;
(ii) the abelianised group G/[G,G] is compact ;
(iii) G is unimodular ;
(iv) if G is amenable, then G is compact.

An important fact about property (T ) is that it is inherited by lattices or
more generally by subgroups with finite covolume.

Proposition 2.1.10. Let G be a locally compact group and let H be a closed
subgroup of G such that G/H has a finite invariant regular Borel measure. The
following properties are equivalent :
- G has property (T ).
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- H has property (T ).
In particular, if Γ is a lattice in G then Γ has property (T ) if and only if G has
property (T ).

Examples

1. Trivial examples of groups with property (T ) are compact groups.

2. Important examples of pairs of groups with property (T ) are the pairs
(R2 ⋊ SL2(R),R2) and (Z2 ⋊ SL2(Z),Z2).

3. Let K a local field. Then SLn(K) for n ≥ 3 and Sp2n(K) for n ≥ 2 have
property (T ). More generally, higher rang groups (see Chapter III ) have
property (T ).

4. The groups Sp(n, 1) for n ≥ 2 have property (T ).

2.2 Property (T ) for representations on Banach

spaces

We give in this section general facts about a variant of property (T ) relative to
a certain class of Banach spaces B, namely the ucus Banach spaces. It is called
property (TB), and was introduced in [4], where more details and proofs concern-
ing general facts about property (TB)) can be found.

Let B be a Banach space. Denote by O(B) the group of linear bijective isome-
tries of B. Let π : G → O(B) be a homomorphism from a topological group G
to O(B) such that the maps g 7→ π(g)x from G to B are continuous for every
x ∈ B. Such a continuous homomorphism is called an orthogonal representation
of the group G on the space B.

LetG be a topological group andH a closed subgroup ofG. Let π : G→ O(B)
be an orthogonal representation of G on B. We denote by Bπ(H) the subspace of
π(H)-invariant vectors in B. We can define almost invariant vectors for π and
sequences of almost invariant vectors for π as in the previous section. Observe
that if the subgroup H is normal in G, then the subspace Bπ(H) is π(G)-invariant.

Definition 2.2.1. Let G be a topological group and H be a closed normal sub-
group of G. The pair (G,H) has relative property (TB) for a Banach space B
if, for any orthogonal representation π : G → O(B), the quotient representation
π′ : G→ O(B/Bπ(H)) does not almost have π′(G)-invariant vectors.
A topological group G has property (TB) if the pair (G,G) has relative property
(TB).
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If B = H is a Hilbert space, the representation π′ is equivalent to the restric-
tion of π to the orthogonal complement of the space of invariant vectors Hπ(G),
and the definition of (TB) agrees with that of Kazhdan’s property (T ) (see Re-
mark 2.1.8).

We will deal with the case where B is a ucus Banach space, that is a uniformly
convex Banach space with a uniformly convex dual space. In this situation, we
will have a canonical complement of Bπ(G).

From now on, let B be a ucus Banach space. We recall that the duality map
∗ : S(B) → S(B∗) associates to each unit vector x ∈ B, the unique unit vector ∗x
in B∗ such that < x, ∗x >= 1. Recall that since B is ucus, the duality map ∗ is
uniformly continuous on the unit sphere S(B) with inverse uniformly continuous
on S(B∗).

Let π : G → O(B) be an orthogonal representation of a topological group G
on B. The contragredient representation π∗ : G → O(B∗) of the representation
π is defined by

< x, π∗(g)y >=< π(g−1)x, y > for all x ∈ B, y ∈ B∗, g ∈ G.

Let Bπ(G) be the space of π(G)-invariant vectors. Notice that we have the equality

∗(Bπ(G)) = (B∗)π∗(G).

The following theorem asserts that the space Bπ(G) admits a canonical π(G)-
invariant complement B′.

Theorem 2.2.2. (Proposition 2.6 in [4]) Let G be a topological group, and let B
be a ucus Banach space. Let π : G→ O(B) be an orthogonal representation of G
on B. Denote by B′ = B′(π) the annihilator of (B∗)π∗(G) in B, that is

B′ = {x ∈ B | ∀y ∈ (B∗)π∗(G), < x, y >= 0 }.
Then

B = Bπ(G) ⊕B′.

Notice that when B = H is a Hilbert space, the complement B′ is the or-
thogonal complement of Hπ(G). As for property (T ) (see Remark 2.1.8), property
(TB) can be rephrased as follows :

Corollary 2.2.3. Let G be a topological group, and let B be a ucus Banach space.
Then the following assertions are equivalent :
(i) G has property (TB) ;
(ii) For every orthogonal representation π : G→ O(B) of G on B, the restriction
π′ of π to B′ = B′(π), does not almost have invariant vectors.
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Remark 2.2.4. 1. Let π1 : G → O(B1), π2 : G → O(B2) be orthogonal rep-
resentations of G on B1 and B2. Let φ : B1 → B2 be a linear bijective
isometry intertwining the representations π1 and π2. Denote by p(πi) and

p′(πi) the projections on B
πi(G)
i and B′

i(πi). Then the following diagrams
are commutative :

B1 φ

p(π1)

B2

p(π2)

B1 φ
B2

and B1 φ

p′(π1)

B2

p′(π2)

B1 φ
B2

2. The authors of [4] studied representations on “superreflexive”Banach spaces,
which is a class of Banach spaces that contains the class of ucus Banach
spaces, and give an analog of Theorem 2.2.2 in this context.

We have the following basic facts concerning property (TB) (see Proposition
2.15 and Corollary 2.12 in [4]).

Proposition 2.2.5. Let B be a ucus Banach space and G a topological group.
Then :
(i) any compact group has property (TB);
(ii) if G has property (TB), then any quotient group of G has property (TB);
(iii) if G = G1 × ... × Gn is a finite product of topological groups, then G has
property (TB) if and only if every Gi have property (TB);
(iv) G has property (TB) if and only if G has property (TB∗).

2.3 Property (TLp(X,µ))

The authors of [4] studied the particular case of the Banach spaces Lp(X,µ), for
a non-atomic σ-finite measure µ on a Borel space (X,B), and 1 < p <∞. Notice
that L1(X,µ) and L∞(X,µ) are not ucus (they are not even stricly convex).

Recall that the Mazur map is the map defined by

Mp,q : Lp(X,µ) → Lq(X,µ)

f = (f/|f |)|f | 7→ (f/|f |)|f |p/q.

It is locally uniformly continuous and, if p′ is the conjugate exponent of p, Mp,p′

is the duality map between Lp(X,µ) and Lp′(X,µ) ≃ (Lp(X,µ))∗. The following
theorem is one of the main results in [4].

Theorem 2.3.1. (Theorem A in [4]) Let G be a locally compact second countable
group. If G has property (T ), then G has property (TB) for Banach spaces B of
the following types.
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1. Lp(X,µ) for any σ-finite measure µ on a Borel space X, any 1 ≤ p <∞ ;

2. closed subspaces of Lp(X,µ) for 1 < p <∞ with p 6= 4, 6, 8... ;

3. quotient spaces of Lp(X,µ) for 1 < p <∞ with p 6= 4
3
, 6

5
, 8

7
....

If µ is moreover non-atomic and G has property (TLp(X,µ)), then G has Kazh-
dan’s property (T ).

Remark 2.3.2. We give here some remarks concerning the proof of the theorem
above.

1. The proof of item 2 follows from the proof for Lp-spaces, once we notice
that by Theorem 1.6.1, a representation on such a closed subspace ex-
tends to a representation on a space Lp(X

′, µ′) containing F , and hence
has the form given in Banach-Lamperti’s Theorem 1.5.2. A generalization
of Hardin’s Theorem 1.6.1 for extensions of isometries of closed subspaces
of non-commutative Lp-spaces, is not known in general context. However,
a result of De La Salle (see Theorem 1.6.4) shows that complete isometries
admit sometimes such extensions. This will allow us to extend item 2 of
Theorem 2.3.1 to the non-commutative context (see Theorem 2.7.4).

2. The result for quotient spaces is deduced from the one for closed subspaces,
using (iv) in Proposition 2.2.5.

2.4 The conjugate of a representation by the

Mazur map

In order to study property (TLp(M)), a crucial tool will be the possibility to trans-
fer a representation on Lp(M) to a representation on L2(M) (and from L2(M) to
Lp(M) if possible). In this section, we establish some general facts about group
representations on non-commutative Lp-spaces. More precisely, we show how to
construct a representation πq on Lq(M) from a representation πp on Lp(M). The
proofs of this section rely essentially on the properties of the Mazur map, and
on the structure of the group of isometries O(Lp(M). For general properties on
the Mazur map and Jordan morphisms on von Neumann algebras, we refer to
Chapter 1 of this thesis.

Let M be a von Neumann algebra, and 1 ≤ p, q <∞. Let

Mp,q : Lp(M) → Lq(M)

be the Mazur map, as defined in Section 3 of Chapter 1. Recall that O(Lp(M))
denotes the group of linear bijective isometries of the space Lp(M).
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Proposition 2.4.1. Let p 6= 2. For U ∈ O(Lp(M)), we have

V = Mp,q ◦ U ◦Mq,p ∈ O(Lq(M)).

Moreover, if M is semi-finite and U = WBJ is the Yeadon decomposition of U ,
then the isometry V is given by the formula

V (x) = WB
p
q J(x) for all x ∈ M∩ Lq(M, τ).

Proof. The fact that the map V is norm-preserving on Lq(M) is a consequence
of the norm-preserving property of the Mazur map (see Proposition 1.3.3). It
remains to show that V is linear. We first give the proof in the semi-finite case,
and then the more involved proof for general Haagerup Lp-spaces.

• Semi-finite case : Assume that M admits a faithful semi-finite normal
trace τ . By Yeadon’s Theorem 1.5.4, there exist a Jordan-isomorphism J of M,
a positive operator B commuting with M, and a partial isometry W in M with
the property that W ∗W is the support of B, such that

U(x) = WBJ(x) for all x ∈ M∩ Lp(M, τ).

From Proposition 1.3.7, we have the equality

Mp,q ◦ J ◦Mq,p = J.

Since B commutes with every x ∈ M∩ Lp(M), the polar decomposition of By
is By = αB|y| if y = α|y| is the polar decomposition of y. Hence

Mp,q(BJ(Mq,p(x)) = B
p
qMp,q(J(Mq,p(x))for all x ∈ M∩ Lq(M, τ).

Therefore, we have

V (x) = WMp,q(BJ(Mq,p(x))

= WB
p
qMp,q(J(Mq,p(x))

= WB
p
q J(x)

for all x ∈ M ∩ Lq(M, τ). This shows that V is linear on M∩ Lq(M, τ). The
linearity on the whole space Lq(M, τ) follows from the density of M∩Lq(M, τ)
in Lq(M, τ) and the continuity of V .

• General case : Let ϕ0 be a normal semi-finite faithful weight on M. Recall
from Theorem 1.5.10 that there exist a unitary w in M and a Jordan isomorphism
J of L0(M ⋊ϕ0 R, τϕ0) = L0(Nϕ0, τϕ0) such that the linear isometry U has the
form

U(x) = wJ(x) for all x ∈ L0(Nϕ0, τϕ0).
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Recall that the restriction J : Nϕ0 → Nϕ0 is an isomorphism. Hence, by Propo-
sition 1.3.7, we have

V (x) = Mp,q ◦ U ◦Mq,p(x)

= w(Mp,q ◦ J ◦Mq,p(x))

= wJ(x)

for all x ∈ Nϕ0 . Recall from [69] that the Mazur map is continuous for the
measure topology on L0(Nϕ0 , τϕ0). So by density of Nϕ0 in L0(Nϕ0 , τϕ0) for the
measure topology, we have

V (x) = wJ(x) for all x ∈ Lq(M)

which gives the linearity of V on Lq(M).

Corollary 2.4.2. Let G be a topological group, and let M be a von Neumann
algebra. Let p 6= 2, and 1 ≤ q <∞. Let πp : G→ O(Lp(M)) be a representation
of G on Lp(M). For g ∈ G, define πq(g) : Lq(M) → Lq(M) by

πq(g) = Mp,q ◦ πp(g) ◦Mq,p.

Then πq : g 7→ πq(g) is an orthogonal representation of G on Lq(M).

Proof. By the previous proposition, πq(g) ∈ O(L2(M)) for every g in G. More-
over, for every x ∈ Lq(M), the map g 7→ πq(g)x is continuous, since g 7→
πp(g)Mq,p(x) and Mp,q : Lp(M) → Lq(M) are continuous (see Proposition 1.3.8).
It remains to check that πq is a homomorphism. Let g1, g2 ∈ G. Using Lemma
1.3.2,

πq(g1)π
q(g2) = Mp,q ◦ πp(g1) ◦Mq,p ◦Mp,q ◦ πp(g2) ◦Mq,p

= Mp,q ◦ πp(g1) ◦ πp(g2) ◦Mq,p

= Mp,q ◦ πp(g1g2) ◦Mq,p

= πq(g1g2).

Let M be a semi-finite von Neumann algebra and πp : G → O(Lp(M)) an
orthogonal representation of G on Lp(M). Then, by Yeadon’s Theorem 1.5.4,
every π(g) has a decomposition

π(g) = ugBgJg(x) , x ∈ M∩ Lp(M),

where ug is a unitary in M, Bg a positive operator commuting with M and Jg a
Jordan isomorphism of M. We will need a description of the decomposition for
the conjugate isometries

πq(g) = Mp,q ◦ πp ◦Mq,p

as well as the decomposition of the product

πp(g1)π
p(g2) for g1, g2 ∈ G.
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Lemma 2.4.3. Let M be a semi-finite von Neumann algebra. Let u be a unitary
in M, B a positive operator affiliated with M and commuting with M, and J a
Jordan isomorphism of M. Then, for all y ∈ Lp(M)+, we have

J(uBy) = J(u)J(B)(J1(y) + J2(uyu∗))

where J1 is a Jordan ∗-algebra isomorphism, and J2 is a ∗-algebra anti-isomorphism.

Proof. Recall from Theorem 1.3.6 that J = J1+J2 where J1 is a Jordan ∗-algebra
isomorphism, and J2 is a ∗-algebra anti-isomorphism. Let y ∈ Lp(M)+. Then

J(uBy) = J1(uBy) + J2(uyu∗Bu)

= J1(u)J1(B)J1(y) + J2(u)J2(B)J2(uyu∗)

= J(u)J(B)(J1(y) + J2(uyu∗)).

Theorem 2.4.4. Let G be a topological group. Let M be a semi-finite von Neu-
mann algebra. Let 1 ≤ p, q < ∞. Let πp be an orthogonal representation of a
topological group G on Lp(M) such that, for every g ∈ G, πp(g) has the decom-
position

πp(g)(x) = ugBgJg(x) for all x ∈ Lp(M),

where ug is a unitary in M, Bg a positive operator commuting with M and Jg a
Jordan isomorphism of M. Then

πq(g)(x) = ugB
p
q
g Jg(x) for all x ∈ Lq(M) and all g ∈ G.

Moreover, the following relations hold for all g1, g2 ∈ G and all x ∈ Lp(M),

ug1g2 = ug1Jg1(ug2),

Bg1g2 = Bg1Jg1(Bg2),

Jg1g2(x) = J1
g1

(Jg2(x)) + J2
g1

(ug2Jg2(x)u
∗
g2

).

Proof of Theorem 2.4.4. The fact that πq has the claimed form follows from
Proposition 2.4.1.

Let g1, g2 ∈ G. By Lemma 2.4.3, and using that the Bg’s commute with M,
we have

πp(g1g2)(x) = π(g1)(π(g2)(x))

= ug1Bg1Jg1(ug2Bg2Jg2(x))

= ug1Jg1(ug2)Bg1Jg1(Bg2)(J
1
g2

(x) + J2
g2

(ug2xu
∗
g2

))

for g1, g2 ∈ G and x ∈ Lp(M). Hence, by the uniqueness of the decomposition in
Yeadon’s theorem 1.5.4, we obtain the relations in 2.4.4.
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Remark 2.4.5. (i) Let M be a von Neumann algebra, and let 1 ≤ p, q <∞. Let
πp : G → O(Lp(M)) be an orthogonal representation of the group G. Assume
that, for every g ∈ G, the isometry πp(g) has the form

πp(g)(x) = ugJg(x) for all x ∈ Lp(M) (∗)

for a unitary ug in M, and a Jordan isomorphism Jg of M. Then, for every
g ∈ G, the conjugate isometry πq(g) = Mp,q ◦ πp(g) ◦Mq,p ∈ O(Lq(M)) has the
form

πq(g)(x) = ugJg(x) for all x ∈ Lq(M).

(ii) Let M be a semi-finite factor or M = l∞. Let 1 ≤ p < ∞, p 6= 2. Let
πp : G → O(Lp(M)) be an orthogonal representation of the group G. Then, for
every g ∈ G, the isometry πp(g) has the form (∗) as above.

Now we give a useful description of the contragradient representation (πp)∗

of an orthogonal representation πp : G → O(Lp(M)) of a topological group G.
Recall that Tr is the linear functional on L1(M) defined (for any von Neumann
algebra M) in Chapter 1 Section 1.2 and the duality bracket between Lp(M)
and Lp′(M) is given by (x, y) 7→ Tr(xy). The contragradient representation of
πp : G → O(Lp(M)) is therefore equivalent to the representation on Lp′(M),
also denoted by (πp)∗ for simplicity, defined by the formula

Tr((πp)∗(g)(x)y) = Tr(xπp(g−1)(y)) for all x ∈ Lp′(M), y ∈ Lp(M), g ∈ G.

We recall that we denote by ∗ : Lp(M) → Lp′(M) the duality map.

Proposition 2.4.6. Let G be a topological group, M a von Neumann algebra,
and 1 ≤ p <∞, p 6= 2. Let π : G→ O(Lp(M)) be an orthogonal representation.
Let g ∈ G. Then

(πp)∗(g)x = ∗ ◦ πp(g) ◦ ∗−1(x) for all x ∈ S(Lp′(M)). (1)

In particular, if M is semi-finite and if πp(g) = ugBgJg is the Yeadon decompo-
sition of πp(g), then we have

(πp)∗(g)x = u∗gB
p
p′

g ugJg(x)u
∗
g for all x ∈ Lp′(M). (2)

Proof. Let x ∈ S(Lp′(M)). We have

Tr((πp)∗(g)(x) πp(g)(∗−1x)) = Tr(xπp(g−1)πp(g)(∗−1x))

= Tr(x ∗−1 x)

= 1.

This shows the equality (1) for x, by the defining property of the duality map.

By linearity of the maps x 7→ (πp)∗(g)x and x 7→ u∗gB
p
p′

g ugJg(x)u
∗
g, it suffices
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to show the equality (2) on positive elements x ∈ S(Lp′(M)). By Proposition

1.3.4, the duality map is given by the formula ∗y = (Mp,p′y)
∗ = |y|

p
p′α∗ for all

y = α|y| ∈ S(Lp(M)). Let now x ∈ S(Lp′(M)), x ≥ 0. Then, by the equality
(1), we have

(πp)∗(x) = ∗(πp(g)(Mp′,p(x)
∗)

= ∗(πp(g)x
p′

p )

= ∗(ugBgJg(x
p′

p ))

= Mp,p′(ugBgJg(x
p′

p ))∗

= B
p
p′

g Jg(x)u
∗
g

= u∗gB
p
p′

g ugJg(x)u
∗
g.

2.5 Property (TLp(M)) for non-commutative Lp(M)-

spaces

In this section, we generalize item 1 in Theorem 2.3.1 to all non-commutative
Lp-spaces, that is, we show that property (T ) implies property (TLp(M)) for
1 < p < ∞ and for any von Neumann algebra M. We then show that the
converse is true for some von Neumann algebras M whose group of isometries
O(Lp(M)) is sufficiently large.

2.5.1 Property (T ) implies property (TLp(M))

Let M be a von Neumann algebra. Let 1 < p < ∞ and p 6= 2. Let G be
a topological group. Let πp be an orthogonal representation of G on a non-
commutative Lp(M). The space of πp(G)-invariant vectors in Lp(M) is

Lp(M)πp(G) = {x ∈ Lp(M) | πp(g)x = x for all g ∈ G }

Let p′ be the conjugate exponent of p, and let (πp)∗ be the contragradient rep-
resentation of πp on Lp(M)∗. Recall that (πp)∗ is equivalent to a representation
(also denoted by (πp)∗) on Lp′(M), and since Lp(M) is a ucus space, the space

Lp(M)
′

(πp) = {v ∈ Lp(M) | Tr(vc) = 0 for all c ∈ Lp′(M)(πp)∗(G)}

is a topological complement for Lp(M)πp(G).
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Let now H be a closed normal subgroup of G. Then Lp(M)πp(H) as well as
its complement Lp(M)′(πp

/H) are πp(G)-invariant.

The following proposition will play a crucial role in our study of property
(TLp(M)). It will be also used in Chapter 4 for our study of property (HLp(M)).

Proposition 2.5.1. Let G be a topological group, and H a closed normal subgroup
of G. Let M be a von Neumann algebra. Let p 6= 2, and 1 ≤ q <∞. Let πp be a
representation of G on Lp(M). Suppose that πp almost has invariant vectors in
Lp(M) (resp. in Lp(M)′(πp

/H)) for G. Then its conjugate by the Mazur map πq

defined by
πq(g) = Mp,q ◦ πp(g) ◦Mq,p for all g ∈ G,

almost has invariant vectors in Lq(M) (resp. in Lq(M)′(πq
/H)) for G.

The proof of Proposition 2.5.1 depends on an essential way on the following
Lemma 2.5.2.

Lemma 2.5.2. With the notations as in Proposition 2.5.1, let v ∈ S(Lp(M)
′

(πp
/H)).

Then

d(v, Lp(M)πp(H)) ≥ 1

2
.

Proof. Assume, by contradiction, that there exists b ∈ Lp(M)πp(H) such that

||v − b||p <
1

2
.

Then 1
2
≤ ||b||p ≤ 3

2
.

Set c =
b

||b||p
. Then ||c||p = 1 and ||b− c||p ≤ 1

2
.

We claim that Mp,p′(c)
∗ ∈ Lp′(M)(πp)∗(H). Indeed, Mp,p′(c)

∗ = ∗c by Proposition
1.3.4. Moreover, ||c||p = 1, and by Proposition 2.4.6, for all g ∈ G, we have

(πp)∗(g)(∗c) = (∗ ◦ πp(g) ◦ ∗−1) ∗ c
= ∗πp(g)c

= ∗c
since c ∈ Lp(M)πp(G). Hence

Tr((c− v)Mp,p′(c)
∗) = Tr(cMp,p′(c)

∗) = ||c||pp = 1.

On the other hand, using Hölder’s inequality, we have

1 = Tr((c− v)Mp,p′(c)
∗)

≤ ||c− v||p||Mp,p′(c)
∗||p′

= ||c− v||p||c||
p
p′

p

= ||c− v||p.
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This implies that ||c− v||p ≥ 1 and we have

||v − b||p ≥ ||v − c||p − ||c− b||p ≥
1

2
.

This is a contradiction.

We are now in position to give the proof of Proposition 2.5.1.

Proof of Proposition 2.5.1. Assume that πp almost has invariant vectors in Lp(M)′(πp
/H)

(the proof is identical in the case of almost invariant vectors in Lp(M)). Let Q
be a compact subset in G, and take ǫ > 0. We have to show that πq has a
(Q, ǫ)-invariant vector in Lq(M)′(πq

/H).

We can find, for every n, a unit vector vn ∈ Lp(M)′(πp
/H) such that

sup
g∈Q

||πp(g)vn − vn||p <
1

n
.

Let wn be the projection of Mp,q(vn) on the canonical complement Lq(M)
′

(πq
/H)

of Lq(M)πq(H). We claim that wn is (Q, ǫ)-invariant for πq for n sufficiently large.

We first show that there exists δ
′

> 0 such that

d(Mp,q(vn), Lq(M)πq(H)) ≥ δ
′

for every n.

Indeed, otherwise for some n0, there exists a sequence (ak)k in ∈ Lq(M)πq(H)

such that
||Mp,q(vn0) − ak||q −−−→

k→∞
0.

By Proposition 1.3.3, we have

||Mp,q(vn0)||q = ||vn0||
p
q
p = 1.

Since ||ak||q −−−→
k→∞

||Mp,q(vn0)||q = 1, we can assume that ||ak||q = 1. Recall that

Mq,p(Lq(M)πq(H)) = Lp(M)πp(H).

Hence, Mq,p(ak) belongs to Lp(M)πp(H) for every k. Moreover

||vn0 −Mq,p(ak)||p −−−→
k→∞

0

by the uniform continuity of Mq,p on the unit sphere (see Proposition 1.3.8). This
is a contradiction to lemma 2.5.2.
In particular, we have

||wn||q = d(Mp,q(vn), Lq(M)πq(H)) ≥ δ
′

, for all n.
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Since H is normal in G, the projection on the complement Lq(M)′(πq
/H)

commutes with πq(g) for every g ∈ G. Hence, for g ∈ Q, we have

||πq(g)wn − wn||q ≤ ||πq(g)Mp,q(vn) −Mp,q(vn)||q
= ||Mp,q(π

p(g)vn) −Mp,q(vn)||q.

Recall that ||vn||
p
2
p = 1 and that

sup
g∈Q

||πp(g)vn − vn||p <
1

n
for all n.

Hence, by the uniform continuity of Mp,q on S(Lq(M)), there exists an integer
N (depending only on (Q, ǫ)) such that

sup
g∈Q

||πq(g)wn − wn||q < ǫδ
′

for n ≥ N.

Since ||wn||q ≥ δ
′

, it follows that

sup
g∈Q

||πq(g)wn − wn||q < ǫ||wn||q for n ≥ N.

This shows that wn is (Q, ǫ)-invariant for πq
/H when n ≥ N . This finishes the

proof of Proposition 2.5.1.

Here is one of the main results of this thesis.

Theorem 2.5.3. Let G be a topological group and H a closed normal subgroup
of G. Assume that the pair (G,H) has property (T ). Let M be a von Neumann
algebra, and 1 < p <∞. Then the pair (G,H) has property (TLp(M)).

Proof. We follow the strategy of the proof of Theorem A in [4]. Let p ∈]1,∞[. Let
H be a closed normal subgroup of G such that the pair (G,H) has property (T ).
Assume by contradiction that the pair (G,H) does not have property (TLp(M)).
Then there exists an orthogonal representation πp : G→ O(Lp(M)) almost hav-
ing invariant vectors in Lp(M)′(πp, H), the complement of Lp(M)πp(H).

Now define π2 = Mp,2 ◦ πp ◦M2,p. By Corollary 2.4.2, π2 is an orthogonal
representation ofG on L2(M). Then by Proposition 2.5.1, π2 almost has invariant
vectors in L2(M)′(π2

/H), which is the orthogonal subspace of L2(M)πp(H). This

contradicts the fact that the pair (G,H) has property (T ).

The following stronger version of property (TB) for some pairs of groups was
used in [4] in order to establish some rigidity results for higher rank groups. Let
H be a closed normal subgroup of G and let L be a closed group of G. Assume
that G = L ⋉H . The following strong relative property (TB) was considered in
[4] :
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Definition 2.5.4. The pair (L ⋉ H,H) has the strong property (TB) if, for
every orthogonal representation ρ : L⋉ H → O(B), the quotient representation
ρ′ : L→ O(B/Bρ(H)) does not almost have ρ′(L)-invariant vectors.

A straightforward modification of our proof of Theorem 2.5.3 shows that we
also have the following result :

Theorem 2.5.5. Let M be a von Neumann algebra. Let (L ⋉ H,H) be a pair
with the strong relative property (T ). Then (L ⋉ H,H) has the strong relative
property (TLp(M)) for 1 < p <∞.

2.5.2 Property (TLp(M)) implies property (T ) for some al-
gebras M

The authors of [4] showed the following theorem for the classical Lp-spaces Lp(X,µ)
associated to a standard Borel space (X,µ) equipped with a non-atomic measure
µ. We will see in the next section that the result is no longer true for the space lp,
that is, there exist groups with property (Tlp) for p 6= 2 and without Kazhdan’s
property (T ).

Theorem 2.5.6. Let 1 ≤ p < ∞. Let G be a second countable locally compact
group. Assume that G has property (TLp(M)) for one of the following von Neu-
mann algebras :
- M = L∞(X,µ) (with µ non-atomic),
- M = R the hyperfinite II1 factor,
- M = B(H).
Then G has property (T ).

The result for M = L∞(X,µ) was given in [4].

Proof. Assume that G does not have property (T ). We are going to show that G
does not have property (TLp(M)).

- Case M = R : Assume that G does not have property (T ). Let τ be the
normalized trace on L2(R). The Hilbert space L2(R) is defined as the completion
of R for the norm

||x||2 = τ(x∗x)
1
2 , x ∈ R.

As G does not have property (T ), a construction of Araki and Choda [2] gives
an action α of G by automorphisms of R, which has a non-trivial asymptotically
invariant sequence (en)n of projections (see Definition 5.1.3). The action α in-
duces a unitary representation π2 : G → U(L2(R)) given on the dense subspace
R of L2(R) by

π2(g)x = α(g)(x) for all g ∈ G, x ∈ R.
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Set, for n ≥ 1,

e′n =
en − τ(en)1

||en − τ(en)1||2
.

Then, for n ≥ 1, e′n belongs to the orthogonal complement L2(R)′ of the space
of π2(G)-invariant vectors in L2(R), and (en)n is a sequence of almost invariant
vectors for π2.
The representation πp of G on Lp(R) associated to π2, which is given on the dense
subspace R of Lp(R) by the same formula as π2, almost has invariant vectors in
Lp(R)′ by Proposition 2.5.1.

- Case M = B(H) : Since G does not have property (T ), there exists a
unitary representation ρ : G → U(H) with almost invariant vectors and without
non-zero finite-dimensional subrepresentation (see Remark 2.12.11 in [8]).
Define πp : G→ O(Cp) by

πp(g)x = ρ(g)xρ(g−1) for all g ∈ G, x ∈ Cp.

The corresponding conjugate representation π2 on C2 is given by the same formula
as πp. Moreover, πp does not have non-zero invariant vector in Cp since ρ has no
non-zero finite-dimensional subrepresentations.
Now we show that πp almost has invariant vectors. In view of Proposition 2.5.1,
it suffices to prove that π2 almost has invariant vectors. For ξ ∈ H with ||ξ|| = 1,
denote by Pξ ∈ C2 the orthogonal projection on the subspace Cξ. Observe that
||Pξ||2 = 1 and for ξ, η two unit vectors in H, we have

||Pξ − Pη||2 ≤ 2||ξ − η||2.

Let (ξn)n be a sequence of almost invariant vectors for π. Set vn = Pξn for all n.
Then, for every g ∈ G, π2

g(vn) = Pρ(g)ξn . The previous inequality therefore shows
that (vn)n is a sequence of almost invariant vectors for π2.
Hence πp almost has invariant vectors but has no non-zero invariant vector, and
G does not have property (TCp).

2.6 Property (Tlp)

In this section, we will study the property (Tlp), that is the property (TLp(M)) for
M = l∞. As we will show, there exist examples of groups with property (Tlp)
and without property (T ). Our study of property (Tlp) is made prossible by the
simple structure of the isometry group O(lp) of lp. We start by establishing some
general facts about group representations on lp. Recall that lp is the space of
p-summable complex valued sequences.
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2.6.1 Group representations on lp

We begin with some preliminary remarks on permutation representations of topo-
logical groups twisted by a cocycle with values in S1. Let G be a topological
group. Let X be a discrete space equipped with a G-action. We assume that this
action is continuous, or equivalently, that the stabilizers of points in X are open
subgroups of G. Let c : G ×X → S1 be a continuous cocycle with values in S1;
thus, c satisfies the cocycle relation

c(g1g2, x) = c(g1, g2x)c(g2, x) for all g1, g2 ∈ G, x ∈ X. (∗)

We associate to the G-action and the cocycle c the permutation representation
twisted by c, which is the continuous representation of G on l2(X), denoted by
λc

X and defined by the formula

λc
X(g)f(x) = c(g−1, x)f(g−1x) for all g ∈ G, f ∈ l2(X), x ∈ X.

The following lemma is a very special case of Mackey’s imprimitivity (see theorem
3.10 in [55]).

Lemma 2.6.1. Assume that G acts transitively on X. Let x0 ∈ X and denote
by H the stabilizer of x0 in G. Let χ : H → S1 be defined by χ(h) = c(h, x0) for
all h ∈ H. Then χ is a unitary character of H and λc

X is unitarily equivalent to
the monomial representation IndG

Hχ.

Proof. The fact that χ is a homomorphism follows immediately from the cocycle
relation (∗).
Fix a set T ⊂ G of representatives for the left cosets of H . The space l2(X) is the
direct sum ⊕x∈XVx, where Vx is the one-dimensional space Cδx. The restriction
of λc

X to H leaves Vx0 invariant, with the corresponding H-action given by the
character χ. Moreover, we have λc

X(t)Vx0 = Vtx0 for all t ∈ T . This shows that λc
X

is equivalent to IndG
Hχ, by the defining property of induced representations.

Remark 2.6.2. Conversely, every monomial representation of G associated to
an open subgroup H and a character χ on H can be realized as a representation
of the form λc

X for the action of G on X = G/H and a continuous cocycle
c : G×G/H → S1. We recall the construction of c. Choose a section s : G/H →
G for the canonical projection G → G/H , with s(H) = e. Define a cocycle
α : G×X → H with values in H , given by

α(g, x) = s(gx)−1gs(x) for all g ∈ G, x ∈ X.

Then c : G×G/H → S1 is defined by c(g, x) = χ(α(g, x)).

The following corollary is an immediate consequence of Lemma 2.6.1 and the
previous remark.
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Corollary 2.6.3. Let G be a topological group.
(i) Let X be a discrete space equipped with a continuous G-action and let c :
G × X → S1 be a continuous cocycle. The associated representation λc

X of G
on l2(X) is equivalent to a direct sum of monomial representations associated to
open subgroups of G.
(ii) Let π = ⊕i∈IIndG

Hi
χi be a direct sum of monomial representations associated

to open subgroups Hi of G. Set X =
⊔

i∈I G/Hi, the disjoint sum of the G/Hi’s,
with the obvious G-action. Then π is unitarily equivalent to the representation
λc

X of G on l2(X) for a cocycle c : G×X → S1.

Now let 1 ≤ p < ∞, p 6= 2. Let G be a topological group and π : G → O(lp)
an orthogonal representation of G on lp = lp(X), where X is an infinite countable
set. Recall from Banach’s result (see Theorem 1.5.1) that there exists mappings

ϕ : G→ Sym(X) and c : G×X → S1

such that

π(g)f(x) = c(g−1, x)f(ϕ(g−1)(x)) for all g ∈ g, f ∈ lp(X), x ∈ X.

Since π is a group homomorphism, one checks that ϕ is also a group homomor-
phism; so ϕ defines an action of G on X. Moreover, c : G×X → S1 satisfies the
cocycle relation (∗).
Observe that {δx | x ∈ X } is a discrete subset of lp(X), equipped with the norm
topology. Since π is continuous, it follows that the action of G on the discrete
space X is continuous. Similarly, one checks that c : G×X → S1 is continuous.

In summary, to a continuous orthogonal representation πp of G on lp(X) (for
p 6= 2 and 1 ≤ p < ∞), is associated an action of G on X with open point
stabilizers and a continuous cocycle c : G×X → S1. (It is clear that, conversely,
such an action of G on X and a continuous cocycle c : G × X → S1 define an
orthogonal representation ofG on lp(X)). Moreover, the conjugate representation
by the Mazur map π2 = Mp,2 ◦πp ◦M2,p is the permutation representation λc

X on
l2(X) twisted by c.

2.6.2 A characterization of property (Tlp)

In the sequel, the sets of representations which are considered are sets of classes
of unitary representations for the unitarily equivalence. We recall the notation
π′ for the restriction of a unitary representation π : G→ U(H) to the orthogonal
complement of the space Hπ(G) of π(G)-invariant vectors.

Definition 2.6.4. Let G be a topological group and R a set of unitary repre-
sentations. We say that 1G is isolated in R if 1G is not weakly contained in
⊕π∈Rπ

′.
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Notice that from Remark 2.1.8, property (T ) can be rephrased as follows : G
has property (T ) if and only if 1G is isolated in the set of (equivalence classes of)
unitary representations of G.

Recall that a unitary representation σ of a topological group G is monomial
if σ is unitarily equivalent to the induced representation IndG

Hχ, where H is a
closed subgroup of G, and χ : H → S1 a unitary character of H .

Examples of monomial representations are the quasi-regular representations
λG/H of G on L2(G/H) since λG/H = IndG

H1H . Let Rmon be the set of monomial
representations π = IndG

Hχ, associated to an open subgroup H of G.

Theorem 2.6.5. Let G be a second countable locally compact group. The follow-
ing properties are equivalent.
(i) G has property (Tlp) for some 1 < p <∞ and p 6= 2.
(ii) The trivial representation of G is isolated in the set Rmon.

Proof. (ii) ⇒ (i) :
Assume that G does not have property (Tlp). Then there exists an orthogonal
representation πp : G → O(lp) such that (πp)′ almost has invariant vectors. By
Proposition 2.5.1, the representation π2 is such that (π2)′ almost has invariant
vectors. On the other hand, by Corollary 2.6.3, π2 is unitarily equivalent to a
direct sum of monomial representations associated to open subgroups. Then 1G

is not isolated in Rmon.

(i) ⇒ (ii) :
Assume that 1G is not isolated in Rmon. Thus there exist open subgroups (Hi)i∈I

and unitary characters χi : Hi → S1 with the following property : the representa-
tion ⊕i∈IIndG

Hi
of G on H = ⊕i∈I l

2(G/Hi) almost has invariant vectors in H(π2)′.
For f ∈ H, the projection of f on l2(G/Hi) is non-zero for at most countably
many i. It follows that we can assume that I is infinite countable (if I happens
to be finite, we replace I by I × N and set H(i,n) = Hi).
Let X =

⊔
i∈I G/Hi. By Corollary 2.6.3, ⊕i∈IIndG

Hi
is unitarily equivalent to the

permutation representation π2 = λc
X of G on l2(X) associated with a cocycle

c : G×X → S1.
By Proposition 2.5.1, the conjugate representation πp of G on lp(X) almost has
invariant vectors in l′p. Therefore, G does not have property (Tlp).

When G is connected, the only open subgroup of G is G itself and Rmon

therefore coincides with the group of unitary characters of G, that is, with the
Pontrjagin dual of the abelianization G/[G,G]. The following corollary is an
immediate consequence of Theorem 2.6.5.

Corollary 2.6.6. Let 1 ≤ p <∞, p 6= 2. A connected second countable group G
has property (Tlp) if and only if its abelianization G/[G,G] is compact.
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2.6.3 Consequences of property (Tlp)

Groups with property (Tlp) share some important properties with Kazhdan groups.

Theorem 2.6.7. Let G be a second countable locally compact group. Assume
that G has property (Tlp) for some 1 < p <∞. The following statements hold :
(i) G is compactly generated.
(ii) The abelianized group G/[G,G] is compact.
(iii) Every subgroup of finite index in G and every topological group containing
G as a finite index subgroup has property (Tlp). (In other words, property (Tlp)
only depends on the commensurability class of G.)
(iv) If G is amenable and totally disconnected, then G is compact.

Proof. (i) The proof is similar to Kazhdan’s one in [47]. Let C be the family
of open and compactly generated subgroups of G. Since G is locally compact,
1G is weakly contained in the family of quasi-regular representations (λG/H)H∈C.
Hence, by Theorem 2.6.5, there exists H ∈ C such that G has a non-zero invariant
vector in l2(G/H). This implies that H has finite index and therefore that G is
compacly generated.

(ii) Assume, by contradiction, that G/[G,G] is not compact. Then there ex-
ists a sequence (χn)n of unitary characters of G such that χn 6= 1 and χn → 1
uniformly on compact subsets of G. This contradicts Theorem 2.6.5.

(iii) • Let L be a finite index subgroup of G. We want to show that L has
property (Tlp).
Let L be the set of pairs (H,χ) consisting of an open subgroup H of L and a
unitary character χ of H . For (H,χ) ∈ L, denote by λ(H,χ) the induced represen-
tation IndL

Hχ. Set
ρ = ⊕(H,χ)∈Lλ(H,χ).

Assume, by contradiction, that L does not have property (Tlp) for p 6= 2. Then,
by Theorem 2.6.5, the trivial representation 1L of L is weakly contained in ρ′.
It follows, by continuity of induction, that λG/L is weakly contained in IndG

Lρ
′,

which is a subrepresentation of

⊕(H,χ)∈LIndG
L(λ(H,χ)) ≃ ⊕(H,χ)∈LIndG

Hχ.

On the other hand, 1G is contained in λG/L, since G/L is finite. Therefore, 1G is
weakly contained in IndG

Lρ
′. However, IndG

Lρ
′ has no non-zero invariant vector,

since ρ′ has no non-zero L-invariant vector (see Theorem E.3.1 in [8]). This is a
contradiction to Theorem 2.6.5. We conclude that L has property (Tlp) for p 6= 2.

• Let G̃ be a group containing G as a subgroup of finite index. We want to
show that G̃ has property (Tlp).
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Since G contains a normal subgroup in G̃ of finite index and since this subgroup
has property (Tlp) for p 6= 2, by the previous proof, we can assume that G is a

normal subgroup of G̃.
Assume, by contradiction, that G̃ does not have property (Tlp) for p 6= 2. Then

there exists an orthogonal representation πp : G̃→ O(lp) which has a sequence of
almost invariant vectors in the complement l′p(π

p) of πp(G̃)-invariant vectors in
lp. Denote by π2 : G→ O(l2) the conjugate of πp by the Mazur map. By Propo-
sition 2.5.1, π2 has also a sequence (ξn)n of almost invariant vectors in l′2 = l′2(π

2).

Let P : l′2 → (l′2)
π2(G) be the orthogonal projection on the subspace of π2(G)-

invariant vectors in l′2. Observe that (l′2)
π2(G) is invariant under π2(G̃), since G

is normal in G̃. For every n ∈ N, the vector ξn − Pξn belongs to the orthogonal
complement of (l2

′)π2(G) in l′2. Hence, ξn − Pξn belongs to the orthogonal com-

plement in l2 of the space l
π2(G)
2 , since l

π2(G)
2 = (l2

′)π2(G) ⊕ l
π2(G̃)
2 .

Moreover, we have

lim
n

||π2(g)(ξn − Pξn) − (ξn − Pξn)|| = 0 for all g ∈ G.

It follows that infn ||ξn−Pξn|| = 0; indeed, otherwise, 1
||ξn−Pξn||

(ξn−Pξn) would be

a sequence of almost invariant vectors in the orthogonal complement of l
π2(G)
2 in l2

and, by Proposition 2.5.1, this would contradict the fact thatG has property (Tlp).
Hence, upon passing to a subsequence, we can assume that limn ||ξn −Pξn|| = 0.

Since Pξn is π2(G)-invariant, we can define the following sequence (ηn)n of
vectors in l2 :

ηn =
1

|G̃/G|
∑

t∈G̃/G

π2(t)Pξn.

It is clear that ηn is π2(G̃)-invariant. Moreover, we have

||ηn − ξn|| ≤
1

|G̃/G|
∑

t∈G̃/G

||π2(t)Pξn − ξn||

≤ 1

|G̃/G|
∑

t∈G̃/G

||π2(t)Pξn − π2(t)ξn|| +
1

|G̃/G|
∑

t∈G̃/G

||π2(t)ξn − ξn||

=
1

|G̃/G|
∑

t∈G̃/G

||Pξn − ξn|| +
1

|G̃/G|
∑

t∈G̃/G

||π2(t)ξn − ξn||.

It follows that limn ||ηn − ξn|| = 0. Hence, ηn 6= 0 for sufficiently large n, since
||ξn||=1.
For every t ∈ G̃, the vector π2(t)(Pξn) belongs to (l′2)

π2(G), since (l′2)
π2(G) is in-

variant under π2(G̃). It follows that ηn ∈ (l′2)
π2(G) and, in particular, ηn ∈ l′2.
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This is a contradiction, as there are no non-zero π2(G̃)-invariant vector in l′2.

(iv) Since G is totally disconnected, we can find a compact open subgroup K
of G, by van Dantzig’s theorem (see Theorem 7.7 in [41]). The amenability of G
implies the amenability of its action on G/K : 1G is weakly contained in λG/K

(see Theorem p.28 in [28]). As G has property (Tlp), it follows from Theorem
2.6.5 that G has a non-zero invariant vector in l2(G/K). Hence, K has finite
index in G and G is compact.

Remark 2.6.8. 1. It follows from the previous theorem that, for instance,
(abelian or non-abelian) free groups as well as the groups SLn(Q) do not
have property (Tlp).

2. Property (Tlp) for p 6= 2 is not inherited by lattices, even in the totally dis-
connected case. Indeed, SL2(Ql) has property (Tlp) for p 6= 2 (see example
2.6.12 below), whereas torsion-free discrete subgroups in SL2(Ql) are free
groups (see Chap. II, théorème 5 in [73]).

2.6.4 Property (Tlp) for totally disconnected groups

The next result shows that, when G is totally disconnected, isolation of 1G in the
set of quasi-regular representations associated to open subgroups suffices to char-
acterize property (Tlp). Let Rquasi−reg be the set of quasi-regular representations
(λG/H , l2(G/H)), associated to an open subgroup H of G.

Theorem 2.6.9. Let G be a totally disconnected, second countable locally com-
pact group. The following properties are equivalent.
(i) G has property (Tlp) for some 1 < p <∞ and p 6= 2.
(ii) The trivial representation of G is isolated in Rquasi−reg.

The proof of Theorem 2.6.9 will be an easy consequence of the following
lemma.

Lemma 2.6.10. Let G be a locally compact totally disconnected group, H an
open subgroup of G, and χ a continuous unitary character of H. There exists
an open subgroup L of G contained in H such that the monomial representation
IndG

Hχ is weakly contained in the quasi-regular representation λG/H .

Proof. Since G, and hence H , is totally disconnected, every neighborhood of the
group unit in H contains a compact open subgroup, by van Dantzig’s theorem.
By continuity of χ, there exists a compact open subgroup K of H such that

|χ(k) − 1| < 1 for all k ∈ K.
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For every k ∈ K, we then have |χ(k)n − 1| < 1 for all n ∈ N and hence χ(k) = 1.
Therefore χ is trivial on K.
Let L be the subgroup of G generated by K ∪ [H,H ]. Then L is a normal and
open subgroup of H and χ is trivial on L. So, χ factorizes to a unitary character
χ of the abelian quotient group H = H/L.
Since H is amenable, χ is weakly contained in the regular representation λH

of H , by the Hulanicki-Reiter theorem (see Theorem G.3.2 in [8]). Hence, χ is
weakly contained in the quasi-regular representation λH/L, since λH/L = λH ◦ p,
where p : H → H is the quotient homomorphism. By continuity of induction
(see Theorem F.3.5 in [8]), it follows that IndG

Hχ is weakly contained in

IndG
HλG/H ≃ λG/L.

Proof of Theorem 2.6.9. By Theorem 2.6.5, it suffices to show that if 1G is iso-
lated in Rquasi−reg, then 1G is isolated in Rmon for G a second countable locally
compact and totally disonnected group.
Assume that for such a group G, 1G is not isolated in Rmon. Then there exists a
family (Hi, χi)i∈I of open subgroups Hi with unitary characters χi such that 1G

is weakly contained in the restriction π′ of

π = ⊕i∈IIndG
Hi
χi

to the orthogonal complement of the π(G)-invariant vectors. On the other hand,
by Lemma 2.6.10, there exists a family (Li)i∈I of open subgroups Li of Hi such
that π is weakly contained in

ρ := ⊕i∈IλG/Li
.

This implies that π′ is weakly contained in ρ′. Hence, 1G is not isolated in
Rquasi−reg.

The next result will provide us with a class of examples of totally disconnected
non discrete groups with property (Tlp) for p 6= 2 and without property (T ).
A locally compact group has the Howe-Moore property if, for every unitary rep-
resentation π of G without non-zero invariant vectors, the matrix coefficients of
π are in C0(G). For an extensive study of groups with this property, see [15].

Corollary 2.6.11. Let G be a totally disconnected, second countable locally com-
pact group with the Howe-Moore property. Assume that G is non-amenable. Then
G has property (Tlp) for every 1 < p <∞ and p 6= 2.

Proof. Since G has the Howe-Moore property, every proper open subgroup of G
is compact (see Proposition 3.2 in [15]). It follows that, for every proper open
subgroup H , the space l2(G/H) can be identified with the G-invariant subspace
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of L2(G) of functions on G which are right H-invariant. As a consequence, we see
that λG/H is a subrepresentation of the regular representation λG. Denoting by
L the set of proper open subgroups of G, this implies that ⊕H∈LλG/H is weakly
contained in the regular representation λG.
On the other hand, since G is not amenable, 1G is not weakly contained in λG,
by the Hulanicki-Reiter theorem. It follows that 1G is not weakly contained in
⊕H∈LλG/H and Theorem 2.6.9 shows that G has property (Tlp).

Examples 2.6.12. 1. Let k be a non-archimedean local field, G a simple
linear algebraic group over k and G = G(k) the group of k-points in G (an
example is G = SLn(Ql) for n ≥ 2, where Ql is the field of l-adic numbers
for a prime number l). Then G has the Howe-Moore property (see Theorem
5.1 in [43]). Moreover, G is amenable if and only if G is compact. So, G
has property (Tlp) for p 6= 2. Observe that if k− rank(G) = 1, then G does
not have property (T ) (see Remark 1.6.3 in [8]). This is, for instance, the
case for G = SL2(Ql).

2. Let G = Aut(T ) be the group of color preserving automorphisms of a k-
regular tree of type (m,n) for m,n ≥ 3. Then G is a totally disonnected
locally compact group and, as shown in [54], G has the Howe-Moore prop-
erty. Since G is non-amenable, it has property (Tlp) for p 6= 2. Observe
that G does not have property (T ), since G acts without fixed point on a
tree (see chapter 2 section 3 in [8]).

2.7 Property (T ) and complete isometries

In a purely non-commutative context, it is more natural to use complete isome-
tries instead of isometries. We have already noticed (see Remark 2.3.2) that, for
example, results on isometries of closed subspaces of Lp-spaces require to deal with
complete isometries. Hence we introduce a weak version of property (TLp) us-
ing representations by unital complete isometries on non-commutative Lp-spaces.

2.7.1 Weak property (TF ) for closed subspaces of Lp(M)

Let M be a semi-finite von Neumann algebra, 1 ≤ p <∞. Recall that a complete
isometry on Lp(M) is a linear map U : Lp(M) → Lp(M) such that

id⊗ U : Lp(Mn ⊗M) → Lp(Mn ⊗M)

is an isometry for all n ≥ 1. We say that U is unital if U(1) = 1. In particular,
if p 6= 2, a unital complete isometry U on Lp(M) is the extension of a Jordan
isomorphism of M, in view of the Yeadon decomposition (Theorem 2.7.1 shows
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that U is in fact an automorphism of M).

If M is finite, we define the notion of complete isometries for a closed subspace
F ⊂ Lp(M) containing 1. A complete isometry on F is a linear map U : F → F
such that

||id⊗ U(X)||p = ||X||p for all X ∈ Mn(F ) and all n ∈ N.

We say that U is unital if U(1) = 1.

Denote by Oc.i.(Lp(M)) (resp. Oc.i.(F )) the group of unital complete isome-
tries of Lp(M) (resp. F ⊂ Lp(M)). Recall from Example 1.6.3 that in general
Oc.i.(Lp(M)) 6= O(Lp(M)). Junge, Ruan and Sherman obtained a result on the
structure of complete isometries of general non-commutative Lp(M)-spaces. We
recall it in the case where the von Neumann algebra M is semi-finite.

Theorem 2.7.1. [45] Let M be a semi-finite von Neumann algebra, and 1 ≤
p < ∞, p 6= 2. For an isometry U = uBJ : Lp(M) → Lp(M), the following
statements are equivalent :
(i) U is a complete isometry,
(ii) U is a 2-isometry,
(iii) the Jordan map J : M → M is multiplicative.

Let G be a topological group, and let π : G→ Oc.i.(Lp(M)) be a representa-
tion of G by unital complete isometries. It follows from the previous result that
every π(g) has a form

π(g)(x) = Jg(x) for all x ∈ Lp(M)

where J : G → Aut(M) is a morphism of the group G in the group Aut(M) of
automorphisms of M.

Definition 2.7.2. Let M be a finite von Neumann algebra. Let F be a closed
subspace of a non-commutative space Lp(M) such that 1 ∈ F . A topological
group G is said to have property (T c.i.

F ) if, for every representation G→ Oc.i.(F ),
the restriction π/F ′(π) of π on F ′(π) does not almost have invariant vectors.

Let π : G→ O(B) be an orthogonal representation of a topological group on
a ucus Banach space B. Let F be a π(G)-invariant closed subspace of B. The
following lemma shows that the decomposition F = F π(G) ⊕F ′(π) from Theorem
2.2.2 is coherent with the decomposition B = Bπ(G) ⊕B′(π).

Lemma 2.7.3. Let B be a ucus Banach space, and π : G→ O(B) be an orthogo-
nal representation of a topological group G on B. Let F be a closed π(G)-invariant
subspace of B. Then F ′(π) ⊂ B′(π).
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Proof. Notice that the contragradient representation π∗ : G → O(B∗) on B∗

defines also a representation π∗ : G → O(F ∗) on F ∗, since F is π(G)-invariant.
Now let x ∈ F ′(π) and ϕ ∈ (B∗)π∗(G). It is straightforward that the restriction
ϕ/F of ϕ to F belongs to the subspace (F ∗)π∗(G). Recall that

F ′(π) = {y ∈ F | ∀ψ ∈ (F ∗)π∗(G), < ψ, y >= 0 }.

Hence, by definition of F ′(π), we have

< ϕ, x >B∗,B=< ϕ/F , x >F ∗,F= 0.

Notice that Lemma 2.7.3 is also a consequence of Remark 2.2.4 (with B1 = F ,
B2 = B and ϕ the canonical inclusion).

Our next result generalizes item 2 in Theorem 2.3.1 to the case of non-
commutative Lp-spaces. The proof shows that property (T c.i.

Lp(VN(F ))) implies prop-

erty (T c.i.
F ) for some subspaces F of Lp(M).

Theorem 2.7.4. Let 1 ≤ p < ∞, p /∈ 2N. Let M be a finite von Neumann
algebra, and F a closed subspace of Lp(M) such that F ⊂ M, and 1 ∈ F .
Assume that G is a topological group with property (T ). Then G has property
(T c.i.

F ).

Proof. By contradiction, assume that there exists a representation

π : G→ Oc.i.(F )

of G on F by unital complete isometries with almost invariant vectors in F ′(π).
By Theorem 1.6.4 and Remark 1.6.5, every π(g) extends uniquely to a complete
isometry on Lp(VN(F )), also denoted by π(g). Then π : G → Oc.i.(Lp(VN(F )))
defines a representation of G by unital complete isometries on Lp = Lp(VN(F )),
denoted again by π. By the previous Lemma 2.7.3, π has almost invariant vectors
in L′

p(π). By Theorem 2.5.3, this contradicts the fact that G has Kazhdan’s
property (T ).

2.7.2 Relationship between property (TLp
) and property

(T c.i.
Lp

)

We give an analog of Definition 2.7.2 in the case of Lp(M)-spaces associated to
semi-finite von Neumann algebras M.

Definition 2.7.5. Let M be a semi-finite von Neumann algebra. A topo-
logical group G is said to have property (T c.i.

Lp(M)) if, for every representation

G→ Oc.i.(Lp(M)), the restriction π/Lp(M)′ of π on Lp(M′) does not almost have
invariant vectors.
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It is obvious that property (TLp) implies property (T c.i.
Lp

). We can show that
the converse implication holds for some specific von Neumann algebras.

Theorem 2.7.6. Let 1 ≤ p <∞, p 6= 2.
(i) Let M be a von Neumann algebra, and let G be a topological group with Kazh-
dan’s property (T ). Then G has property (T c.i.

Lp(M)).

(ii) Let M be one of the following von Neumann algebras :
- M = L∞(X,µ) (µ being non-atomic);
- M = R the hyperfinite II1 factor;
- M = B(H).
Let G be a locally compact second countable group such that G has property
(T c.i.

Lp(M)). Then G has property (T ).

Proof. (i) This follows from Theorem 2.5.3 and the obvious fact that (TLp(M))
implies (T c.i.

Lp(M)).

(ii) The three cases are consequences of the construction of a representation
πp : G → O(Lp(M)) given in the proof of Theorem 2.5.6, which almost has
invariant vectors in Lp(M)′ when the group G does not have property (T ). In
every case, πp is a representation by unital complete isometries.

- For the case M = L∞(X,µ), πp is the representation induced by a measure-
preserving action α on (X,µ) (see the proof of Theorem A in [4]). By Example
1.6.3, πp is a complete isometry. It is unital since the action α is measure-
preserving.

- For the case M = R, πp is the representation induced by an action α of G
on R by automorphisms. For n ≥ 1, and g ∈ G, id⊗πp(g) coincides with the au-
tomorphism id⊗αg on Mn⊗R, which is dense in Lp(Mn⊗R). Hence id⊗πp(g)
is a unital isometry in O(Lp(Mn ⊗R)). This shows that πg ∈ Oc.i.(Lp(R)).

- For the case M = B(H), every πp(g) is given by the following formula

πp(g)(x) = ρ(g)xρ(g)−1 for x ∈ Cp,

where every ρ(g) is a unitary in U(H). Therefore it is clear that πp(g) ∈ Oc.i.(Cp).

We cannot expect that property (T ) and property (T c.i.
Lp(M)) are equivalent for

every von Neumann algebra M. In the next proposition, we give an example of
a group G without property (T ), such that G does not have property (T c.i.

Lp(M))
for p 6= 2 and for some von Neumann algebras M.
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Let M be a II1 factor, with trace τ . We view M as a subalgebra of L2(M),
where L2(M) is the completion of M for the norm

||x||2 = τ(x∗x)
1
2 .

We define a topology on Aut(M), as the group topology given by the following
fundamental system of neighborhoods of idM :

V (x1, ..., xn, ǫ) = {α ∈ Aut(M) | ||α(xi) − xi||2 < ǫ for all i = 1, ..., n }.

Then Aut(M) is a polish group.
Let Γ be a group such that every non-trivial conjugacy class is infinite. Then
the group von Neumann algebra M = L(Γ) is a II1 factor. Assume that Γ
has property (T ). Connes proved in [17] that the subgroup Inn(M) of inner
automorphisms is open, and hence Out(M) = Aut(M)/Int(M) is countable
discrete.

Proposition 2.7.7. Let M be a II1 factor such that Out(M) = Aut(M)/Int(M)
is discrete. Then SL2(R) has property (T c.i.

Lp(M)).

Proof. Set SL2(R) = G, and let π : G → Oc.i.(Lp(M)) be a representation
by unital complete isometries on Lp(M). We have already noticed that the
representation has the form

π(g)(x) = Jg(x) for all g ∈ G, x ∈ Lp(M)

where the map J : G → Aut(M) is a continuous group homomorphism (see
Theorem 2.4.4). Let J̃ : G → Out(M) be the composition map of J with the
quotient map Aut(M) → Out(M).

Since G is connected, the continuous map J̃ is constant, as Out(M) is dis-
crete. So, Jg ∈ Int(M) for every g ∈ G since Je ∈ Int(M).

There exists a continuous homomorphism ϕ : G→ U(M), satisfying Jg(x) =
ϕgxϕ

−1
g for all g ∈ G and x ∈ M. Let τ be the normalized trace on M; let

L2(M) be the completion of M for the inner product

< x, y >= τ(y∗x)

and let ρ : M → B(L2(M)) be the ∗-homomorphism defined by ρ(x)y = xy for
all x, y ∈ M. Then

τ(x) =< ρ(x)1, 1 > for all x ∈ M.

Set ψ = τ ◦ ϕ : G → R. Then ψ is a continuous positive definite function on
G, which is constant on every conjugacy class. We claim that ψ is constant on
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G, that is ψg = 1 for all g ∈ G.

Indeed, let

T+ = {
(

1 a
0 1

)
| a ∈ R} and T− = {

(
1 0
a 1

)
| a ∈ R}.

For a > 0 and b ∈ R, we have

(
a 0
0 a−1

) (
1 b
0 1

)(
a−1 0
0 a

)
=

(
1 a2b
0 1

)
.

Hence, by continuity of ψ at e, we have ψ(g) = 1 for all g ∈ T+. Similarly, we
have ψ(g) = 1 for all g ∈ T−. As

ψ(g) =< ρ(ϕg)1, 1 >,

the equality case of Cauchy-Schwarz inequality shows that

ρ(ϕg) = 1 for all g ∈ T+ ⊔ T−.

Since T+ ⊔ T− generates G as a group, this implies that

ρ(ϕg) = 1 for all g ∈ G.

Therefore we have ϕg = 1 for all g ∈ G, that is, Jg = id for all g ∈ G.

Then J has to be trivial. Hence the representation π is trivial and the group
has property (T c.i.

Lp
).

Remark 2.7.8. Ioana, Peterson and Popa constructed in [44] II1 factors M such
that Out(M) is trivial.
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Chapter 3

Fixed-point property (FLp(M))

Property (T ), which was originally defined in terms of unitary group representa-
tions, can be rephrased, at least for σ-compact locally compact groups, in terms
of property (FH), a fixed-point property for actions by affine isometries on a real
Hilbert space. A similar fixed-point property (FB) can be defined for every Ba-
nach space B. It is known that, for σ-compact locally compact groups, property
(FB) always implies property (TB). However, in general, property (TB) is weaker
than property (FB); this happens already for the classical Lp-spaces Lp([0, 1]),
and p sufficiently large ([66]).

3.1 Introduction

3.1.1 Property (FB)

We recall the basic facts concerning property (FB). We refer to Chapter 2 in [8]
for more details when B = H is a Hilbert space, and to Section 2.d in [4] for
details about group actions by affine isometries on Banach spaces.

Let B be an affine real Banach space. Denote by Isom(B) the group of bi-
jective isometries of B. Observe that, by the Mazur-Ulam theorem [56], every
bijective isometry is an affine map.

An affine isometric action of a topological group G on B is a group homomor-
phism α : G→ Isom(B) such that the map G→ B, g 7→ α(g)x is continuous for
every x ∈ H.

Let α : G → Isom(B) be such an action. For every g ∈ G, let π(g) be the
linear part of α(g), and b(g) the translation part; thus

α(g)x = π(g)x+ b(g) for all g ∈ G, x ∈ B.

73
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Then π : G → O(B) is an orthogonal representation and b : G → B is a
continuous map satisfying the following cocycle relation:

b(gh) = b(g) + π(g)(b(h))

for all g, h ∈ G and x ∈ H. So, b is a continuous 1-cocycle of G with values in
B, associated to the representation π. The set of all such 1-cocycles is denoted
by Z1(G, π); this is a real vector space under the pointwise operations.
The action α has a fixed point x ∈ B if and only if

b(g) = π(g)(−x) − (−x) for all g ∈ G.

Cocycles of this form are called 1-coboundaries with respect to π. The set of
all 1-coboudaries is a subspace of Z1(G, π), denoted by B1(G, π). The quotient
vector space

H1(G, π) = Z1(G, π)/B1(G, π)

is called the first cohomology group with coefficients in π.

Definition 3.1.1. Let B be a Banach space. A topological group G has property
(FB) if every affine isometric action of G on a real affine Banach space B has a
fixed-point.

Remark 3.1.2. Let G be a topological group. Then G has property (FB) if and
only if H1(G, π) = 0 for every orthogonal representation π : G→ O(B).

Recall the following “lemma of the center”(see Remark (5) in [4]):

Lemma 3.1.3. Let B a ucus Banach space, and A a non-empty bounded subset
A ⊂ B. Then there exists a unique x ∈ B minimizing inf{r > 0 | A ⊂ B(x, r) }.
The point x = x(A) is called the Chebyshev center of A.

A consequence of the previous lemma is that, for affine actions by isometries
on ucus Banach spaces, it is equivalent to have bounded orbits or to have a fixed
point.

Proposition 3.1.4. Let B be a ucus real Banach space. Let π be an orthogonal
representation of G on B, and b a 1-cocycle with respect to π. Let α the associated
affine isometric action associated to π and b. Then the following assertions are
equivalent :
(i) α has a fixed point in B ;
(ii) b is bounded ;
(iii) all the orbits of α are bounded ;
(iv) some orbit of α is bounded.

The following proposition shows that, for σ-compact locally compact groups,
property (FB) is always stronger than property (TB).
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Proposition 3.1.5. Let G be a σ-compact locally compact group, and let B be a
Banach space. If G has property (FB), then G has property (TB).

For the proof of the previous proposition, see Theorem 1.3 in [4]. We will see
later (Remark 3.1.8) that the converse of this proposition is not true in general.

3.1.2 Property (FH)

A topological group G is said to have property (FH) if every affine action of G
by isometries on a real Hilbert space has a fixed-point. The following theorem
shows that property (T ) and property (FH) are equivalent for σ-compact locally
compact groups. It is due to Delorme (Theorem V.1 in [25]) and Guichardet
(Theorem 1 in [33]).

Theorem 3.1.6. Let G be a topological group.

1. If G has property (T ), then G has property (FH).

2. If G is a σ-compact locally compact group and if G has property (FH), then
G has property (T ).

Property (FH) does not imply property (T ) when G is not σ-compact: it is
shown by de Cornulier in [22] that the group of all permutations of an infinite
set has property (FH), but not property (T ).

3.1.3 Property (FLp(X,µ))

The authors of [4] proved the following theorem which relates property (T ) and
property (FLp(X,µ)) for Lp(X,µ) a commutative Lp-space.

Theorem 3.1.7. ([4] and see [5] for the point 2.)
Let G be a locally compact second countable group.

1. Let 1 < p ≤ 2, and let B be a closed subspace of Lp. If G has property (T ),
then G has property (FB) ;

2. If G has property (T ), then G has property (FL1) ;

3. If G has property (T ), then there exists ǫ(G) > 0 such that, for 2 ≤ p < ǫ(G)
and for every closed subspace B of Lp, G has property (FB).

Remark 3.1.8. The analog of the Delorme-Guichardet theorem 3.1.6 is no longer
true in general for actions on Banach spaces. It was shown by several authors that
property (T ) does not imply property (FLp) for some commutative Lp-spaces, and
for p > 2 sufficiently large :
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(i) Pansu in [66] proved that Sp(n, 1) and cocompact lattices in these groups
admit fixed-point-free affine isometric actions on Lp(G) for p > 4n + 2.

(ii) Bourdon and Pajot ([11]) more generally proved that a non-elementary
hyperbolic group does not have property (FLp) for p large enough.

(iii) Cornulier, Tessera and Valette in [23] proved that, for G a rank-one Lie
(or algebraic) group, if p is sufficiently large, there is a proper affine isometric
action of G on Lp(G) whose linear part is the regular representation.

(iv) Yu also gave a short proof that any hyperbolic group Γ admits a proper
action by affine isometries on lp(Γ× Γ) if p is large enough (see [85]); in Chapter
4, we will use his construction to define a proper action on a non-commutative
Lp-space.

(v) Nica ([62]) uses the latter result to prove that, if Γ is a non-elementary
hyperbolic group with boundary ∂Γ, then for p large enough Γ admits an affine
isometric action on Lp(∂Γ × ∂Γ) that is proper.

3.2 Property (FLp(M)) for higher rank groups

Property (FLp(X,µ)) was established in [4] for higher rank groups and their lattices.
We first give the definition of higher rank groups.

Definition 3.2.1. For 1 ≤ i ≤ m, let ki be local fields and Gi(ki) be the ki-points
of connected simple ki-algebraic groups Gi. Assume that each simple factor Gi

has ki-rank ≥ 2. The group G = Πm
i=1Gi(ki) is called a higher rank group.

Example 3.2.2. The groups G = SLn(R) for n ≥ 3 and G = Sp2n(R) for
n ≥ 2 are higher rank groups. This is also true for their corresponding groups
G = SLn(Ql) and G = Sp2n(Ql) over the field of l-adic numbers.

Our next result shows that Theorem B in [4] remains true for non-commutative
Lp-spaces. In fact, it was conjectured in [4] that higher rank groups have property
FB for all superreflexive space B.

Theorem 3.2.3. Let G be a higher rank group and M a von Neumann algebra.
Then G, as well as every lattice in G, has property FLp(M) for 1 < p <∞.

Given our Theorem 2.5.5, the proof of Theorem 3.2.3 is a straightforward
adaptation of the proof given in [4] for classical Lp-spaces. For this reason, we
just give an indication of the main steps involved in this proof.
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Strategy of proof of theorem 3.2.3. • We first show the result when G is a higher
rank group.
Using an analogue of Howe-Moore’s theorem on vanishing of matrix coefficients,
it was shown in [4] that G has property (FB) for every ucus Banach space B,
whenever a certain pair (L⋉H,H) of subgroups, which has strong property (T ),
has also strong property (TB). In view of Theorem 2.5.5, this shows that G has
property (FLp(M)).

• Let G be a lattice in a higher rank group. The result for G is obtained by
an induction procedure exactly as in the Proposition 8.8 of [4].

Example 3.2.4. Γ = SL3(Z[
√

2]) is a lattice in the higher rank group SL3(R)×
SL3(R).

Remark 3.2.5. (i) Theorem 3.2.3 was proved by Puschnigg in [68] in the case
Lp(M) = Sp.

(ii) Others examples of groups with fixed-point property on non-commutative
Lp-spaces were given by Mimura in [59], using our Theorem 3.2.3: for n ≥ 4,
k ≥ 1, 1 < p < ∞, and M a von Neumann algebra, the universal lattice
G = SLn(Z[x1, ..., xk]) has property (FLp(M)).

3.3 Property (FLp(M))

3.3.1 Property (FLp(M)) for p close to 2

We recall that in general property (T ) does not imply property (FLp) for com-
mutative Lp-spaces and p > 2. However, Fisher and Margulis proved in [30] that
(TLp) and (FLp) are equivalent for p close to 2. We show that this result is true
for non-commutative Lp-spaces. Our method of proof is an adaptation of Fisher
and Margulis’ proof, as given in [4].

Theorem 3.3.1. Let G be a locally compact group with property (T ). There
exists ǫ with the following property : for every von Neumann algebra M, for
every p ∈]2 − ǫ, 2 + ǫ[, and every closed subspace B of Lp(M), G has property
(FB).

If α is a G-action by affine isometries on a space (B, ||.||), K a subset of G
and x ∈ B, we will use the notation,

δ(α(K)x) = sup
g,h∈K

||α(g)x− α(h)x||.

Let 1 < p < ∞ and let M be a von Neumann algebra. In the following, we
simply denote by Lp = Lp(M) the non-commutative Lp-space associated to M.
The main step of the proof of Theorem 3.3.1 is the following lemma.
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Lemma 3.3.2. Let G be a locally compact group with property (T) and K is a
generating compact set of G. There exist constants C < ∞ and ǫ > 0 with the
following property : for every p ∈]2− ǫ, 2 + ǫ[, for every closed subspace B ⊂ Lp,
for every action α of G by affine isometries on B, and for every x ∈ B, there
exists a point y ∈ B with

||x− y||p ≤ Cδ(α(K)x) , δ(α(K)y) ≤ δ(α(K)x)

2
.

Proof. Assume, by contradiction, that the lemma does not hold. Then we can find
a sequence (pn) tending to 2, affine isometric G-actions αn on closed subspaces
Bn of Lpn and xn ∈ Bn such that

δ(αn(K)y) >
δ(αn(K)xn)

2
for all y ∈ B(xn, nδ(αn(K)xn)).

The strict inequality above implies that δ(αn(K)xn) > 0. Set

xn =
xn

δ(αn(K)xn)

in order to have δ(αn(K)xn) = 1. For every y ∈ B(xn, n), we have that

δ(αn(K)xn)y ∈ B(xn, nδ(αn(K)xn)).

So we have δ(αn(K)y) > 1
2
.

To sum up, we get sequences (pn)n with limn pn = 2 and closed subspaces
Bn ⊂ Lpn , affine isometric G-actions αn on Bn and points xn ∈ Bn (which were
the xn above) satisfying

δ(αn(K)xn) = 1 , δ(αn(K)y) >
1

2
for all y ∈ B(xn, n).

We now construct a Hilbert space H, together with a G-action α by affine
isometries without fixed point, which will contradict property (FH) and then
property (T ). Let

H0 = {y = (yn) ∈
∏

n

Bn | sup
n

||yn||pn <∞ }.

We define a semi-norm on H0 by ||y|| = limn||yn||pn. Then, the quotient of H0

by the subspace N = { y ∈ H0 | ||y|| = 0 }, denoted by H, is a Banach space.
For simplicity, we will identify the elements of H with one of their representative
in H0.
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We next show that H is a Hilbert space. In fact, by considering [2, 2 + ǫ[
before instead of ]2 − ǫ, 2 + ǫ[, the pn can be taken in [2,∞[. By the Clarkson
type inequalities (see Proposition 1.1.1), we have for all n and all an, bn ∈ Bn,

||an + bn||pn
pn

+ ||an − bn||pn
pn

≤ 2pn−1(||an||pn
pn

+ ||bn||pn
pn

).

By passing to the limit superior, we obtain, for all a, b ∈ H,

||a+ b||2 + ||a− b||2 ≤ 2(||a||2 + ||b||2).

And if we apply this inequality to a replaced by a + b and b replaced by a − b,
we obtain the parallelogram identity :

||a+ b||2 + ||a− b||2 = 2(||a||2 + ||b||2) for all a, b ∈ H.

This proves that H is a Hilbert space.

Now we define a G-action by affine isometries on the affine Hilbert space
(xn) + H by

α(g)((xn)n + y)n = αn(g)(xn + yn)n for all y = (yn)n ∈ H and all g ∈ G.

This action is isometric (and so affine) since the αn(g) are isometries. The ho-
momorphism property follows as well.

Passing to the limit, the conditions on the Lpn

δ(αn(K)xn) = 1 and δ(αn(K)y) >
1

2
for all y ∈ B(xn, n) ⊂ Lpn

imply the following conditions in H with x = (xn) :

δ(α(K)x) = 1 and δ(α(K)y) ≥ 1

2
for all y ∈ H.

In particular, the action is not degenerate and δ(α(K)y) <∞ for all y ∈ H.

As we deal with topological groups, we have to restrict α to an invariant sub-
space H1 on which the action is continuous, that is, such that the maps g 7→ α(g)y
are continuous for all y ∈ H1.

For this, we adapt the method from Section 4 in [14], which deals with the
case of an ultraproduct of unitary group representations. We can assume without
loss of generality that K is a neighborhood of the group unit e.
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Let n ∈ N. For f ∈ Cc(G) and v ∈ Bn, we define

αn(f)v =

∫

G

f(g)αn(g)vdv ∈ Bn.

Then αn(f) is an affine map from Bn to Bn and

||αn(f)v − αn(f)w||pn ≤ ||f ||1||v − w||pn for all v, w ∈ Bn. (1)

Moreover, if f, g are positive functions on G with supp(f) ⊂ K, supp(g) ⊂ K
and ||f ||1 = ||g||1 = 1, we have

||αn(f)v − αn(g)v||pn ≤ ||f − g||1δ(αn(K)v) for all v ∈ Bn. (2)

Indeed, we have v =
∫

G
f(h)v dh =

∫
G
g(h)v dh, and hence

||αn(f)v − αn(g)v||pn ≤ ||
∫

G

f(h)(α(h)v − v) dh−
∫

G

g(h)(α(h)v − v) dh||pn

≤ ||f − g||1δ(αn(K)v).

For y = (yn)n ∈ H, and f ∈ Cc(G) with supp(f) ⊂ K, we define

α(f)y = (αn(f)yn)n.

Notice that α(f)y ∈ H by inequality (1).

Let f, f1, f2 ∈ Cc(G) be such that L = supp(f) satisfies L2 ⊂ K, L.L−1 ⊂ K,
and (supp(f1))(supp(f2)) ⊂ K. For g ∈ L, we have

α(gf)y = α(g)α(f)y, α(fg)y = ∆(g)α(f)α(g)y

and

α(f1 ∗ f2)y = α(f1)α(f2)y

where ∆ is the modular function of G, and gf(h) = f(gh), fg(h) = f(gh) for all
g, h ∈ G.

Let L ⊂ K be a neighborhood of e such that L2 ⊂ K and L.L−1 ⊂ K. Fix
an approximate identity (fn)n of functions with supports in L, that is a sequence
(fn)n in Cc(G) such that suppfn ⊂ L, fn ≥ 0, ||fn||1 = 1 for all n, and for every
neighborhood V of e there exists N such that supp(fn) ⊂ V for all n ≥ N .

Define the following subspace H1 of H

H1 = {y ∈ H | lim
n

||α(fn)y − y|| = 0 }.
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We claim that H1 is independant of the choice of the approximate identity (fn)n.
Indeed, let (f ′

n)n be another approximate identity. Let y ∈ H1. Then for all m,n,
we have

||α(fm
′)y − y|| ≤ ||α(fm

′)y − α(fm
′)α(fn)y|| + ||α(fm

′)α(fn)y − α(fn)y||
+ ||α(fn)y − y||
≤ 2||α(fn)y − y||+ ||fm

′ ∗ fn − fn||1δ(α(K)y)

where we used inequality (2) to obtain the last inequality.
Since limn ||α(fn)y − y|| = 0 and limm ||fm

′ ∗ fn − fn||1 = 0 for every fixed n, it
follows that limm ||α(fm

′)y − y|| = 0.

We claim that H1 is closed in H. Indeed, let y(l) ∈ H1 and y ∈ H1 such that
liml y

(l) = y. Then, for all n, l, we have

||α(fn)y − y|| ≤ ||α(fn)y − α(fn)y(l)|| + ||α(fn)y
(l) − y(l)|| + ||y(l) − y||

= 2||y(l) − y|| + ||α(fn)y
(l) − y(l)||

and the claim follows.

We claim that H1 is α(G)-invariant. Indeed, let y ∈ H1 and fix g ∈ G. Let
fn

′ ∈ Cc(G) be defined by

fn
′ = ∆(h−1)fn(ghg−1) for all h ∈ G.

Then (fn
′)n is an approximate of the identity for n sufficiently large. Hence,

limn ||α(fn
′)y − y|| = 0 by what we have seen above. Since we have

||α(fn)α(g)y − α(g)y|| = ||α(g−1)α(fn)α(g)y − y||
= ||α(fn

′)y − y||,

it follows that α(g)y ∈ H1.

Let y ∈ H1. We claim that G → H1, g 7→ α(g)y is continuous. Indeed, let
ǫ > 0. Choose n ∈ N such that ||α(fn)y − y|| ≤ ǫ and choose a neighborhood V
of e with V supp(fn) ⊂ K such that ||gfn − fn||1 ≤ ǫ for all g ∈ V . Then, for all
g ∈ V , we have

||α(g)y − y|| ≤ ||α(g)y − α(g)α(fn)y|| + ||α(g)α(fn)y − α(fn)y|| + ||α(fn)y − y||
≤ 2||α(fn)y − y|| + ||α(gfn)y − α(fn)y||
≤ ǫ+ ||gfn − fn||1δ(α(K)y)

≤ 2ǫ+ ǫδ(α(K)y).

This shows the continuity of g 7→ α(g)y.
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The action α of G by affine isometries on the Hilbert space H1 has clearly no
α(G)-fixed point. This contradicts property (FH) and hence property (T ).

We are now able to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Take ǫ > 0 and C > 0 such as in the lemma. Now let
p ∈]2 − ǫ, 2 + ǫ[, B a closed subspace of Lp(M) and α an action of the Kazhdan
group by affine isometries on B. Starting from an arbitrary point x0 ∈ B, we can
find by induction a sequence (xn) of elements in B satisfying :

xn+1 ∈ B(xn, Cδn) and δn+1 ≤
δn
2

≤ δ0
2n+1

.

by setting δn = δ(α(K)xn).

Then, xn = x0 +
∑n−1

k=0 xk+1 − xk defines a convergent sequence in B, and its
limit point is a fixed point for the action α.

3.3.2 Consequences of embeddings between Lp-spaces

We will give a simple procedure to construct an affine isometric action on a non-
commutative Lp-space from an action on a commutative Lp-space.

The next statement is obviously true in a more general context. We say that
a cocycle b : G→ Lp is proper if limg→∞ ||b(g)||p = +∞.

Lemma 3.3.3. Let 1 ≤ p < ∞. Let M and M′ be von Neumann algebras such
that there exists an isometric linear embedding

Lp(M) → Lp(M′)

x 7→ x̃.

Let G be a topological group and let π : G → O(Lp(M)) be an orthogonal rep-
resentation. Assume that π extends to a representation π̃ of G on Lp(M′), that
is, there exists an orthogonal representation π̃ : G → O(Lp(M′)) such that

π̃(g)(x̃) = ˜π(g)x for all g ∈ G, x ∈ Lp(M). Let b : G → Lp(M) be a 1-
cocycle associated to π.
Then the map b̃ : G → Lp(M′), defined by b̃(g) = ˜b(g) for every g ∈ G, is a
1-cocycle associated to the representation π̃. Moreover, b is proper if and only if
b̃ is proper.
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Proof. Let g, h ∈ G. We have

b̃(gh) = ˜b(gh)

= ˜b(g) + ˜π(g)b(h)

= b̃(g) + π̃(g) ˜b(h)

= b̃(g) + π̃(g)b̃(h).

So b̃ is a 1-cocycle. The last claim is obvious.

Proposition 3.3.4. Let G be a topological group. Let π : G → O(Lp([0, 1])) be
an orthogonal representation and b : G → Lp([0, 1]) a 1-cocycle for π. Let M
be a finite von Neumann algebra. Then b̃ : G → Lp(L

∞([0, 1]) ⊗M), defined by

b̃(g) = ˜b(g) for all g ∈ G, is a cocycle satisfying ||b(g)||p = ||b̃(g)||p for all g ∈ G.
In particular :
- b is proper ⇔ b̃ is proper ;
- b is bounded ⇔ b̃ is bounded.

Proof. Let τ be the normalized trace on M. Recall that Lp(L
∞([0, 1]) ⊗ M)

is isometrically isomorphic to the Bochner space Lp(Lp(M)) equipped with the
norm

||(xt)||pp =

∫ 1

0

||xt||ppdt =

∫ 1

0

τ(|xt|p)dt.

We have the natural isometric embedding of Lp([0, 1]) into Lp(Lp(M)) by

f 7→ f̃ = f ⊗ 1 = f1.

Let π : G→ O(Lp([0, 1])) be an orthogonal representation of a topological group
G. By Theorem 1.5.2, π has the form

π(g)(f)(x) = ug(x)(
dϕg ∗ µ
dµ

(x))
1
pf(ϕg(x)) for all g ∈ G and f ∈ Lp([0, 1]).

We then extend π to an orthogonal representation π̃ on Lp(Lp(M)) by

π̃(g)((xt)t) = (ug(t)(
dϕg ∗ µ
dµ

(t))
1
pxϕg(t))t for all g ∈ G and (xt) ∈ Lp(Lp(M)).

Since we have π̃(g)(f̃) = π̃(g)(f1) = π(g)(f)1 for all g ∈ G and f ∈ Lp([0, 1]),
the claim is proved.

Using the description of O(lp) given in Theorem 1.5.1, we can prove Proposi-
tion 3.3.4 when we replace Lp([0, 1]) by lp.
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We can also prove the same result with the embedding of lp in Cp. The
construction is as follows : let π : G → O(lp) be an orthogonal representation of
the topological group G on lp. By Theorem 1.5.1, π is given by

π(g)((xn)) = (c(n, g)xσg(n)) for all (xn) ∈ lp.

Now take a Hilbert space H and an orthonormal basis (ei) of H. We have the
following isometric linear embedding of lp in the subspaces of diagonal operators
of Cp(H)

(xn) 7→ ˜(xn) = diag(xn).

Now for g ∈ G, let ρg be the unitary operator defined by ρg(ei) = eσg(i). Then we
define the following representation π̃ : G → O(Cp), extending the representation
π on Cp, by

π̃(g)(x) = ˜(c(n, g))nρgxρ
−1
g for all g ∈ G and x ∈ Cp.

We have then

π̃(g)( ˜(xn)) = ˜π(g)((xn)) for all g ∈ G and (xn) ∈ lp.

Using this latter property and the fact that x 7→ x̃ is a linear isometric embedding,
we see, as in Proposition 3.3.4, that cocycles for π in lp isometrically extend to
cocycles for π̃ on Cp. We obtain as corollary the following result.

Corollary 3.3.5. Let 1 ≤ p <∞ and M be a finite von Neumann algebra. If a
topological group G has property (FLp(L∞⊗M)), then G has property (FLp).
If a topological group G has property (FCp), then G has also property (Flp).



Chapter 4

The Haagerup property for
actions on Lp(M)-spaces

The Haagerup property (H), or a-T -menability, is a strong negation of property
(T ). As the latter property, the Haagerup property may be defined either in
terms of unitary representations or in terms of actions by affine isometries on
Hilbert spaces. Several authors (Nowak, Chatterji, Drutu, Haglund) considered
the Haagerup property, called a-FLp-menability in [12], for actions by affine
isometries on commutative Lp-spaces.
We will define and study in the setting of non-commutative Lp-spaces, both
versions of the Haagerup property : one through orthogonal representations, and
the other through affine isometric actions. We will call these properties (HLp)
and a-FLp-menability. As we will see, these properties are different from each
other, and different from the classical property (H), even for classical Lp-spaces.
In order to study more closely the relationships between these properties and
the original Haagerup property, it will be useful to introduce further versions of
property (HLp), which we call properties (HLp(M),+) and (HLp(M),τ ).
To our knowledge, property (HLp) has not been yet considered in the literature,
even in the commutative case. We will characterize totally disconnected groups
with property (Hlp) as the amenable ones. We see therefore that properties (Hlp)
and (H) do not coincide. Property (HLp([0,1])) seems to be more closely related
to property (H) : we prove that both properties coincide for linear Lie groups.

4.1 Introduction

4.1.1 The Haagerup property

For an accurate survey on the Haagerup property (H), see [13].

Theorem-Definition 4.1.1. Let G be a second countable locally compact group.
The following properties are equivalent :

85
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(i) There exists a unitary representation of G on a Hilbert space H which almost
has invariant vectors, and has vanishing coefficients.
(ii) There exists a proper affine isometric action of the group G on some Hilbert
space H.
(iii) There exists a continuous function ψ : G → R+ which is conditionally of
negative type and proper, that is, limg→∞ ψ(g) = +∞.
A group G has the Haagerup property (H), or is said to be a-T -menable, if it has
one of the equivalent properties above.

In contrast with property (T ), the Haagerup property was first established
for some specific groups by constructing proper actions (or proper functions con-
ditionally of negative type). For instance, Haagerup ([34]) proved in 1979 that
the word length on a free group is a conditionally negative definite function on
this group.

4.1.2 Some examples of groups with property (H)

Groups with the Haagerup property (H) form a large class of groups containing
for example amenable groups, free groups, and more generally groups acting
properly on trees, Coxeter groups (the list is non-exhaustive, more can be found
in [13]). For connected Lie groups, we have the following classification result :

Theorem 4.1.2. (Theorem 4.0.1 in [13]) Let G be a connected Lie group. Then
the following assertions are equivalent :
- G has the Haagerup property (H) ;
- if, for some closed subgroup H, the pair (G,H) has relative property (T ), then
H is compact ;
- G is locally isomorphic to a direct product

M × SO(n1, 1) × ...× SO(nk, 1) × SU(m1, 1) × ...× SU(ml, 1)

where M is an amenable Lie group.

Therefore, a non-compact simple Lie group has the Haagerup property (H) if
it is locally isomorphic to SO(n, 1) or SU(n, 1); otherwise, it has property (T ).
Only compact groups have property (T ) and property (H) at the same time,
and a well-known general obstruction to have property (H) is the following : if
a group G contains a non-compact subgroup H such that the pair (G,H) has
relative property (T ), then G does not have property (H). It is not the only
known obstruction, as shown by de Cornulier in [21].

4.1.3 Some hereditary properties of property (H)

We list here some group constructions under which the Haagerup property is
stable :
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- if G is a group with the Haagerup property, and H is a closed subgroup of G,
then H has also the Haagerup property ;
- if (Gn) is an increasing sequence of open subgroups of a locally compact group
G, and if all Gn have the Haagerup property, then so does G (see Proposition
6.1.1 in [13]);
- if H is a closed subgroup of a locally compact group which is co-Følner in G,
that is such that there exists a G-invariant state on L∞(G/H) (see Proposition
6.1.5 in [13]), and H has property (H), then G has property (H).
- if G and H are two discrete groups with the Haagerup property and containing
a finite subgroup A, then the amalgamated product G∗AH has also the Haagerup
property (see Proposition 6.2.3 in [13]).

4.2 Property (HLp(M))

In this section, we introduce a variant of the version (i) (see Theorem-Definition
4.1.1) of property (H) involving orthogonal representations on non-commutative
Lp-spaces.

We recall that if M is a von Neumann algebra, and Lp(M) is its associated
Haagerup Lp-space, we denote by Tr the Haagerup trace defined on L1(M) ≃
M∗.

Definition 4.2.1. Let G be a topological group, 1 ≤ p < ∞, and let M be a
von Neumann algebra. We say that a representation π : G → O(Lp(M)) has
vanishing coefficients (or π is said to be C0) if

lim
g→∞

Tr(π(g)(x)y) = 0 for all x ∈ Lp(M) and y ∈ Lp′(M).

Remark 4.2.2. Notice that if M is a semi-finite von Neumann algebra equipped
with a trace τ , by density of the subspace M∩L1(M) in every Lp(M), a repre-
sentation has vanishing coefficients if and only if

lim
g→∞

τ(π(g)(x)y) = 0 for all x, y ∈ M∩ L1(M).

The previous definition is motivated by the following theorem, called the
Howe-Moore theorem. It was first proved for unitary representations (see [43]);
the authors of [4] gave a proof of the theorem for representations on ucus Banach
spaces (and more generally for representations on superreflexive Banach spaces).

Theorem 4.2.3. Let I be a finite set, ki (i ∈ I) be local fields, Gi be connected
semisimple simply-connected ki-groups, Gi = Gi(ki) be the locally compact group
of ki-points, and

G =
∏

i∈I

Gi.
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Let 1 ≤ p < ∞, and let M be a von Neumann algebra. Let π : G → O(Lp(M))
be an orthogonal representation such that Lp(M)π(Gi) = {0} for every i. Then π
has vanishing coefficients.

Now we give the definition of property (HLp(M)).

Definition 4.2.4. Let G be a topological group. Let M be a von Neumann
algebra, and 1 ≤ p <∞.
We say that a group G has property (HLp(M)) if there exists a representation
π : G → O(Lp(M)) with vanishing coefficients , which almost has invariant
vectors.

Remark 4.2.5. By analogy with property (T ) and property (H), property
(HLp(M)) is a strong negation of property (TLp(M)) in the following sense : if a
topological group G admits a closed normal non-compact subgroup H such that
the pair (G,H) has property (TLp(M)), then G does not have property (HLp(M)).

The following proposition is obvious.

Proposition 4.2.6. Let 1 ≤ p < ∞ and let M be a von Neumann algebra.
Property (HLp(M)) is inherited by closed subgroups.

We will only study property (HLp(M)) for semi-finite von Neumann algebras.
If M is a semi-finite von Neumann algebra, denote by [M]p the class of von
Neumann algebras M′ such that Lp(M′) is isometrically isomorphic to Lp(M)
(notice that such a von Neumann algebra M′ is also semi-finite by Remark 1.4.4
since it has the same type as M).

Proposition 4.2.7. Let 1 ≤ p < ∞, and let M be a semi-finite von Neumann
algebra. Let M′ ∈[M]p. Properties (HLp(M)) and (HLp(M′)) are equivalent.

Proof. Let U : Lp(M, τ) → Lp(M′, τ ′) be an isometric isomorphism. Denote by
U∗ : Lp′(M′, τ ′) → Lp′(M, τ) its dual map. Let π be a representation of group
G on Lp(M, τ) with almost invariant vectors and vanishing coefficients. Then
π = U ◦ π ◦ U−1 defines a representation on Lp(M′, τ ′), which is easily seen to
have almost invariant vectors. The representation π has vanishing coefficients
since we have for all x′ ∈ Lp(M′, τ ′), y′ ∈ Lp′(M′, τ ′), and all g ∈ G

τ ′(π(g)(x′)y′) = τ ′(U(π(g)(U−1(x))) y′)

= τ(π(g)(U−1(x)) U∗(y′)).
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4.3 Property (Hlp)

Let G be a second countable locally compact group, and let 1 ≤ p < ∞, p 6= 2.
Let πp : G→ O(lp) be a representation G on lp.

We recall from Chapter 2 that the conjugate representation π2 of G on l2
is unitarily equivalent to a sum of monomial representations associated to open
subgroups of G, that is, there exist open subgroups (Hi)i∈I of G and unitary
characters (χi)i∈I on the Hi’s such that

π2 = Mp,2 ◦ πp ◦M2,p ≃ ⊕i∈IIndG
Hi
χi.

If G is connected, the only open subgroup of G is G itself and a character on G
is C0 if and only if G is compact. Therefore we have the following result.

Theorem 4.3.1. Let G be a connected second countable locally compact group.
Let 1 ≤ p <∞, p 6= 2. Then G has property (Hlp) if and only if G is compact.

Now we turn to property (Hlp) for totally disconnected groups.

Theorem 4.3.2. Let G be a totally disconnected locally compact second countable
group. The following properties are equivalent :
(i) G has property (Hlp).
(ii) G is amenable.

Proof. (i) ⇒ (ii) : Let πp : G → O(lp) be an orthogonal representation with
almost invariant vectors, and with vanishing coefficients. Then we have π2 ≃
⊕i∈IIndG

Hi
χi for some open subgroups Hi and unitary characters χi on Hi.

Since π2 has the same form as πp, π2 has vanishing coefficients, and so does
πi = IndG

Hi
χi for every i ∈ I. Let i ∈ I be fixed. Then πi

/Hi
contains χi; indeed,

we have
πi(h)δHi

= χi(h)δHi
for all h ∈ Hi.

It follows that χi ∈ C0(Hi) and hence Hi is compact.
Since Hi is compact, χi ⊂ λHi

and hence πi = IndG
Hi
χi ⊂ IndG

Hi
λHi

= λG. So, π2

is weakly contained in λG. Since we have also 1G ≺ π2, it follows that 1G ≺ λG.
By Hulanicki-Reiter theorem, G is amenable.

(ii) ⇒ (i) : Since G is totally disconnected, by van Dantzig’s theorem, there
exists a compact open subgroup K of G. Let (π2, l2(G/K)) be the quasi-regular
representation of G on l2(G/K), and let πp = M2,p ◦ π2 ◦M2,p. Notice that, for
g ∈ G, every πp(g) is given by the same formula as π2(g) on the common dense
subspace l1(G/K), so πp : G → O(lp(G/K)) defines an orthogonal representa-
tion. Since K is compact, λG/K is contained in the regular representation λG (by
identifying l2(G/K) with the K-invariant functions in L2(G)). Hence λG/K has
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vanishing coefficients, since all matrix coefficients of λG are C0. It follows that
πp has vanishing coefficients.
Since G is amenable, the action of G on G/K is amenable (see p.28 in [28]).
Hence, λG/K almost has invariant vectors. Therefore, G has (Hlp).

4.4 Property (HLp([0,1]))

We give a classification of (almost all) Lie groups with property (HLp([0,1])); it
turns out that this class of groups coincides with the class of Lie groups with the
Haagerup property (H) (see Theorem 4.1.2).

Theorem 4.4.1. Let G be a connected Lie group such that in its Levi decompo-
sition G = SR, the semi-simple part S has finite center. Then the following are
equivalent :
(i) G has property (HLp([0,1])) ;
(ii) G has the Haagerup property (H) ;
(iii) G is locally isomorphic to a product

∏
i∈I Si ×M , where M is amenable, I

is finite, and for every i ∈ I, Si is a group SO(ni, 1) or SU(mi, 1) with ni ≥ 2,
mi ≥ 1.

Remark 4.4.2. (i) The previous theorem gives a classification of linear groups
since, for any such group, the center of the semi-simple part in the Levi decom-
position is finite (see Proposition 4.1 of Chapter XVIII in [42]).

(ii) We had to exclude groups G = SR with S having infinte center, as we
could not be able to prove (iii) ⇒ (i) for the universal covers of SO(n, 1) and
SU(n, 1).

Theorem 4.4.1 has the following immediate consequence.

Corollary 4.4.3. Let G be a closed subgroup of a Lie group of the form
∏

i∈I Si×
M , where M is amenable, I is finite, and for every i ∈ I, Si is a group SO(n, 1)
or SU(m, 1). Then G has property (HLp([0,1])) for all 1 ≤ p <∞.

The most difficult part of the proof of Theorem 4.4.1 is the proof of (iii) ⇒
(i). Actually, we will show that groups as in Corollary 4.4.3 have a stronger
version of property (HLp([0,1])), called property (HLp([0,1]),+) and introduced later
in this chapter. We mention that the proof, even for the groups SO(n, 1) or
SU(n, 1), is not elementary since it depends heavily on the fact that these groups
have lattices Γ with non-trivial first Betti number, that is, lattices with infi-
nite abelianization. The latter result was shown by Millson in [58] for the case
SO(n, 1), and by Kazhdan in [48] for the case SU(n, 1).
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In the proof of (iii) ⇒ (i), we will need the following technical lemma which
asserts that vanishing coefficients and almost invariant vectors are preserved for
the quasi-regular representation, when passing from a group to a finite cover, and
from the finite cover to the group.

Lemma 4.4.4. Let G1 and G2 be locally compact topological groups and p : G1 →
G2 be a finite covering.

1. Let H2 be a closed subgroup of G2 such that G2/H2 carries a G2-invariant
measure, and the quasi-regular representation λG2/H2

has almost invariant
vectors and vanishing coefficients. Set H1 = p−1(H2). Then λG1/H1 has
almost invariant vectors and vanishing coefficients.

2. Let H1 be a closed subgroup of G1 such that G1/H1 carries a G1-invariant
measure, and the quasi-regular representation λG1/H1

has almost invariant
vectors and vanishing coefficients. Set H2 = p(H1). Then H2 is closed and
λG2/H2 has almost invariant vectors and vanishing coefficients.

Proof. In the two cases, let p : G1/H1 → G2/H2 be the map induced by the
covering map p : G1 → G2. Observe that p is G1-invariant, for the natural action
of G1 on G1/H1 and the action of G1 on G2/H2 given by p :

g1.(g2H2) = p(g1)g2H2 for all g1 ∈ G1, g2 ∈ G2.

Since Z1 = Ker(p), the map p has finite fibers : indeed, the fiber over p(g1H2) is
{g1zH1 | z ∈ Z1 } = {zg1H1 | z ∈ Z1 }, as Z1 is central.

1. Let µ2 be a G2-invariant measure on G2/H2. In this case, Z1 ⊂ H1 and
so p is bijective. Then µ1 = p−1 ∗ µ2 is a G1-invariant measure on G1/H1.
The quasi-regular representation λG1/H1 is equivalent to the representation
λG2/H2 ◦ p.
Since 1G2 ≺ λG2/H2

and λG2/H2
has vanishing coefficients, we have 1G1 ≺

λG1/H1 and λG1/H1 has vanishing coefficients.

2. Notice that H2 = p(H1) is a closed subgroup of G2 since the cover p : G1 →
G2 is finite. Let µ1 be a G1-invariant measure on G1/H1. Since the fibers
of p are finite, we can define a G2-invariant measure µ2 on G2/H2 by

∫

G2/H2

f dµ2 =

∫

G1/H1

f ◦ p dµ1 for all f ∈ Cc(G2/H2). (∗)

The induced mapping

ψ : L2(G2/H2, µ2) → L2(G1/H1, µ1)

f 7→ f ◦ p
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is a linear isometry which intertwines the G1-representations λG2/H2
◦p and

λG1/H1 . So, λG2/H2 ◦ p is equivalent to a subrepresentation of λG1/H1 . Since
λG1/H1

has vanishing coefficients, the same is true for λG2/H2
◦ p. As p is

surjective and had finite kernel, it follows that the G2-representation λG2/H2

has vanishing coefficients.

It remains to prove that 1G2 ≺ λG2/H2
. To show this we claim that

Im(ψ) = L2(G1/H1)
λG1/H1

(Z1),

the space of Z1-invariant vectors in L2(G1/H1).
Indeed, let f1 ∈ L2(G1/H1)

λG1/H1
(Z1). As mentioned above, the fiber over

p(g1H2) is {zg1H1, z ∈ Z1} for every g1 ∈ H1. Hence, f1 is constant on the
fibers of p and there exists a map f2 on G2/H2 such that f2 ◦ p = f1. It is
clear that f2 ∈ L2(G2/H2) by formula (∗).
Conversely, if f ∈ L2(G2/H2), it is clear that f ◦p is a Z1-invariant function
in L2(G1/H1).

We now show that λG2/H2
almost has invariant vectors. It suffices to show

that the restriction of λG1/H1 to the subspace L2(G1/H1)
λG1/H1

(Z1) almost
has invariant vectors. Take a sequence (vn)n of almost invariant vectors for
λG1/H1

. For n ∈ N, define

wn =
1

|Z1|
∑

z∈Z1

λG1/H1(z)vn.

For every n ∈ N, wn ∈ L2(G1/H1)
λG1/H1

(Z1). Moreover, for g ∈ G,

||λG1/H1(g)wn − wn||2 ≤
1

|Z1|
∑

z∈Z1

||λG1/H1(zg)vn − vn||2

so that limn supg∈K ||λG1/H1
(g)wn − wn||2 = 0 for every compact K ⊂ G.

We have

||wn − vn||2 ≤
1

|Z1|
∑

z∈Z1

||λG1/H1
(z)vn − vn||2

and the left side of the inequality tends to 0; hence, since ||vn||2 = 1,
limn ||wn||2 = 1. The sequence (w̃n)n, defined by w̃n = 1

||wn||2
wn, is a se-

quence of almost invariant vectors for the restriction of λG1/H1
to

L2(G1/H1)
λG1/H1

(Z1). The lemma is proved.

We are now able to give the proof of Theorem 4.4.1.
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Proof of Theorem 4.4.1. (i) ⇒ (ii) : Assume that G is a connected Lie group
without property (H). By Theorem 3.3.1 of Cornulier in [19], there exists a nor-
mal subgroup RT in G such that G/RT has the Haagerup property, and the pair
(G,RT ) has property (T ). Since G/RT has the Haagerup property (H), and G
does not have property (H), the subgroup RT is non-compact. By Theorem 2.5.3,
the pair (G,RT ) has property (TLp([0,1])) for every 1 < p <∞. Hence, by Remark
4.2.5, G does not have property (HLp([0,1])).

(ii) ⇒ (iii) : This is the result from [13], stated in Theorem 4.1.2.

(iii) ⇒ (i) : We will show that G admits a closed subgroup H such that the
quasi-regular representation λG/H : G → O(L2(G/H)) has almost invariant vec-
tors and vanishing coefficients. Then we will conjugate this representation by the
Mazur map to obtain the desired representation on Lp(G/H).

Since the semi-simple part S of G has finite center, and since G is locally
isomorphic to the direct product

∏
i Si ×M , using Proposition 8.1 in [20], there

exists a finite covering p : G♮ → G such that G♮ is a direct product of closed
connected subgroups

∏
i S

♮
i ×M ♮, where every S♮

i is a simple Lie group with finite
center, and M ♮ is amenable.

Let i ∈ I. Let Si = SO(ni, 1) or Si = SU(mi, 1) be such that Si is locally
isomorphic to S♮

i . By the results in [58] and [48], there exists a lattice Γi in Si

such that |Γi/[Γi,Γi]| = ∞.

Set G1 =
∏

i S
♮
i ×M ♮. We consider the closed subgroup of G1 defined by

H1 =
∏

i∈I

[Γi,Γi] × {e}.

We claim that the quasi-regular representation λG1/H1
of G1 on L2(G1/H1) has

almost invariant vectors and vanishing coefficients. Indeed, we have

λG1/H1
≃ ⊗i∈IλSi/[Γi,Γi] ⊗ λM♮ , (1)

the right hand-side being the exterior tensor product of the representations.

We first show that λG1/H1
has vanishing coefficients. Since the representation

λM♮ has vanishing coefficients, it suffices to show that λSi/[Γi,Γi] has vanishing
coefficients for every i ∈ I. By the Howe-Moore Theorem 4.2.3, this is the case
if and only if

L2(Si/[Γi,Γi])
λSi/[Γi,Γi]

(S1) = {0} for all i ∈ I.

To show this, let i ∈ I be fixed. Since Γi/[Γi,Γi] is infinite, the space
l2(Γi/[Γi,Γi]) does not have non-zero λΓi/[Γi,Γi](Γi)-invariant vector. Since Si/Γi
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carries a Si-invariant finite measure, this implies by induction (see theorem E.3.1
in [8]) that

L2(Si/[Γi,Γi])
λSi/[Γi,Γi]

(Si) = {0}
We have therefore proved that λG1/H1

has vanishing coefficients.

Next we show that λG1/H1
almost has invariant vectors. For this, it suffices

to show that λM♮ and all λSi/[Γi,Γi] have almost invariant vectors, by formula
(1). Indeed, by the Hulanicki-Reiter Theorem, this is clear for λM♮ since M ♮ is
amenable. Fix i ∈ I. Since Γi/[Γi,Γi] is abelian and therefore amenable, we
have 1Γi

≺ λΓi/[Γi,Γi]. Since Si/Γi has a finite Si-invariant measure, we have also
1Si

≺ λSi/[Γi,Γi].

Denote by Si = PSO(ni, 1) or Si = PSU(mi, 1) the quotient of Si by its
(finite) center. Denote by G2 and G3 the groups

G2 =
∏

i∈I

Si ×M ♮ and G3 =
∏

i∈I

S♮
i ×M ♮.

Observe that we have three finite covering maps p1 : G1 → G2, p2 : G3 → G2

and p3 (= p) : G3 → G. We apply now Lemma 4.4.4 successively to p1, p2 and
p3. We obtain the existence of a closed subgroup H in G such that G/H carries
a G-invariant measure, and λG/H almost has invariant vectors and has vanishing
coefficients.

Let πp be the orthogonal representation of G on Lp(G/H) defined by the same
formula as λG/H :

πp(g)f(g′H) = f(g−1g′H) for all f ∈ Lp(G/H) and g, g′ ∈ G.

By proposition 2.5.1, πp almost has invariant vectors. Since G/H carries a G-
invariant measure, we have Moreover, for x, y ∈ Cc(G/H), the matrix coefficient
g 7→< πp(g)x, y > is in C0(G). By density of Cc(G/H) in Lp(G/H), the repre-
sentation πp has vanishing coefficients.

4.5 Properties (HCp) and (HSp)

Let us study (HLp(M)) for the two discrete von Neumann algebras B(H) and
(⊕Mn)∞ = {x = ⊕nxn | supn ||xn|| < ∞ }. The associated Lp-spaces are re-
spectively the Schatten p-classes Cp and the space

Sp = {x = ⊕nxn | xn ∈ Mn,
∑

n

Trn(|xn|p) <∞ }.
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We show that, for p 6= 2, property (HCp) is equivalent to property (H), and that
only compact groups have property (HSp).

Theorem 4.5.1. Let 1 ≤ p < ∞, p 6= 2. Let G be a locally compact second
countable group. Then the following properties are equivalent.
(i) G has property (HCp).
(ii) G has property (H).

Proof. (i) ⇒ (ii) : Let πp : G → O(Cp) be an orthogonal representation with
vanishing coefficients and which almost has invariant vectors. Then by Remark
2.4.5, the conjugate representation π2 = Mp,2 ◦πp ◦M2,p has the same form as πp,
hence π2 has vanishing coefficients. By Proposition 2.5.1, π2 almost has invariant
vectors. Hence G has property (H).

(ii) ⇒ (i) : Let π : G→ U(H) be a unitary representation of the group G on
the Hilbert space H with almost invariant vectors and vanishing coefficients.
Define

αg(x) = π(g)xπ(g−1) for x ∈ B(H).

Clearly, the previous formula defines an orthogonal representation α : G →
O(Cp). Let us show that α has vanishing coefficients.
By density of finite rank operators and linearity of the trace, it suffices to show
that limg→∞ Tr(αg(x)y) = 0 for x, y positive finite rank operators. This is
straightforward to check. Indeed, we can write

x =

n∑

i=1

< ., ξi > ξi

y =
m∑

j=1

< ., ηj > ηj

Let (ζk) be an orthonormal basis of H. Then, for vectors ζi, ηj ∈ H,

Tr(αg(x)y) =
∑

k

< αg(x)yζk, ζk >

=
∑

k

m∑

j=1

n∑

i=1

< ζk, ηj >< π(g−1)ηj, ξi >< π(g)ξi, ζk >

Hence,

|Tr(αg(x)y)| ≤
m∑

j=1

n∑

i=1

| < π(g−1)ηj , ξi > |||ηj||||ξi||.

As π has vanishing coefficients, the right side of the inequality tends to 0 as g
tends to infinity.
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It remains to show that α has almost invariant vectors in Cp. In view of
Proposition 2.5.1, it suffices to prove this for p = 2. This is the same proof as
the one given for the third case of (ii) of Theorem 2.5.6.

The following proposition implies that only compact groups have property
(HSp) or property (HLp⊕pSp) for p 6= 2.

Theorem 4.5.2. Let G be a non-compact topological group. Let p 6= 2. There
is no representation of G on Sp or on Lp ⊕p Sp. Consequently, G does not have
property (HSp) or property (HLp⊕pSp).

Proof. Assume, by contradiction, that we have a representation π : G → O(Sp)
with vanishing coefficients. By Proposition 1.5.6, such a representation can be
written as a sum π = ⊕nπn of representations πn on Mn. For all n and g ∈ G,
there exist un(g), vn(g) unitaries in Mn such that πn(g)x = un(g)xvn(g) or
πn(g)x = un(g)(

tx)vn(g) for all x ∈ Mn. Since π has vanishing coefficients, each
πn has also vanishing coefficients. Hence

lim
g→∞

Trn(un(g)vn(g)x) = 0 for all x ∈ Mn.

This implies that every coefficient of the matrix un(g)vn(g) tends to 0 as g tends
to ∞, which contradicts the facts that ||un(g)vn(g)|| = 1 for all g ∈ G and that
G is non-compact.

The claim about property (HLp⊕pSp) is proved with a similar way, using the
decomposition O(Lp ⊕p Sp) = O(Lp) ⊕O(Sp) from Proposition 1.5.9.

4.6 Stronger versions of property (HLp(M))

We have seen that the Mazur map gives a mean to transfer orthogonal represen-
tations on Lp(M) on orthogonal representations on L2(M). In order to study
the relationship between properties (HLp(M)) and (H), the C0-property of a rep-
resentation has to be preserved during this process.

If we restrict to isometries with some further properties (positivity, measure
preservation), the vanishing property of the involved representation is preserved.
We do not know if the conjugation by the Mazur map preserves the vanishing
property for all representations.
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Definition 4.6.1. Let M be a semi-finite von Neumann algebra.
(i) U ∈ O(Lp(M)) is said to be trace-preserving if it has the form U = uJ in the
Yeadon decomposition given in theorem 1.5.4.
(ii) U is said to be positive if it has the form U = BJ in this decomposition.
We denote by Oτ(Lp(M)) (resp. O+(Lp(M))) the subgroup of trace-preserving
isometries in O(Lp(M)) (resp. the subgroup of positive isometries in O(Lp(M))).

Remark 4.6.2. The terminology in the previous definition is motivated by the
two following facts :
- a trace-preserving isometry U = uJ has a Jordan part which preserves the trace
τ , that is τ(J(x)) = τ(x) for all x ∈ L1(M, τ) ;
- a positive isometry BJ sends the positive cone Lp(M)+ into itself.

Now we give the definitions of stronger versions of property (HLp(M)).

Definition 4.6.3. Let G be a topological group. Let M be a semi-finite von Neu-
mann algebra, and 1 ≤ p <∞.
We say that a group G has property (HLp(M),+) (resp. (HLp(M),τ )) if there ex-
ists a representation π : G → O+(Lp(M)) (resp. a representation π : G →
Oτ(Lp(M))) which has vanishing coefficients and which almost has invariant
vectors.

We have already seen that property (HLp(M)) implies property (H) when M
is one of the following algebras : M = B(H) and M = L∞([0, 1]) for some Lie
groups. The following theorem gives a similar result for the stronger versions of
(HLp(M)).

Theorem 4.6.4. Let G be a locally compact topological group. Let M be a semi-
finite von Neumann algebra. Let 1 ≤ p <∞.
(i) Let M be a semi-finite von Neumann algebra and assume that G has property
(HLp(M),τ ). Then G has property (H).
(ii) Let M be a finite von Neumann algebra and assume that G has property
(HLp(M),+). Then G has property (H).

The proof of the previous theorem will be an easy consequence of the following
proposition.

Proposition 4.6.5. Let 1 ≤ p < ∞. (i) Let M be a semi-finite von Neumann
algebra. Let πp : G→ Oτ(Lp(M)) be a representation with vanishing coefficients.
Then, for 1 ≤ q <∞, its conjugate by the Mazur map πq = Mp,q ◦ πp ◦Mq,p has
also vanishing coefficients.
(ii) Let M be a finite von Neumann algebra. Let πp : G → O+(Lp(M)) be a
representation with vanishing coefficients. Then, for 1 ≤ q < ∞, πq has also
vanishing coefficients.
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Proof of proposition 4.6.5. (i) This is clear since πq = πp on the common dense
subset M∩ L1(M) of Lp(M) and Lq(M) (see Remark 2.4.5).

(ii) Take a representation πp : G → O+(Lp(M)) with vanishing coefficients.
We have πp(g)(x) = BgJg(x) for all g ∈ G and x ∈ Lp(M). If πp has vanishing
coefficients, its contragradient representation (πp)′ has also vanishing coefficients.
This latter representation is given by

(πp)′(g)(x) = B
p
p′

g Jg(x) for all g ∈ G and x ∈ Lp′(M).

Since every element in M is a linear combination of positive operators or a
linear combination of unitaries, it suffices to show that the conjugate πq =
Mp,q◦πp◦Mq,p = B

p
q J has vanishing coefficients on positive elements or unitaries.

Assume q ∈ [p, p′] (or q ∈ [p′, p]). Let t ∈ [0, 1] be such that p
q

= t+ (1− t) p
p′

.

Then, for x a positive element in M∩ L1(M), and y a unitary in M, we have

τ(B
p
q
g Jg(x)y) = τ(B

t+(1−t) p
p′

g Jg(x
t+(1−t))yt+(1−t))

= τ(Bt
gy

tJg(x
t) (B

p
p′

g )1−tx1−ty1−t)

≤ τ(Bg|ytJg(x
t)| 1t )tτ(B

p
p′

g |Jg(x
1−t)y1−t| 1

1−t )1−t

using the tracial property of τ and Hölder’s inequality with conjugate exponents
1
t

and 1
1−t

. Since y is unitary, we have |ya| = |a| and |ay| = y∗|a|y for all a and
therefore

τ(B
p
q
g Jg(x)y) ≤ τ(πp(g)(x))

1
t τ((πp)′(g)(x))

1
1−t .

Assume q ∈ [1, p]. Let t ∈ [0, 1] be such that p
q

= tp + (1 − t). We have

τ(Bp
g ) = τ(1) = 1 for all g ∈ G. Then by the same computation as before, we

have

τ(B
p
q
g Jg(x)y) ≤ τ(Bp

g )
tτ(Bg|Jg(x)y|

1
1−t )1−t

= τ(Bg|Jg(x)y|
1

1−t )1−t

= τ(πp(g)(x
1

1−t ))1−t.

Assume that q ∈ [2,∞[, then q′ ∈ [1, q] and by the previous case, πq′ has vanishing
coefficients. Then πq has vanishing coefficients for all q ∈ [1,∞[.

Proof of theorem 4.6.4. (i) Let πp be a trace-preserving on Lp(M) which has
vanishing coefficients and almost has invariant vectors. Then the conjugate rep-
resentation π2 has vanishing coefficients by (i) in Proposition 4.6.5 and almost
has invariant vectors by Proposition 2.5.1.
(ii) The proof is similar as the previous one above, using (ii) in Proposition
4.6.5.
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Remark 4.6.6. Let π : G → O(Lp(M)) be an orthogonal representation of the
group G with vanishing coefficients. We can define its positive part π+ : G →
O(Lp(M)) by π+(g) = BgJg for all g ∈ G if π(g) = ugBgJg. One might be
tempted to think that π+ is a representation with vanishing coefficients. This
would imply that (HLp(M)) and (HLp(M,+)) are equivalent. However, the first
problem is that π+ is not necessarily a group homomorphism (compare with the
formulas in Theorem 2.4.4). But even if π+ happens to be a representation, π+

can have non vanishing matrix coefficients, as the following example shows.

Let G = SL2(R). The free group H = F2 on two generators embeds as a
finite index subgroup in the lattice SL2(Z), and hence as a lattice in G. Let χ be
a non-trivial character on H (such a character exists since the abelianized group
of H is non-trivial). Let π = IndG

Hχ. There exists a cocycle c : G × G/H → H
such that

π(g)f(g′H) = χ(c(g−1, g′H))f(g−1g′H) for all f ∈ L2(G/H), g, g′ ∈ G.

The positive part π+ of π = IndG
Hχ is the quasi-regular representation on l2(G/H),

which has a non-zero invariant vector since H has finite covolume in G. Hence,
π+ has non-vanishing coefficients.

On the other hand, π does not have non-zero invariant vectors since χ is
non-trivial on H (see Theorem E.3.1 in [8]). Hence, by the Howe-Moore theorem
4.2.3, π has vanishing coefficients.

Corollary 4.6.7. Let M be a finite factor and G a locally compact group with
property (HLp(M)). Then G has property (H).
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Chapter 5

Strongly mixing representations
on Lp(M)

In this chapter, we define and study strongly mixing representations on non-
commutative Lp-spaces associated with finite von Neumann algebras. We give a
variant of the Haagerup property for strongly mixing representations on Lp(M),
which seems to be closer to (H) than property (HLp(M)). The proofs of our re-
sults rely on two important constructions of strongly mixing actions on measures
spaces; we recall them in the first part of this chapter with some useful facts from
ergodic theory. The second part of the chapter is devoted to our results.

5.1 Strongly mixing actions on measured spaces

The aim of this section is to recall two constructions from ergodic theory which
we will use use in our proofs later.

5.1.1 The Connes-Weiss construction

We first recall some definitions from ergodic theory. Let G be a locally com-
pact second countable group that acts on a standard probability space (X,µ) by
measure-preserving Borel automorphisms.

Definition 5.1.1. - The action of G on (X,µ) is said to be strongly mixing if,
for all Borel subsets A and B of X,

lim
g→∞

µ(g−1A ∩ B) = µ(A)µ(B)

that is, for all ǫ > 0, there exists a compact subset K ⊂ G such that

|µ(g−1A ∩B) − µ(A)µ(B)| < ǫ for all g ∈ G \K.
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- A sequence of Borel subsets (An) of X is said to be asymptotically invariant if,
for all compact subsets K of G,

lim
n→∞

sup
g∈K

µ(g−1An △ An) = 0.

It is said to be non-trivial if moreover infn µ(An)(1 − µ(An)) > 0.
- A sequence of nonnull Borel subsets (An) of X is said to be a Følner sequence
if, for all compact subset K ⊂ G,

lim
n→∞

µ(An) = 0 and lim
n→∞

sup
g∈K

µ(g−1An △ An)

µ(An)
= 0.

The following theorem of Connes and Weiss gives a construction of a strongly
mixing action with a nontrivial asymptotically invariant sequence for every non-
Kazhdan group.

Theorem 5.1.2. ([31] and [18]) Let G be a second countable group which does not
have property (T ). There exists a measure-preserving G-action on a probability
space (X,µ), which is strongly mixing and which has a nontrivial asymptotically
invariant sequence.

5.1.2 A result of Jolissaint

We recall here the analog of the previous definitions appearing in ergodic theory,
but in a non-commutative setting.

LetG be a second countable locally compact group. Let M be a von Neumann
algebra with separable predual, and ϕ be a faithful normal state on M. Assume
that there exists a G-action α : G→ Aut(M) by automorphisms of M such that
ϕ is α-invariant, that is

ϕ(αg(x)) = ϕ(x) for all g ∈ G, x ∈ M.

Definition 5.1.3. - The action of G on (M, ϕ) is said to be strongly mixing if,
for all x, y ∈ M,

lim
g→∞

ϕ(αg(x)y) = ϕ(x)ϕ(y).

- A sequence of projections (en) in M is said to be asymptotically invariant if,
for all compact subsets K of G,

lim
n→∞

sup
g∈K

ϕ(|αg(en) − en|2) = 0.
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It is said to be non-trivial if moreover infn ϕ(en)(1 − ϕ(en)) > 0.
- A sequence of nonnull projections (en) in M is said to be a Følner sequence if,
for all compact subset K ⊂ G,

lim
n→∞

ϕ(en) = 0 and lim
n→∞

sup
g∈K

ϕ(|αg(en) − en|2)
ϕ(en))

= 0.

The following theorem, due to Jolissaint, gives an analog of the Connes-Weiss
construction, in this non-commutative context.

Theorem 5.1.4. ([13]) Let G be a locally compact second countable group with
the Haagerup property (H). Then, for each factor M listed below, there exist
an action of G on M by automorphisms, and an α-invariant state ϕ on M for
which α is strongly mixing, and such that M contains a Følner sequence and a
non-trivial asymptotically invariant sequence for α and ϕ :
(i) M is the hyperfinite II1 factor R, and ϕ is the canonical trace τ .
(ii) M is the factor R0,1 = R ⊗ B(l2) of type II∞ and ϕ = τ ⊗ ω, where ω is a
suitable normal state on B(l2).
(iii) M is the Powers factor Rλ of type IIIλ, and ϕ = ϕλ is the associated Powers
state.

5.2 Strongly mixing actions on Lp(M)

We assume in this section that M is a finite von Neumann algebra, equipped
with a finite trace τ . We will always assume in this chapter that τ is normalized,
that is τ(1) = 1, and that τ is faithful, that is τ(x) > 0 if x ∈ M+, x 6= 0.

5.2.1 Property (Hmix
Lp(M))

Let G be a locally compact group. Given a finite von Neumann algebra, we define
a notion of strongly mixing orthogonal representation of G on Lp(M).

Definition 5.2.1. Let M be a finite von Neumann algebra with trace τ . We say
that a representation π : G→ O(Lp(M)) is strongly mixing if

lim
g→∞

τ(π(g)(x)y) = τ(x)τ(y) for all x, y ∈ M.

We will study the following variant of property (H) with strongly mixing
orthogonal representations.

Definition 5.2.2. Let M be a finite von Neumann algebra. We say that a group
G has property (Hmix

Lp(M)) if there exists a representation π : G → O(Lp(M))
which is strongly mixing and which almost has invariant vectors in the comple-
ment Lp(M)′ of the π(G)-invariant vectors.
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Here are our main results concerning the relationship between property (Hmix
Lp(M))

and property (H).

Theorem 5.2.3. Let G be a locally compact group. Let M be a finite von Neu-
mann algebra, and let 1 ≤ p < ∞. If G has property (Hmix

Lp(M)), then G has the

Haagerup property (H).

Theorem 5.2.4. Let G be a locally compact group with the Haagerup property
(H). Let 1 ≤ p <∞, p 6= 2. Then G has property (Hmix

Lp(M)) in the two following
cases :
(i) (M, τ) = (L∞([0, 1]), λ) with λ the Lebesgue measure ;
(ii) M = R is the hyperfinite II1 factor.

The proofs of the previous theorems will be given in the next subsection. The
main technical tools for these proofs are the two following lemmas.

Lemma 5.2.5. Let G be a locally compact group. Let M be a finite von Neumann
algebra, and let 1 ≤ p < ∞, p 6= 2. Let π : G→ O(Lp(M)) be a strongly mixing
orthogonal representation. Then π(g) is a Jordan *-automorphism of M for every
g ∈ G.

The following corollary is a straightforward consequence of the previous lemma,
using Remark 2.4.5.

Corollary 5.2.6. Let 1 ≤ p < ∞, p 6= 2, and 1 ≤ q < ∞. Let πp : G →
O(Lp(M)) be a strongly mixing representation. Then the conjugate representation
πq is strongly mixing.

The following lemma asserts that the multiples of the unit 1 ∈ M are the
only invariant vectors for a strongly mixing representation. We set

L0
p(M) = { x ∈ Lp(M) | τ(x) = 0 }.

Lemma 5.2.7. Let G be a locally compact group. Let M be a finite von Neumann
algebra and let 1 ≤ p < ∞. Let π : G → O(Lp(M)) be a strongly mixing
representation. Then Lp(M)′(π) = L0

p(M).

5.2.2 Proofs

Proof of Lemma 5.2.5. Let g ∈ G. By Yeadon’s theorem 1.5.4, π(g) has a de-
composition

π(g) = ugBgJg

with ug a unitary in M, Bg a positive operator affiliated with M such that its
spectral projections commute with M, and Jg a *-Jordan automorphism. Set
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vg = ugBg for all g ∈ G.

We will show that ug = 1 and Bg = 1 for all g ∈ G. We claim that it suffices
to give the proof when p > 2. Indeed, if p < 2, let πp(g) = ugBgJg for every
g ∈ G. By Proposition 2.4.6, the contragradient representation (πp)′ of πp on Lp′ ,
with p′ > 2 the conjugate exponent of p, is given by the following formula

(πp)′(g)x = u∗gB
p
p′

g ugJg(x)u
∗
g for all g ∈ G, x ∈ M.

Moreover, the contragradient is obviously strongly mixing. Hence, if the claim is

true for p′ > 2, then u∗g = 1 = ug, B
p′

p
g = 1 = Bg and the claim is true for p.

So we can assume that p > 2. For g ∈ G, Jg(1) = 1 since Jg is a sum of a
*-algebra morphism and a *-algebra antimorphism by Theorem 1.3.6. Since π is
strongly mixing, for x = 1, we have

lim
g→∞

τ(π(g)(y)) = lim
g→∞

τ(π(g)(y)1) = τ(y) for all y ∈ M.

Therefore, for y = 1, we obtain

lim
g→∞

τ(vg) = 1.

On the other hand, for g0 ∈ G be fixed, we have

lim
g→∞

τ(vgg0) = lim
g→∞

τ(π(g)π(g0)(1)) = τ(π(g0)(1)) = τ(vg0).

Hence τ(vg) = 1 for all g ∈ G.

Let g ∈ G be fixed. Since π(g) ∈ O(Lp(M)) and 1 ∈ Lp(M), we have
τ(|π(g)1|p) = ||1||pp = 1, that is τ(Bp

g ) = 1. Using twice Hölder’s inequality, we
have

1 = τ(ugBg) ≤ τ(Bg) ≤ τ(Bt
g)

1/t ≤ τ(Bp
g )

1/p = 1 for 1 ≤ t ≤ p,

and it follows that τ(B2
g ) = 1. Now by the Cauchy-Schwarz inequality,

1 = τ(vg) ≤
√
τ(B2

g ) = 1.

The equality case gives that vg = ugBg = 1. From the uniqueness in the polar
decomposition, it follows that ug = 1 and Bg = 1. Hence the lemma is proved.

Proof of Lemma 5.2.7. Let (πp)′ = πp′ : G → O(Lp′(M)) be the contragradient

representation of πp : G → O(Lp(M)). Let x ∈ L0
p(M), and y ∈ Lp′(M)πp′(G).

Then,

τ(yx) = lim
g→∞

(πp′(g)(y)x) = lim
g→∞

(yπp(g−1)(x)) = τ(y)τ(x) = 0.
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Thus L0
p(M) ⊂ Lp(M)′(πp).

To show that Lp(M)′(πp) ⊂ L0
p(M), it suffices to show that 1 ∈ Lp′(M)πp′(G).

Indeed, if 1 ∈ Lp′(M)πp′(G), then for every x ∈ Lp(M)′(πp), we have

τ(x) = τ(x1) = 0.

Now let g ∈ G. By Lemma 5.2.5, πp′(g) is a Jordan *-automorphism, so that
πp′(g)(1) = 1.

Proof of Theorem 5.2.4. (ii) By Theorem 5.1.4, there exists an action π of G by
automorphisms on the hyperfinite II1 factor R such that
- π is strongly mixing,
- there exists a non-trivial asymptotically invariant sequence (en) of projections
in R, that is there exists a sequence of projections (en) such that τ(en) = 1/2 for
all n and

lim
n→∞

sup
g∈K

||π(g)(en) − en||2 = 0 for all compact K of G.

This action defines a unitary representation π2 : G→ U(L2(R)) by

π2(g)x = π(g)(x) for all g ∈ G, x ∈ R,

as well as an orthogonal representation πp : G→ O(Lp(R)) for every 1 ≤ p <∞.
It is clear that πp is strongly mixing in the sense of Definition 5.2.1.

By Lemma 5.2.7, L0
2(R) = L2(R)′(π2). Define a sequence (vn) in R by

vn = en − τ(en)1.

Then (vn) is a sequence of almost invariant vectors for π in L0
2(R) = L2(R)′(π2).

It is straightforward to check that ||vn||22 = 1/4. Hence, π2 has almost invariant
vectors in L2(R)′(π2). By Proposition 2.5.1, πp has almost invariant vectors in
Lp(R)′(πp).

(i) The proof is similar as the previous proof, using Theorem 5.1.2 based on
the Connes-Weiss construction instead of Theorem 5.1.4 of Jolissaint.

Proof of Theorem 5.2.3. Let πp be a strongly mixing representation of G on
Lp(M) which almost has invariant vectors in Lp(M)′(πp). Then the conjugate
representation π2 defines a strongly mixing representation on L2(M) by Corol-
lary 5.2.6.

By Proposition 2.5.1, π2 almost has invariant vectors in L2(M)′(π2). By
Lemma 5.2.7, we have L2(M)′(π2) = L0

2(M). Since π2 is strongly mixing, the
restriction π2

/L2(M)′(π2) of π2 to L2(M)′(π2) almost has invariant vectors and has

vanishing coefficients. Hence G has property (H).



Chapter 6

Proper actions by affine
isometries on Lp(M)

In this chapter, we consider a more geometric approach to the Haagerup prop-
erty (H) by studying the existence of proper actions by affine isometries on non-
commutative Lp-spaces. We will use a terminology already used in [12] : a group
is said to be a-FLp(M)-menable if it admits a proper action by affine isometries
on Lp(M).
We relate a-FLp(M)-menability with the property (HLp(M)) that we have intro-
duced in chapter 5 : we show that if a locally compact second countable group
G has property (HLp(M)), then G is a-FLp(M̃)-menable for M̃ = l∞(M) or

M̃ = M ⊗ B(l2). We also show that every group with the Haagerup property
(H) admits a proper action by affine isometries on Lp(R⊗B(l2)), where R⊗B(l2)
is the hyperfinite II∞ factor associated to the hyperfinite II1 factor R.
In [85], Yu showed that every hyperbolic group Γ× Γ admits a proper action by
affine isometries on lp(Γ × Γ) for p large enough. We show that his construction
yields a proper action of Γ by affine isometries on the non-commutative Lp-space
Cp for p sufficiently large.

6.1 Introduction

Let G be a topological group, and let B be a real Banach space. Let α : G →
Isom(B) be a continuous action of G on B by affine isometries. Let π : G→ O(B)
be the linear part and b : G→ B the translation part of α, so that

α(g)x = π(g)x+ b(g) for all g ∈ G, x ∈ B.

Recall that b is a 1-cocycle on G with values in B.

Definition 6.1.1. (i) The action α is proper if, for every bounded subset X of
B, the set {g ∈ G | α(g)X ∩X 6= ∅ } is relatively compact in G.
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This is equivalent to the fact that the cocycle is proper :

lim
g→∞

||b(g)|| = +∞.

(ii) The group G is said to be a-FB-menable if G admits a proper action by affine
isometries on B.

Gromov defined in [32] a-T -menable groups as those groups G which admit
a proper action by affine isometries on Hilbert spaces. It turned out that the
class of a-T -menable groups coincide with the class of groups with the Haagerup
property (see [13]).

Proper actions by affine isometries on commutative Lp-spaces were studied by
Nowak in [63], and Chatterji-Drutu-Haglund in [12]. The following characteriza-
tion of the Haagerup property was announced in [63] and proved in an updated
version in [64] (see also Corollary 1.5 in [12]).

Theorem 6.1.2. ([64]) Let 1 ≤ p < 2 and let G be a second countable locally
compact group. Then the following conditions are equivalent :

1. G has the Haagerup property (H).

2. G admits a proper action on Lp([0, 1]) by affine isometries.

Let us mention also the following result about proper actions on some strictly
convex spaces. It is due to Haagerup and Przybyszewska in [38].

Theorem 6.1.3. Let G be a locally compact second countable group. Then G
admits a proper action by affine isometries on the l2-sum

∞⊕

n=1

L2n(G, µ)

where µ is the Haar measure on G.

6.2 Proper actions on Lp(M) and property (H)

The following theorem shows that a group which has the property (HLp(M)) intro-
duced in chapter 5, has a proper action by affine isometries on a non-commutative
Lp-space associated to an amplification of M.

Theorem 6.2.1. Let G be a locally compact second countable group, let M be a
von Neumann algebra and let 1 ≤ p <∞. Assume that G has property (HLp(M)).
Then there exists a proper action of G by affine isometries on Lp(l

∞ ⊗M).
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Proof. Let π : G → O(Lp(M)) a representation which has vanishing coefficients
and almost invariant vectors. Let (vn)n be a sequence of almost invariant vectors
for π.

We claim that b : G→ ⊕p
n Lp(M) defined by

b(g) = ⊕nπ(g)(vn) − vn

is a proper cocycle with values in
⊕p

n Lp(M), the lp-sum of infinite many copies
of the space Lp(M). This cocycle is associated to the orthogonal representation
⊕nπ : G→ O(

⊕p
n Lp(M)), defined for all g ∈ G and all ⊕nxn ∈ ⊕p

n Lp(M) by

⊕nπ(g)(⊕nxn) = ⊕n (π(g)xn).

Let (Kn) be an increasing sequence of compact subsets such that G = ∪nKn.
Since (vn) is a sequence of almost invariant vectors for π, we can assume (passing
to a subsequence of the vn’s if necessary) that

sup
g∈Kn

||π(g)vn − vn||pp ≤ 1/2n for all n ∈ N.

Fix N ∈ N and let g ∈ KN . Then g ∈ Kn for all n ≥ N and hence

||π(g)vn − vn||pp ≤ 1/2n for all n ≥ N.

Thus b(g) is well-defined as an element in ⊕p
nLp(M). It is obvious that b is a

cocycle for ⊕nπ.

Moreover, for all g ∈ G and n ∈ N, we have

||π(g)vn − vn||p = sup
||a||p′=1

Tr((π(g)vn − vn)a)

≥ Tr((vn − π(g)vn)Mp,p′(vn)∗)

= Tr(vnMp,p′(vn)∗) − Tr(π(g)vnMp,p′(vn)∗)

= 1 − Tr(π(g)vnMp,p′(vn)∗).

Since π has vanishing coefficients, it follows that

lim
g→∞

||π(g)vn − vn||p = 1.

This shows that limg→∞ ||b(g)||p = +∞. Hence, the affine isometric action as-
sociated to (⊕nπ, b) on

⊕p
n Lp(M). The latter space is isometrically isomor-

phic to Lp(l
∞ ⊗ M), hence there exists a proper cocycle of G with values in

Lp(l
∞ ⊗M).

As a consequence of the previous proposition, property (HLp(M)) implies a-
FLp(M)-menability for M a factor of type II∞.
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Proposition 6.2.2. Let G be a locally compact second countable group. Let M
be a factor of type II∞. Let 1 ≤ p < ∞. Assume that G has property (HLp(M)).
Then G is a-FLp(M)-menable.

We will need two lemmas for the proof of Proposition 6.2.2. The first lemma
is a well-known result on von Neumann algebras.

Lemma 6.2.3. Let M be a von Neumann algebra of type II∞. Then M is
isomorphic, as a ∗-algebra, to B(l2) ⊗M. In particular, Lp(M) is isometrically
isomorphic to Lp(B(l2) ⊗M) for 1 ≤ p <∞, p 6= 2.

Proof. We only recall how to get the desired isomorphism between M and B(l2)⊗
M. Since M is of type II∞, there exist a sequence of pairwise orthogonal pro-
jections (Pi)i∈I in M, and a sequence of partial isometries (vi)i∈I in M, such
that

1 =
∑

i∈I

Pi

1 = v∗i vi

Pi = viv
∗
i .

Recall from [27] (see chapter I, Proposition 4) that the elements of B(l2)⊗M can
be identified with matrices (ai,j) with coefficients ai,j in M. Then the ∗-algebra
isomorphism between M and B(l2) ⊗M is given by

Φ : M → B(l2) ⊗M
x 7→ (vixv

∗
j )i,j.

Let M be a factor. Recall from Remark 1.4.4 that if J : M → M is a Jordan
morphism, then J is a ∗-algebra morphism, or J is a ∗-algebra antimorphism.
Moreover, the Yeadon’s decomposition of an element U ∈ O(Lp(M)) has Radon-
Nikodym derivative B equal to 1, that is U = uJ , where u is a unitary in M and
J a Jordan isomorphism of M (see Remark 1.5.5).

Lemma 6.2.4. Let M be a von Neumann algebra which is a factor. Let 1 ≤ p <
∞, p 6= 2. Let U ∈ O(Lp(M)) and let U = uJ its Yeadon’s decomposition.
Define the map T : B(l2) → B(l2) by

Tx = x if J is a ∗-algebra morphism ,

Tx = x∗ if J is a ∗-algebra antimorphism.

Define also ũ ∈ B(l2) ⊗M and J̃ : B(l2) ⊗M → B(l2) ⊗M by

ũ = 1 ⊗ u ,

J̃(x⊗ y) = Tx⊗ J(y) for all x ∈ B(l2) and y ∈ M.
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Then the formula Ũ(a) = ũJ̃(a), for a ∈ Lp(B(l2)⊗M), defines a linear bijective
isometry Ũ : Lp(B(l2)⊗M) → Lp(B(l2)⊗M), whose Yeadon’s decomposition is
Ũ = ũJ̃ .

Proof. We first show that Ũ takes its values in Lp(B(l2)⊗M). By linearity, and
since the linear subspace generated by {A ⊗ x |A ∈ B(l2), x ∈ M } is dense (in
the strong operator topology) in B(l2) ⊗M, it suffices to prove

τ̃(J̃(A⊗ x)) = τ̃(A⊗ x) for all A ∈ B(l2)+, x ∈ M+ ∩ L0(M).

Let A ∈ B(l2)+ and x ∈ M+ ∩ L0(M). Then we have

τ̃ (J̃(A⊗ x)) = τ̃ (T (A) ⊗ J(x))

= Tr(A∗) τ(J(x))

= Tr(A) τ(x)

= τ̃ (A⊗ x).

Now we check that the elements ũ, and J̃ give the Yeadon’s decomposition of
Ũ .

It is clear that ũ is a unitary in B(l2) ⊗M, since u is a unitary in M.

Now we check that J̃ is a Jordan-∗-isomorphism of the algebra B(l2) ⊗ M.
The fact that J̃ is a linear ∗-isomorphism of B(l2)⊗M is clear. We only have to
show that J̃ is Jordan, that is J̃(a2) = J̃(a)2 for all a ∈ B(l2) ⊗M. By density,
it suffices to prove the latter relation on finite sums of the form

∑
n∈I An ⊗ xn.

We may assume that J is a ∗-algebra antimorphism: the computation when J is
a ∗-algebra morphism is the same and simpler. Let I be a finite set, An ∈ B(l2),
xn ∈ M for n ∈ I. Then we have

J̃((
∑

n∈I

An ⊗ xn)2) = T ⊗ J(
∑

i,j∈I

AiAj ⊗ xixj)

=
∑

i,j∈I

(AiAj)∗ ⊗ J(xixj)

=
∑

i,j∈I

A∗
jA

∗
i ⊗ J(xj)J(xi)

= (
∑

n∈I

A∗
n ⊗ J(xn))2

= (J̃(
∑

n∈I

An ⊗ xn))2.

Now we give the proof of Proposition 6.2.2.
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Proof of Proposition 6.2.2. Let π be an orthogonal representation ofG on Lp(M)
such that π has almost invariant vectors and has vanishing coefficients. We first
extend π to an orthogonal representation π̃ of G on the space Lp(B(l2) ⊗M).

For every g ∈ G, define Tg : B(l2) → B(l2) and ˜π(g) as in Lemma 6.2.4. By

Lemma 6.2.4, ˜π(g) ∈ O(Lp(B(l2) ⊗M)) for every g ∈ G. Then we have a map

π̃ : G→ O(Lp(B(l2) ⊗M)) given by π̃(g) = ˜π(g) for all g ∈ G. We claim that π̃
defines an orthogonal representation; we have to check that π̃(g1g2) = π̃(g1)π̃(g2)
for all g1, g2 ∈ G.

For every g ∈ G, denote by π(g) = ugJg the Yeadon’s decomposition of

π(g), and by π̃(g) = ũgJ̃g the corresponding decomposition of ˜π(g) = π̃(g). By
Theorem 2.4.4, to prove that π̃ is a homomorphism, we have to show the following
relations, for all g1, g2 ∈ G, and all y ∈ B(l2) ⊗M :

(1) ũg1g2 = ũg1J̃g1(ũg2) ,

(2) J̃g1g2(y) = J̃g1(J̃g2(y)) if J̃g1 is a ∗ -morphism ,

(3) J̃g1g2(y) = J̃g1(ug2J̃g2(y)u
∗
g2

) if J̃g1 is a ∗ -antimorphism.

Let g1, g2 ∈ G. By density of the linear subspace generated by {A ⊗ x |A ∈
B(l2), x ∈ M } in B(l2)⊗M, it suffices to show relations (3) and (4) on elements
of the form y = A⊗ x.
(1) : Notice that Tg(1) = 1 for every g ∈ G. Hence we have

ũg1g2 = 1 ⊗ ug1g2

= 1 ⊗ ug1Jg1(ug2)

= (1 ⊗ ug1)(1 ⊗ Jg1(ug2))

= (1 ⊗ ug1)(J̃g1(1 ⊗ ug2))

= ũg1J̃g1(ũg2).

(2) : In this case, Jg1 is a ∗-morphism, Tg1 = id and J̃g1 is a ∗-morphism.
Moreover, Jg1g2 = Jg1 ◦ Jg2 is a ∗-morphism if and only if Jg2 is a ∗-morphism;
hence we have the relation Tg1g2 = Tg2 = Tg1 ◦ Tg2. Then, for A ∈ B(l2) and
x ∈ M, we have

J̃g1g2(A⊗ x) = Tg1g2A⊗ Jg1g2(x)

= Tg1 ◦ Tg2(A) ⊗ Jg1 ◦ Jg2(x)

= J̃g1(J̃g2(A⊗ x)).

(3) : In this case, Jg1 and J̃g1 are ∗-antimorphisms; moreover, Tg1(A) = A∗ for
all A ∈ B(l2).
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We have Jg1g2(x) = Jg1(ug2Jg2(x)u
∗
g2

) for all x ∈ M; hence Jg1g2 is a ∗-morphism
if and only if Jg2 is a ∗-antimorphism. So the relation Tg1g2 = Tg1 ◦Tg2 is satisfied.
Then, for A ∈ B(l2) and x ∈ M, we have

J̃g1g2(A⊗ x) = Tg1g2A⊗ Jg1g2(x)

= Tg1 ◦ Tg2(A) ⊗ Jg1(ug2Jg2(x)u
∗
g2

)

= Tg1 ⊗ Jg1(Tg2(A) ⊗ ug2Jg2(x)u
∗
g2

)

= J̃g1((1 ⊗ ug2)Tg2 ⊗ Jg2(A⊗ x)(1 ⊗ u∗g2
))

= J̃g1(J̃g2(A⊗ x)).

So we have proved that π̃ : G→ O(Lp(B(l2) ⊗M)) is an orthogonal representa-
tion.

Now by Proposition 6.2.1, there exists a proper cocycle b : G→ Lp(l∞ ⊗M).
Recall from the proof of Proposition 6.2.1 that b, viewed as a cocycle with values
in Lp(l

∞(M)), is associated to the representation ⊕nπ ∈ O(
⊕p

n Lp(M)). We
identify l∞(M) with l∞ ⊗M, and then

⊕p
n Lp(M) with Lp(l∞ ⊗M). Now we

claim that b, viewed as a cocycle with values in Lp(l
∞ ⊗M), is associated to the

representation π : G → O(Lp(l
∞ ⊗M)) whose Yeadon’s decomposition is given

by

π(g) = (1 ⊗ ug)(id⊗ Jg) for all g ∈ G.

Indeed, an element un⊗x ∈ l∞⊗M is identified with an element ⊕nunx ∈ l∞(M).
Such elements generate the von Neumann algebras l∞ ⊗M and l∞(M), and the
latter von Neumann algebras contain a dense subspace (in the norm topology) of
the respective Lp-spaces Lp(l

∞ ⊗M) and Lp(l
∞(M)). Hence, it suffices to show

the identification of the representation π with the representation ⊕nπ on elements
of the form un ⊗ x and ⊕nunx. This is clear since for all g ∈ G, (un) ∈ l∞ and
x ∈ M, we have

π(g)(un ⊗ x) = un ⊗ π(g)(x)

and (⊕nπ(g))(unx) = ⊕n(unπ(g)(x)).

Hence, there exists a proper cocycle b : G → Lp(l
∞ ⊗M) associated to the rep-

resentation π : G→ O(Lp(l
∞ ⊗M)).

The space Lp(l
∞ ⊗M) embeds linearly and isometrically in Lp(B(l2) ⊗M).

Indeed, the elements in B(l2)⊗M can be identified with matrices (ai,j) with values
in M, and with this identification, the von Neumann algebra l∞(M) ≃ l∞ ⊗M
embeds diagonally in B(l2) ⊗M. This induces a linear embedding x 7→ x̃ from
Lp(l

∞ ⊗ M) into Lp(B(l2) ⊗ M). Moreover, this embedding is isometric since
the traces τ and τ̃ , on l∞ ⊗M and B(l2) ⊗M respectively, satisfy the following
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relation

τ(|(xn)n|p) = τ((|xn|p)n)

=
∑

n

τ(|xn|p)

= τ̃(| ˜(xn)|p)

where (xn)n ∈ l∞(M)∩Lp(l
∞(M)) and ˜(xn) denotes the diagonal embedding of

(xn)n in B(l2) ⊗M.

Now we claim that the restriction of the representation π̃ : G→ O(Lp(B(l2)⊗
M)) to the π̃(G)-invariant subspace Lp(l

∞ ⊗M) coincides with the representa-
tion π : G → O(Lp(l

∞ ⊗ M)). Indeed, for every g ∈ G, the restriction of Tg

to the diagonal (identified with l∞) is the identity, that is Tg|l∞ = id, hence the
Yeadon’s decompositions of π and π̃ coincide on Lp(l

∞ ⊗M).

For every g ∈ G, define b̃(g) = ˜b(g). Then, by Lemma 3.3.3, b̃ : G →
O(Lp(B(l2)⊗M)) is a proper cocycle. Moreover, by Lemma 6.2.3, Lp(B(l2)⊗M)
is isometrically isomorphic to Lp(M), since the von Neumann algebra M is of
type II∞. Hence, there exists a proper cocycle of G with values in Lp(M), and
G is a-(FLp(M))-menable.

The following theorem extends the implication 1 ⇒ 2 of Theorem 6.1.2, in
a non-commutative setting. We do not know whether the implication 2 ⇒ 1 of
Theorem 6.1.2 is true in this setting. The method used in [64] for the classical
Lp-spaces breaks down in the non-commutative context, since in general the
distance associated to the norm of a non-commutative Lp-space is no longer a
kernel conditionally of negative type (see Theorem 1.4.7).

Theorem 6.2.5. Let G be a second countable locally compact group with the
Haagerup property. Then there exists a proper action of G by affine isometries
on Lp(l

∞ ⊗R), where R is the hyperfinite II1 factor.

Proof. We adapt the method of the proof of Theorem 3 given in [63] to our non-
commutative setting. Denote by τ the normalized faithful trace on the hyperfinite
II1 factor R.

By Jolissaint’s Theorem 5.1.4, there exists a trace-preserving action α of G
on R by automorphisms, which is strongly mixing and has a nontrivial asymp-
totically invariant sequence (en). Recall that (see the proof of Theorem 5.2.4) α
induces an orthogonal representation π2 of G on L2(R), which is strongly mixing.
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Set vn = en − 1
2

1 for all n ∈ N. Then ||vn||22 = 1
4
. We have

||π2(g)vn − vn||22 = ||π2(g)en − en||22.

So,
lim

n→∞
sup
g∈K

||π2(g)vn − vn||2 = 0 for every compact subset K of G.

Moreover, we have

||π2(g)vn − vn||22 = 2||vn||22 − τ(π2(g)v∗nvn) − τ(π2(g)vnv
∗
n).

Since the action is strongly mixing, it follows that

lim
g→∞

||π2(g)vn − vn||22 =
1

2
.

Set wn = M2,p(vn) for all n ∈ N, and let πp be the conjugate representation of
π2 on Lp(R). Notice that ||wn||pp = 1

4
. Since the Mazur map is locally uniformly

continuous, there exists C > 0 such that

lim
g→∞

||πp(g)wn − wn||pp ≥ C for all n ∈ N.

and we have (see Proposition 2.5.1)

lim
n→∞

sup
g∈K

||πp(g)wn − wn||2 = 0 for every compact subset K of G.

Then b : G→ ⊕p
n Lp(R) defined by

b(g) = ⊕nπ
p(g)wn − wn

is 1-cocycle with values
⊕p

n Lp(R) associated to the representation ⊕nπ
p on⊕p

n Lp(R). We conclude the proof with arguments similar to those used in the
proof of Theorem 6.2.1.

Using the same construction as in the proof of Proposition 6.2.2, we deduce
from the previous theorem the following corollary.

Corollary 6.2.6. Let G be a second countable locally compact group with the
Haagerup property. Then there exists a proper action by affine isometries of G
on Lp(R⊗ B(l2)).

6.3 Proper actions of hyperbolic groups on Lp(M)

Let Γ be a hyperbolic group. We recall Yu’s construction from [85] of a proper
cocycle on lp(Γ× Γ) for p large enough, and then we show that it can be used to
produce a proper action of Γ by affine isometries on Cp.
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6.3.1 Mineyev construction and Yu’s result on hyperbolic

groups

In [85], Yu showed the following result.

Theorem 6.3.1. ([85]) If Γ is a hyperbolic group, then there exists 2 ≤ p < ∞
such that Γ admits a proper isometric action on lp(Γ × Γ).

We recall some general facts and notations about hyperbolic groups and then
explain Yu’s construction. In the next subsection, we construct a proper action
of Γ by isometries on Cp.

Let Γ be a hyperbolic group and G its Cayley graph with respect to a finite
generating set. Let δ ≥ 1 be a positive integer such that all the geodesic triangles
in G are δ-fine. Denote by d the path-metric and by

(b|c)a =
1

2
(d(a, b) + d(a, c) − d(b, c))

the Gromov product for a, b, c vertices of G. For a, b ∈ G, denote by q[a, b] the
oriented geodesic edge-path from a to b. Let q[a, b](t) be the point at distance t
from a on the geodesic path q[a, b].

Yu’s construction is based on the following result of Mineyev from [60].

Theorem 6.3.2. ([60]) There exists a function h : Γ × Γ → lp(Γ) satisfying the
following conditions :
(1) ||h(b, a)||p = 1 for all a, b ∈ Γ ;
(2) if d(a, b) ≥ 10δ, then supp(h(b, a)) ⊂ B(q[b, a](10δ), δ) ∩ S(b, 10δ) ;
(3) if d(a, b) ≤ 10δ, then h(b, a) = a ;
(4) h is Γ-equivariant, that is h(ga, gb) = gh(a, b) for all g, a, b ∈ Γ ;
(5) there exist C ≥ 0 and 0 ≤ ρ < 1 such that, for all a, a′, b ∈ Γ,

||h(b, a) − h(b, a′)||p ≤ Cρ(a|a′)b .

Now let k : Γ × Γ → R be the function defined by

k(a, b) = h(a, e)(b) for all a, b ∈ Γ.

Let ρ : Γ × Γ → O(lp(Γ × Γ)) be the following orthogonal representation :

ρ(g)(f)(a, b) = f(g−1a, g−1b) for all g, a, b ∈ Γ

and define

kg(a, b) = (ρ(g)(k)(a, b)) − k(a, b) = k(g−1a, g−1b) − k(a, b)

for all g, a, b ∈ Γ.
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Theorem 6.3.3. The formula above defines a cocycle k : Γ → lp(Γ× Γ), g 7→ kg

for the representation ρ. Moreover, this cocycle is proper.

We only recall here why such a cocycle is proper. Indeed, Mineyev construc-
tion ensures that, given g ∈ G, there exists at least d(g, e) − 100δ vertices a on
the oriented path q[g, e] such that

supp(h(a, g)) ∩ supp(h(a, e)) = ∅.

Hence, for such vertices a and b in Γ, we have

|kg(a, b)| = |h(g−1a, e)(g−1b) − h(a, e)(b)|
= |h(a, g)(b) − h(a, e)(b)|
= |h(a, g)(b)| + |h(a, e)(b)|
≥ |h(a, e)(b)|

and, for all p ≥ 1, we have

∑

b∈Γ

|kg(a, b)|p ≥
∑

b∈Γ

|h(a, e)(b)|p = ||h(a, e)||pp = 1.

It follows that, for all p ≥ 1, we have

||kg||pp =
∑

a∈Γ

∑

b∈Γ

|kg(a, b)|p ≥ d(g, e) − 100δ. (∗)

6.3.2 A proper cocycle on Cp for large p

Let Γ be a hyperbolic group. We use Yu’s construction from above to give a
proper cocycle on Cp for large p. Let v such that the cardinal of every ball of
radius n in G is less than vn. Let ρ be as in Theorem 6.3.2.

Lemma 6.3.4. Let p ≥ 2 such that ρpv < 1
2
, and p′ its conjugate exponent. We

have that
∑

a∈Γ |
∑

b∈Γ |kg(a, b)|p′|
p
p′ <∞.

Proof. By the condition (5) in Theorem 6.3.2, for all a ∈ Γ, we have

∑

b∈Γ

|kg(a, b)|p
′

=
∑

b∈Γ

|h(a, g)(b) − h(a, e)(b)|p′

≤ Cp′ρp′(g|e)a
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and then
∑

a∈Γ

|
∑

b∈Γ

|kg(a, b)|p
′|

p
p′ ≤

∑

a∈Γ

Cpρp(g|e)a

≤
∑

a∈Γ

Cpρp(d(a,e)−d(g,e))

≤
∞∑

n=0

Cpρp(n−d(g,e))vn

≤ 2Cpρ−pd(g,e).

Now denote by π : Γ → U(l2(Γ)) be the regular representation of Γ on l2(Γ).
And let K be the unbounded operator on l2(Γ) of kernel k, that is

K(f)(a) =
∑

b∈Γ

k(a, b)f(b) for all a ∈ Γ and f ∈ l2(Γ).

Let ρ : G→ O(Cp) be defined by

ρ(g)x = π(g)xπ(g−1) for x ∈ Cp.

Proposition 6.3.5. (i) There exists p0 > 1 such that

Kg = π(g)Kπ(g−1) −K ∈ Cp

for all g ∈ G and all p ≥ p0.
(ii) Let p ≥ p0. The map Γ → Cp, g 7→ Kg is a 1-cocycle for the representation
ρ.

Proof. Let g ∈ Γ. The operator Kg is a kernel operator with kernel kg−1. By
Lemma 6.3.4, there exists p0 > 1 such that the mixed norm, satisfies

||kg−1||p,p′ =
∑

a∈Γ

|
∑

b∈Γ

|kg−1(a, b)|p′|
p
p′ <∞

for p ≥ p0. It follows from Russo’s Theorem 1 in [72] that Kg ∈ Cp for p ≥ p0.
(ii) The fact that g 7→ Kg is a cocycle for ρ is straightforward.

Theorem 6.3.6. Let Γ be a hyperbolic group. Then there exists p ≥ 2 such that
the cocycle K : Γ → Cp is proper.

Proof. By Proposition 6.3.5, there exists p0 such that K takes its values in Cp

for all p ≥ p0. Fix a, g ∈ Γ. Then, for all n ≥ 1, we have

< |Kg|2
n

δa, δa > = |||Kg|2
n−1

δa||2

=
∑

b∈Γ

| < |Kg|2
n−1

δa, δb > |2

≥ | < |Kg|2
n−1

δa, δa > |2.
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By induction on n, it follows that

< |Kg|2
n

δa, δa >≥ | < |Kg|2δa, δa > |2n−1

.

On the other hand,

< |Kg|2δa, δa > =< Kgδa, Kgδa >

=
∑

b∈Γ

|kg(b, a)|2.

Therefore we obtain

< |Kg|2
n

δa, δa > ≥ |
∑

b∈Γ

|kg(b, a)|2|2
n−1

≥
∑

b∈Γ

|kg(b, a)|2
n

and hence, by inequality (∗) of the previous subsection,

∑

a∈Γ

< |Kg|2
n

δa, δa >≥ d(g, e)− 100δ.

Set p = 2n for n such that 2n ≥ p0. Then

Tr(|Kg|p) ≥ d(g, e) − 100δ

and hence
lim
g→∞

||Kg||p = +∞.
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France 81 (1953), 9–39. MR MR0059485 (15,539a)
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