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Résumé en francais

1 Introduction du sujet

1.1 Propriété (T5) pour un espace de Banach B

La propriété (T') de Kazhdan est une propriété de rigidité des groupes introduite
par D.Kazhdan dans les annés 60 dans [47] pour montrer que les réseaux en rang
supérieur sont de type fini et possedent un abélianisé fini. Depuis qu’elle a été
introduite, la propriété (T') a été étudiée par de nombreux auteurs ; elle possede
de nombreuses applications dans des domaines des mathématiques tres variés :
en théorie ergodique, dans la théorie des algebres d’opérateurs, en informatique
théorique...De ce fait, des variantes de la propriété (7') sont naturellement ap-
parues pour 1'étude des groupes topologiques et des phénomenes de rigidité liés
a leurs actions. Dans ce travail de these, nous nous sommes intéressés a une
variante de la propriété (7T') introduite récemment par Bader, Furman, Gelander
et Monod dans [4].

Soit G un groupe topologique. Etant donné un espace de Banach B, notons
O(B) son groupe d’isométries, c’est-a-dire le groupe des bijections de B dans B
qui sont linéaires et isométriques. Une représentation orthogonale de G dans B
est un homomorphisme 7 : G — O(B) qui est continu, au sens ot g — 7(g)x est
continue pour tout x dans B. On dit que la représentation 7 possede presque des
vecteurs invariants si

VK C G compact ,Ve > 0,3z € B, sup||n(g)r — z|| < €||z||.
geK

Pour tout sous-groupe fermé H de G, on note B™) = {x € B| Vg € H,7(g)z =
x } 'espace des vecteurs invariants par m(H). Si de plus H est normal dans G,

une représentation 7 : G — O(B) induit alors naturellement une représentation
7 G — O(B/B™™)) de G sur l'espace de Banach quotient B/B™).

Définition 1.1. [4]Soit B un espace de Banach. Soit G un groupe topologique
et H un sous-groupe fermé normal de G. La paire (G, H) possede la propriété

1



2 . RESUME EN FRANCAIS

(T) (on dit aussi que G possede la propriété (1) relativement a H), si pour
toute représentation linéaire isométrique m : G — O(B), la représentation 7’ :
G — O(B/B™ ) sur B/B™ ") ne possede pas presque des vecteurs invariants.
Un groupe G possede la propriété (1) si la paire (G, G) possede la propriété
(Tp) relative.

Lorsque B est un espace de Hilbert, la définition précédente correspond a la
propriété (T') de Kazhdan. Les auteurs de [4] ont posé les bases pour I’étude de
la propriété (1) dans le cadre des espaces de Banach B uniformément convexes,
dont le dual est également uniformément convexe (ces espaces de Banach sont
appelés “ucus”dans [4]).

La propriété (1) se reformule également en termes d’actions par isométries
affines sur un espace de Hilbert. Un groupe topologique G possede la propriété
de point fixe (F'H) si toute action continue de G par isométries affines sur un
espace de Hilbert H possede un point fixe. Pour les groupes localement compacts
et o-compacts, un théoreme de Delorme-Guichardet montre que la propriété (1)
est équivalente & la propriété (F'H) (voir [25] et [33]). Les auteurs de [4] ont aussi
étudié I'analogue de cette propriété.

Définition 1.2. Soit B un espace de Banach. Un groupe topologique G possede
la propriété (Fp) si toute action continue de G par isométries affines sur B possede
un point fixe.

Les propriétés (T5) et (Fp) que nous allons étudier sont distinctes (plus
faibles) des propriétés banachiques introduites par V. Lafforgue dans [52] (voir
aussi [51] pour un renforcement de la propriété (77)), ou l'auteur considere de
plus grandes classes de représentations. Nous n’étudierons pas ici ces dernieres
propriétés et renvoyons aux articles [51] et [52] pour le lecteur intéressé.

1.2 Les propriétés (17,) et (Fy,) pour les espaces L, clas-
siques

Rappelons qu’un espace borélien standard est un espace mesurable associé a la
tribu borélienne d’un espace métrique séparable complet. Les principaux résultats
de [4] concernent la classe des espaces L,(X,p) associés & un espace mesuré
(X, ), o X est un espace borélien standard. Plus précisément, les auteurs de
[4] étudient les liens entre la propriété (17') de Kazhdan et leur variante sur ces
espaces L, que 'on appellera par la suite commutatifs ou classiques. Voici un de
leurs résultats principaux.

Théoréeme 1.3. [4] Soit G un groupe localement compact a base dénombrable.
Si G posséde la propriété (T'), alors G posséde la propriété (Tg) pour tout espace
de Banach B appartenant a la liste suivante :
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1. les espaces Ly(X, ) pour toute mesure p o-finie sur un espace borélien
standard X et tout 1 < p < o0 ;

2. les sous-espaces fermés des espaces Ly(X, ) pour tout 1 < p < oo avec
p#4,6,8...;

3. les espaces quotients des espaces L,(X, ) pour tout 1 < p < oo avec p #
4

oy
~I|0co

3
St, de plus, p est sans atomes et G posseéde la propriété (11,(x p.)), alors G posséde
la propriété (T') de Kazhdan.

Le résultat de [4] concernant les liens entre la propriété (T') et la propriété
(Fp) s’énonce comme suit.

Théoréme 1.4. [4] Soit G un groupe localement compact a base dénombrable.
Alors :

1. (Fp) implique (Tg) pour tout espace de Banach ;

2. (T') implique (Fg) pour tout sous-espace fermé B de L,(X, ), ou (X, p)
est un espace mesuré avec une mesure |, o-finie et pour tout 1 < p <2 ;

3. (T') implique (Fg) pour tout sous-espace fermé B de L,(X,u), avec 2 <
p < 2+ €(Q), pour une certaine constante e(G) > 0 dépendant du groupe
G.

Il est a remarquer que la restriction p < 2 dans le point 2 du théoreme
précédent est nécessaire. En effet, il existe des groupes avec la propriété (7') de
Kazhdan qui n’ont pas la propriété de point fixe (F7,(x,)) pour p > 2 suffisam-
ment grand (voir pour cela, par exemple, [23] ou [85]).

D’autre part, les groupes de Lie simples de rang supérieur ou égal a 2, ainsi
que leurs réseaux (tels que SLs(Z)) possedent la propriété (Fi (x,)) pour tout
1 < p < oo (voir le théoreme B dans [4]). Un résultat beaucoup plus fort est
conjecturé dans [4] : les groupes précédents possedent la propriété (Tg) pour tout
espace de Banach B “ucus”.

Une autre classe de groupes pour lesquels la propriété (£, (x ) a été démontrée,
pour tout 1 < p < oo, est la famille des “réseaux universels”, c’est-a-dire les
groupes SL,(Z[xy,...x)) pour kK > 0 et n > 4. Ceci est un résultat M.Mimura
dans [59].

Un exemple d’application de la propriété (Fp,) a été donné par A.Navas, qui
a utilisé cette propriété pour améliorer un de ses résultats antérieurs concernant
la rigidité des actions de groupes de Kazhdan sur le cercle a travers le théoreme
suivant (voir par exemple [61]).
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Théoréme 1.5. [61] Soit a > 0. Soit Diffeo’, " (S*) le groupe des difféomorphismes
du cercle S* de classe 1+a. Soit I’ un groupe avec la propriété (Fr,), pour p > i
Si ® : I' — Diffeo’™(S') est un homomorphisme, alors ®(T') est un groupe cy-
clique fini.

Il est naturel de se demander dans quelle mesure ces résultats peuvent se
généraliser a la classe considérablement plus riche des espaces L, non-commutatifs.
C’est le premier des deux objets principaux de cette these : étudier les propriétés
(Tr,m)) et (Fr,m)) pour les espaces L,(M) associés a une algebre de von Neu-
mann M, appelés espaces L, non-commutatifs par la suite.

Rappelons que tout espace mesuré (X, u1) tel que X soit un espace borélien
standard est isomorphe comme espace mesuré a [0, 1], muni de la mesure p; & po,
ou g1 = A est la mesure de Lebesgue et ps est une mesure atomique. Les
algebres de von Neumann abéliennes sont alors toutes isomorphes a une algebre
L>([0, 1], ), et les espaces L, commutatifs sont tous des espaces L,([0,1], ). En
comparaison, la variété des algebres de von Neumann M, objets qui peuvent étre
vues comme des espaces mesurés non-commutatifs, est infiniment plus vaste (voir
exemples plus loin), et ceci est également valable pour les classes d’isométries des
espaces L,(M) associés (voir la section 5 du chapitre 1).

Pour étudier la propriété (17,(a)), nous avons di étendre les méthodes de
[4] au cadre non-commutatif. Le maniement des algebres de von Neumann non-
commutatives pose de nombreuses difficultés techniques telles que, par exemple,
I'extension dans le cadre des opérateurs de certaines inégalités connues dans le
cas commutatif (voir I'extension de I'inégalité de Ando dans le théoreme 1.1.4).
D’autre part, le groupe des isométries d'un espace L,, non-commutatif est souvent
d’une complexité beaucoup plus grande que celui d'un espace L, classique.

Les outils que nous avons développés nous permettent également d’étudier la
propriété (H) de Haagerup dans le cadre des espaces L, non-commutatifs. C’est
le deuxieme objet de ce mémoire. Rappelons qu’un groupe G possede la propriété
(H), ou est appelé groupe a-T-menable, s’il existe une représentation unitaire de
G sur un espace de Hilbert, qui est Cy (c’est-a-dire dont les coefficients matriciels
tendent vers 0 a 'infini) et posséde des vecteurs presque invariants. Cette pro-
priété peut etre vue comme une propriété de non-rigidité forte des groupes G,
en opposition extréme avec la propriété (7). De maniere équivalente, G possede
(H) s’il admet une action propre par isométries affines sur un espace de Hilbert.
Nous menons une étude de ces deux versions de la propriété (H) dans le cadre
des espaces L, non-commutatifs. Les analogues de ces deux formulations de la
propriété (H) sur les espaces L, ne sont plus équivalentes, et ceci déja dans le cas
des espaces L, classiques pour p > 2. Mentionnons cependant le résultat suivant
de Nowak, annoncé dans [63] et prouvé dans [64]. Ce résultat a été aussi prouvé
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par Chatterji, Drutu, Haglund dans [12].
Théoréme 1.6. [64] Soit G un groupe localement compact a base dénombrable.

1. Sil1 <p < oo, et G posséde la propriété (H), alors G posséde une action
propre par isométries affines sur Ly([0,1]).

2. 511 < p <2, et G posséde une action propre par isométries affines sur
L,(]0,1]), alors G posséde la propriété (H).

2 Plan détaillé de la theése et résultats

Dans cette partie, nous présentons nos principaux résultats et les motivations qui
nous y ont amené a travers un plan détaillé de cette these. Pour chaque résultat
énoncé dans cette introduction, nous donnons la numérotation correspondante
intervenant dans le corps du texte.

2.1 Les espaces L, non-commutatifs

Une algebre de von Neumann M joue le méme role pour I'espace non-commutatif
L, (M) associé que 'algebre L™ (X, ) pour espace L,(X, p1) classique. Les ex-
emples d’algebres de von Neumann sont nombreux : les algebres de von Neumann
commutatives L™ (X, i), 'algebre M,, des matrices de taille n xn, 'algebre B(H)
des opérateurs bornés sur un espace de Hilbert H, le facteur hyperfini R de type
ITy, les algebres de von Neumann de groupes, les algebres de von Neumann as-
sociés a des actions de groupes,...

Soit M une algebre de von Neumann. On peut définir L,(M) pour tout
1 < p < co. Nous nous contentons de rappeler cette construction dans le cadre
des algebres de von Neumann semi-finies. Une telle algebre de von Neumann
M possede une trace 7 fidele et semi-finie (7 joue un role analogue a celui de
I'intégrale dans le cadre commutatif). L’espace L, non-commutatif L,(M,7) ,
noté L,(M) lorsqu’il n'y a pas de confusion possible, associé a I'espace mesuré
non-commutatif (M, 1), est obtenu comme le complété de 1’ensemble

{z e M|zl < o0}

pour la norme ||z||, = 7( ‘{B’p)% Quelques exemples de tels espaces sont :

- les espaces L, (X, p) classiques obtenus avec les algebres de von Neumann com-
mutatives L (X, u);

- les idéaux de Schatten C, = { x € B(H) | Tr(|x|?) < oo } pour I'algebre de von
Neumann M = B(H);

- l'espace S, = {z = @z, | v, € M,,, >, Tr,(|z,|P) < oo } pour 'algebre de
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von Neumann (©&M,,)s = {x = @,z | sup, ||z.]] < 00 }.

L’étude des représentations orthogonales sur les espaces L, passe par I’étude
de leurs groupes d’isométries O(L,). Nous rappelons les nombreux résultats con-
cernant la description de ces isométries : pour les isométries sur ,, LP(X, u) et
les idéaux de Schatten C, = { v € B(H) | Tr(|z|’) < oo }, jusqu'au théoréme
de Yeadon [84] donnant une description simple et générale des isométries surjec-
tives sur L,(M), dans le cas oit M est une algebre semi-finie. Plus précisément,
une isométrie U sur un tel espace admet une unique décomposition U = uB.J
avec u un certain opérateur unitaire, B un certain opérateur positif, et J un
isomorphisme de Jordan. En utilisant la description des isométries donnée par
Sherman dans [74] sur les éléments positifs, et une technique de prolongement
d’un isomorphisme de Jordan sur M a un isomorphisme de Jordan sur son produit
croisé, utilisée par Watanabe dans [81], nous donnons une description analogue
des isométries sur L,(M) pour M une algebre de von Neumann quelconque, non
nécessairement semi-finie.

Soient 1 < p,q < oo. Un outil crucial pour le passage d’une représentation
sur L,(M) a une représentation sur L,(M), déja utilisé dans [4] dans le cas
commutatif, est 'application suivante, appelée application de Mazur :

Myq: Ly(M) — Lq(M)
r = a|z| — a|x|§

avec x = alz| la décomposition polaire de z. L’inégalité suivante, qui généralise
I'inégalité de Ando pour des matrices (voir [1]), montre que M, , est localement
uniformément continue en restriction aux éléments positifs.

Proposition 2.1. (Proposition 1.1.4) Pour a,b € Ly(M)4, et 1 < p < g < o0,
on a linégalité suivante :

P P L
llas —ballg < [la—0bll5.

On montre aussi que, si J est un isomorphisme de Jordan de M, alors
I'application M, , satisfait a la relation suivante :

M, 0JoM,,=/J.

En particulier, cet outil crucial permet le passage de représentations orthogonales
sur L,(M) a des représentations unitaires sur un espace de Hilbert.

Certains résultats valables dans le cas commutatif ne se généralisent pas au cas
non-commutatif. Nous remarquons en particulier que la structure d’une isométrie
sur un sous-espace fermé d’'un espace L,(M) non-commutatif n’est connue que
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dans certains cas tres particuliers (voir le théoreme 1.6.4). D’autre part, lorsque
1 < p <2, Pespace L,(X, u) classique se plonge dans un espace de Hilbert H,
ce qui permet un passage entre représentations sur L, (X, p) et représentations
sur H. Ce plongement n’est plus possible pour de nombreux espaces L,(M)
non-commutatifs, par exemple pour les idéaux de Schatten C), (voir la section 4.2
dans le chapitre 1).

2.2 La propriété (7') pour les représentations sur L,(M)
La propriété (T') implique la propriété (7 (u))

Trouver les liens entre la propriété (1') de Kazhdan et sa variante (77, (1))
nécessite d’avoir des transports entre les représentations sur un espace de Hilbert
H et les représentations sur ces espaces L,. Comme nous l'avons indiqué plus
haut, la conjugaison par l'application de Mazur permet ce transport. Nous
obtenons ainsi le théoreme suivant, ayant fait I’objet d'une publication acceptée
dans les Proceedings de ’AMS.

Théoréme 2.2. (Theorem 2.5.3) Soit G un groupe topologique et H un sous-
groupe fermé normal de G. Si la paire (G, H) posséede la propriété (T') relative,
alors (G, H) possede la propriété (Th,m)) relative pour toute algébre de von Neu-
mann M, et tout 1 < p < oo. En particulier, si G posséde la propriété (T'), alors
il possede la propriété (Ty,a)) pour toute algeébre de von Neumann M, et tout
1 <p<oo.

Dans [59], M.Mimura a démontré indépendamment et simultanément ce théoreme
pour les espaces de Schatten C,, avec des méthodes pouvant se généraliser au cas
semi-fini. Nos méthodes couvrent également le cas des algebres de type III, qui
présente de considérables difficultés techniques.

Une étape-clé de la démonstration du Théoreme 2.2 est la proposition suiv-
ante, qui est basée sur une analyse approfondie des représentations orthogonales
de groupes sur les espaces L,(M).

Proposition 2.3. (Proposition 2.5.1) Soient G un groupe topologique, M une
algebre de von Neumann, 1 < p < oo, p # 2. Soit wP une représentation orthog-
onale de G sur L,(M). Si P posséde une suite de vecteurs presque invariants
dans le complément L,(M)" des vecteurs wF(G)-invariants, alors 7 posséde une
suite de vecteurs presque invariants dans le complément Ly(M)'.

Etude de (T7,0)) pour des algebres M “diffuses”

Concernant la réciproque du Théoreme 2.2, on ne peut espérer obtenir un résultat
général pour toute algebre de von Neumann M. En effet, si le groupe d’isométries
O(L,(M)) est “petit”, comme par exemple le groupe O(l,), un groupe G pourra
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avoir la propriété (17,(ry) sans posséder la propriété (7). A l'opposé, si on
considere certaines algebres M plus “diffuses”, on peut montrer que (17,m))
implique (7)) ; cela a déja été démontré dans [4] pour le cas M = L*(X, ).
Nous prouvons le résultat suivant.

Théoréme 2.4. (Theorem 2.5.6) Soit M = B(H), ou M le facteur 11 hyperfini
R. Soit G un groupe topologique localement compact a base dénombrable. Si G a
la propriété (Ty,, (), alors G a la propriété (T') de Kazhdan.

La propriété (17, (m)) pour des algebres M discretes telle que M = [ est sou-
vent strictement plus faible que la propriété (7') et mérite une étude indépendante.
Nous avons mené une telle étude pour la propriété (7;,). Elle fait I'objet d'une
publication en cours de rédaction avec B.Bekka.

Etude de (73,)

Nous caractérisons pour un groupe G la propriété (7;) par la propriété d’isolation
de la représentation triviale 15 de GG dans I’ensemble des représentations mono-
miales de G. On rappelle qu'une représentation unitaire o de GG est monomiale
si o est unitairement équivalente a une représentation induite Indgx, ou H est
un sous-groupe fermé de H et y : H — S' est un caracteére untitaire sur H.

Théoréme 2.5. (Theorems 2.6.5 and 2.6.9) Soit G un groupe localement com-
pact a base dénombrable.

(i) G posséde (T,) pour 1 < p < oo et p# 2 si et seulement si 1 est isolée dans
I’ensemble des représentations monomiales Indgx, associées aur SouUs-groupes ou-
verts H de G.

Si de plus, G est un groupe totalement discontinu, on a :

(ii) G possede (1;,) pour 1 < p < oo et p # 2 si et seulement si 1 est isolée
dans lensemble des représentations quasi-régulieres (A u,l2(G/H)), associées
aux sous-groupes ouverts H de G.

Pour G totalement discontinu, le Théoreme 2.5 montre bien la différence entre
(T') et (T,) : (T) fait intervenir toutes les représentations unitaires de G alors
que (73,) ne concerne que les représentations quasi-régulieres associées a des sous-
groupes ouverts. On déduit de ces caractérisations que certains groupes sans la
propriété (1) possedent la propriété (7;,) pour p # 2. C’est, par exemple, le
cas de SLy(Q), ou Q; est 'ensemble des nombres [-adiques, avec [ un nombre
premier.

(Tr) pour F un sous-espace fermé de L,(M)

Nous avons également cherché a étendre le Théoreme 1.3 aux représentations sur
des sous-espaces fermés de L, (M). Cependant, comme mentionné précédemment,
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la structure des isométries d’un tel sous-espace n’est pas tres bien connue. Un
cadre naturel plus adapté dans le cas non-commutatif est celui des isométries
completes. Ceci nous conduit & introduire une variante plus faible de (Tr).

Définition 2.6. Soit M une algebre de von Neumann finie et 1 < p < oco. Soit F'
un sous-espace fermé de L,(M) tel que 1 € F'. Un groupe topologique G possede
la propriété (T&") si, pour toute représentation orthogonale G — O%*(F) de G
par isométries completes de F' préservant 1'unité 1, la restriction g/ () de 7 sur
F'(m) n’a pas presque des vecteurs invariants.

Nous avons obtenu I’analogue suivant du point 2. dans le Théoreme 1.3.

Théoréme 2.7. (Theorem 2.7.4) Soit 1 < p < 0o, p ¢ 2N. Soit M une algébre
de von Neumann finie, et F' un sous-espace fermé de L,(M) tel que F C M et
1 € F. Supposons que G soit un groupe topologique avec la propriété (T'). Alors
G a la propriété (TE").

2.3 Propriétés de point fixe pour les actions sur L,(M)

Nous nous sommes aussi intéressés aux propriétés de point fixe (Fr,my), et
plus généralement aux actions par isométries affines sur les espaces L, non-
commutatifs. Les groupes de rang supérieur et leurs réseaux fournissent des
exemples de groupes avec (Fp,ar)). Nous rappelons leur définition.

Définition 2.8. Pour 1 < i < m, soient k; des corps locaux et G;(k;) les k;-points
de groupes G; algébriques sur k;, connexes et simples. Si chacun des facteurs
simples G; est de rang supérieur ou égal a 2 sur k;, le groupe G = [, G;(k;)
est appelé groupe de rang supérieur.

En utilisant le Théoreme 2.2, ainsi que les techniques développées dans [4],
on obtient le résultat suivant.

Théoréme 2.9. (Theorem3.2.3) Soit G un groupe de rang supérieur et M une
algebre de von Neumann. Alors G, ainsi que les réseaur dans G, possédent la
propriété (Fr ) pour 1 < p < oo.

Ces mémes techniques ont été utilisées dans [59] pour montrer que les groupes
SLy(Z[xy, ...x,]) possédaient la propriété (Fr,a) pour n > 4. Le résultat du
théoreme précédent a été démontré par Puschnigg dans [68] dans le cas particulier
ou M = B(H), et donc L,(M) = C,. Il en a donné une application a 'existence
de modules de Fredholm au sens de Connes.

Nous avons déja mentionné que la propriété (Fp) implique la propriété (1)
dans le cadre des groupes localement compacts o-compacts, et que la réciproque
est fausse pour B = L,([0,1]) et p > 2. Nous avons cherché a généraliser au



10 . RESUME EN FRANCAIS

cadre non-commutatif le point 2. dans le Théoreme 1.4. La preuve des auteurs
de [4] dans le cas commutatif est basée sur le fait que L, se plonge dans Ly pour
1 < p < 2. Ceci n’est plus le cas pour les espaces L, non-commutatifs : un es-
pace L,(M) contenant My(R) ne se plonge pas dans un espace de Hilbert. Nous
ignorons si le résultat reste quand méme valable dans le cadre non-commutatif.

Par contre, le point 3. du théoréeme 1.4 se généralise parfaitement au cas
non-commutatif, en adaptant la preuve donnée dans [4].

Théoréme 2.10. (Theorem 3.3.1) Soit M une algebre de von Neumann. Soit
G un groupe topologique avec la propriété (T'), alors il existe une constante € > 0
telle que G a la propriété de point fize (Fg) , pour tout p €]2 — €,2 + €|, et pour
tout sous-espace fermé B de L,(M).

2.4 La propriété de Haagerup pour des actions sur les
espaces L,

Une autre propriété de groupes, qui a été beaucoup étudiée, est la propriété (H)
de Haagerup. Elle est partagée par de nombreux groupes : groupes moyennables,
groupes libres, groupes de Coxeter...Une obstruction bien connue a la propriété
(H) est lexistence d’une paire de groupes (G, H) avec la propriété (T'), ou H
est un sous-groupe non-compact de G 1. En ce sens, la propriété (H) peut étre
considérée comme une négation forte de la propriété (77).

Rappelons qu’un groupe G localement compact a base dénombrable possede
la propriété (H) de Haagerup (ou est a-T-menable) s'il existe une représentation
unitaire de G, sur un espace de Hilbert H, qui est Cy (voir la définition plus
bas) et qui possede presque des vecteurs invariants. Il est connu que ceci est
équivalent a l'existence d'une action propre de G par isométries affines sur un
espace de Hilbert H.

Nous nous sommes donc intéressés a la traduction de ces deux variantes de
la propriété (H) de Haagerup dans le cadre des espaces L,(M) non-commutatifs
associés a des algebres de von Neumann M semi-finies.

On rappelle qu'une fonction f : X — C sur un espace topologique X est Cy
si:
Ve > 0,3K C X compact tel que |f(x)| < € pour tout x € X\ K.

Les coefficients matriciels d'une représentation 7 d’'un groupe G sur un espace
vectoriel V' sont les fonctions g —< m(g)v,w > de G dans C, pour v € V et

Lce n'est pas la seule obstruction, voir par exemple le résultat de Cornulier [21]
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w € V*. On dit qu'une représentation m est Cy si tous ses coefficients matriciels
sont Cj.

Définition 2.11. Soit M une algebre de von Neumann semi-finie.
On dit que G a la propriété (Hr,(v) s'il existe une représentation 7 : G —
O(L,(M)) qui est Cy et avec presque des vecteurs invariants.

A notre connaissance, la propriété (Hy, () n’a pas été étudiée jusqu’a présent,
meme dans le cas des espaces L, commutatifs. L’existence d'une paire de groupes
(G, H) avec la propriété (17, ), oit H est un sous-groupe normal fermé non-
compact de G, est la aussi une obstruction a la propriété (Hp (). Il est bien
connu que les sous-groupes fermés d'un groupe du type [[,.; S, ot I est fini
et chaque S; est soit le groupe SO(n;, 1), soit le groupe SU(m;, 1), possede la
propriété (H). Nous montrons un résultat plus fort.

Théoréme 2.12. (Theorem 4.4.1) Soit G un sous-groupe fermé d’un groupe du
type [1;c; Si, ot I est fini et chaque S; est soit le groupe SO(n;, 1), soit le groupe
SU(m;, 1) pour n; > 2, m; > 1. Alors G possede la propriété (Hy, o)) pour
tout 1 < p < oo.

Les liens entre la propriété (H) et celles pour des espaces L, non-commutatifs
dépendent de I'algebre de von Neumann considérée, comme l'indiquent les résultats
que nous allons énoncer. En particulier, concernant la question de savoir si (H)
implique (Hp, ), nos résultats montrent que la réponse est positive pour cer-
taines algebres de von Neumann, et négatives pour d’autres.

Considérons d’abord le cas de l'algebre M = [*°. Nous montrons que seule
une classe restreinte de groupes possede la propriété (H;,).

Théoréme 2.13. (Theorems 4.3.1 and 4.3.2) Soit G un groupe localement com-
pact a base dénombrable.

(i) Si G est connexe, alors G possede (Hy,) si et seulement si G est compact.
(ii) Si G est totalement discontinu, alors G posséde (Hy,) si et seulement si G
est moyennable.

Lorsque le groupe d’isométries de l'espace L, () considéré est plus “gros”, la
propriété (Hp, ) est plus fortement liée a la propriété (H). C’est ce que montre
le théoreme qui suit, ot nous caractérisons les groupes de Lie connexes linéaires
ayant la propriété (Hp o))

Théoréme 2.14. (Theorem 4.4.1) Soit G un groupe de Lie connexe linéaire.
Soit 1 < p < oo. Alors les assertions suivantes sont équivalentes :

(i) G posséde la propriété (Hy, o)) ;

(ii) G possede la propriété (H) de Haagerup ;

(iii) G est localement isomorphe a un produit [],., S; x M, ou I est fini, M est
un groupe moyennable, et pour tout i € I, S; est soit le groupe SO(n;, 1) soit
SU(my, 1) avec n; > 2, m; > 1.
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L’exemple suivant traite le cas des algebres discretes B(H) et (BM,)o =
{r = ®nz, | sup, ||za|| < oo } pour lesquelles les espaces L, correspondants
sont C), et .S,.

Théoréme 2.15. (Theorems 4.5.1 and 4.5.2) Soit G un groupe localement com-
pact a base dénombrable. Soit 1 < p < oo, p # 2. Alors on a

(1) G possede (He,) si et seulement si G possede (H).

(ii) G possede (Hg,) si et seulement si G est compact.

Les groupes apparaissant dans le Théoreme 2.12 possedent en fait des versions
plus fortes de (Hp,(o,1])), que nous définissons pour des classes plus restreintes de
représentations sur les espaces L, (M).

Définition 2.16. Soit M une algebre de von Neumann semi-finie, munie d’une
trace fidele, normale et semi-finie 7.

On dit que G ala propriété (Hp, a4 ) (vesp. (Hp,m),r)) 8'il existe une représentation
positive (resp. une représentation préservant la trace) 7 : G — O(L,(M)) qui
est Cy et avec presque des vecteurs invariants.

Notre prochain résultat montre que les propriétés (Hp, ) +) et (Hr,am),-)
impliquent la propriété (H).

Théoréme 2.17. (Theorem 4.6.4) Soient 1 < p < oo, et G un groupe localement
compact a base dénombrable.

(i) Soit M une algébre de von Neumann semi-finie. Si G posséde la propriété
(Hp,(m),r), alors G possede la propriété (H).

(ii) Soit M une algebre de von Neumann finie. Si G possede la propriété (Hp, v+ ),
alors G possede la propriété (H).

2.5 Actions fortement mélangeantes sur L,(M)

Nous nous sommes aussi intéressés aux représentations fortement mélangeantes
sur les espaces L,(M) associés a des algebres de von Neumann finies. On peut
introduire la variante suivante de la propriété (H), déja considérée par Jolissaint
dans [13].

Définition 2.18. Soit M une algebre de von Neumann finie. On dit que G
a la propriété (H"7,,)) s'il existe une représentation m : G — O(L,(M)) qui
est fortement mélangeante et qui possede presque des vecteurs invariants dans le

complément L,(M)’ des vecteurs m(G)-invariants.

Les résultats suivants semblent indiquer que la propriété (Hﬁl(”’M)) est plus
étroitement liée a la propriété (H) que la propriété (Hp, ().

Théoréme 2.19. (Theorems 5.2.3 and 5.2.4) Soit 1 < p < oo et G un groupe
localement compact a base dénombrable.
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T

1. S1G ala propriété de Haagerup (HZ;(M)), alors il a la propriété de Haagerup
(H).

2. S1 G a la propriété de Haagerup (H), alors il a la propriété (Hg;i(xR)) pour
le facteur hyperfini R de type 11;.

miz

3. Si G a la propriété de Haagerup (H), alors il a la propriété (HLP([O,l])>'

2.6 Actions propres par isométries affines sur L,(M)

Nous nous intéressons maintenant aux liens entre la propriété (H) et les actions
propres par isométries affines sur les espaces L,. Nous reprenons dans cette
définition la terminologie utilisée dans [12].

Définition 2.20. Soit M une algebre de von Neumann et 1 < p < oo. Un
groupe G localement compact a base dénombrable est dit a-FL,(M)-menable
s'il existe une action propre de G par isométries affines sur L,(M).

Pour p = 2, c’est la propriété de Haagerup.

Nous montrons le résultat suivant qui donne un lien entre la propriété (Hp, )
et 'a-F'L,(M)-menabilité pour certains facteurs M.

Théoréme 2.21. (Proposition 6.2.2) Soit G un groupe localement compact a base
dénombrable. Soit M un facteur de type Iy, et 1 < p < co. St G posséede la
propriété (Hp,my), alors G est a-(FL,(M))-menable.

Rappelons que le Théoréme 1.6 de Nowak montre I'équivalence entre a-F'L,([0, 1])-
menabilité et la propriété (H) pour 1 < p < 2. Nous avons obtenu une extension
de la premiere partie de ce résultat pour le cas M = [* ® R, ou R est le facteur
hyperfini de type I1;.

Théoréme 2.22. (Theorem 6.2.5 and Corollary 6.2.6) Soit G un groupe locale-
ment compact a base dénombrable avec la propriété de Haagerup (H), et soit
1 < p < oo. Alors il existe une action propre de G par isomélries affines
sur L,(M), ou M =1 ® R. De méme, il existe une action propre de G par
isométries affines sur L,(M), ot M = B(ly) ® R est le facteur hyperfini de type
.

Nous ignorons si I'analogue du résultat 2. dans le Théoreme 1.6 est vrai dans
ce cadre, la difficulté étant, comme mentionné plus haut, que les distances as-
sociées aux normes ||.|[, n’induisent pas de noyau conditionnellement de type
négatif.

L’a-F'L,(M)-menabilité et (H) sont des propriétés distinctes : en effet, il
existe des groupes de Kazhdan avec des actions propres par isométries affines
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sur L,([0,1]) (voir [11], [66], [85], [23], [62]). Soit I" est un groupe hyperbolique.
Utilisant des techniques développées par Mineyev [60], Yu [85] a montré que T
possede une action propre par isométries affines sur ,,(I' x I') pour p suffisamment
grand. Nous adaptons sa construction pour montrer que I' possede une action
propre par isométries affines sur C,.

3 Quelques questions ouvertes

Nous donnons ici une liste non-exhaustive de questions qui sont intervenues au
cours de ce travail, et qui restent actuellement sans réponse.

- Pour p # 2, existe-t-il des groupes discrets possédant la propriété (7;,) et la
propriété (H) (pour des exemples de groupes discrets avec (1;,) et sans la pro-
priété (T°), voir le preprint [9]) 7

- Pour 1 < p < 2 et M une algebre non-commutative, les groupes G avec la
propriété (1) possedent-t-il la propriété (Fr, ) ?

- Pour p # 2, le revétement universel de SU(n, 1) possede-t-il la propriété
(Hp,(0,])) (voir le Theorem 4.4.1 et la remarque qui suit) ?

- Pour p # 2 et ¢ # 2, les propriétés (Hp, ) et (Hp,m)) sont-elles équivalentes?
Plus précisément, la conjugaison par I’application de Mazur préserve-t-elle le car-
actere Cy d’une représentation orthogonale sur L,(M) (voir Remark 4.6.6) 7

- Les propriétés (H) et (HZZ(:”M)) sont-elles équivalentes pour tout 1 < p < 0o
et toute algebre de von Neumann finie M (voir Chapter 5 section 2) 7



Chapter 1

Non-commutative L,-spaces

Non-commutative L,-spaces were introduced by Dixmier [26] and studied by var-
ious authors, among them Yeadon [83] and Haagerup [35]. We recall in this
chapter some basic facts on these L,-spaces, which share some common prop-
erties with their commutative brothers, but have sometimes strong differences
with them. The survey here is far from exhaustive; for a more complete sur-
vey on these spaces, see Pisier and Xu [67]. Since the variant of property (7')
on L,-spaces strongly depends on the structure of isometries on such spaces, we
are going to study in this thesis the structure of such isometries. Moreover, we
will prove a few results (among them a generalization of Ando’s inequality) and
present some tools (Mazur map, structure of the group of isometries of L,-spaces,
non-embeddability of some non-commutative L,-spaces in Hilbert spaces) which
will be needed in later chapters.

1.1 L,(M)-spaces associated with semi-finite von
Neumann algebras M

We first review some basic properties of L,(M) in the case of semi-finite von
Neumann algebras M.

1.1.1 Definition and examples

Let M be a von Neumann algebra acting on a Hilbert space H.

M is said to be semi-finite if it admits a normal semi-finite trace 7, that is,
a linear map 7 : M+ — [0, +00] with the following properties :
- for all w € M, 7(u*u) = 7(uu*),
- for any bounded increasing net (z,) in M™, sup, 7(x,) = 7(sup, za),
- for any non-zero x € M, there is a non-zero y € M™ such that y < z and
T(y) < 400,

15
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-if 7(x) = 0, then z = 0.
If 7(1) < +o0, the von Neumann algebra M is said to be finite.

M is said to be hyperfinite if there exists an increasing sequence of finite
dimensional von Neumann algebras with dense (in the strong operator topology)
union in M.

Let us denote by M’ the commutant of M. The von Neumann algebra M is
called a factor it M N M’ = Cl.

Let M be a semi-finite von Neumann algebra and 1 < p < 4+o00. We define
the L,(M, 7)-space as the completion of the set

{r e M| |zll, < oo}
with respect to the norm ||z||, = T(|[L‘|p)%.

We now give some examples of such spaces, and set some notations. If 1 <
p < 400, then we will always denote by p’ the conjugate exponent of p.

Examples

1. Let (X, ) be a measured space, and let M = L*(X, ) be the commuta-
tive von Neumann algebra, equipped with the trace 7 : f — [ +J dp. Then
the associated L,-space is the classical L,-space L,(M,T) = L,(X, p).

2. The p-Schatten ideals C, are the L, (M, 7)-spaces associated to M = B(H)
where H is a separable Hilbert space, and 7 = Tr the usual trace on H;
thus,

Cp,={z € B(H) | Tr(Jz|") < o0 }.

3. Denote by M,, the algebra of complex n x n matrices. Consider the von
Neumann algebra

M = (@nMn)oo - {@nxn | Ty € M’m sup ||ZEn|| < OO}’

equipped with the trace 7 = ) Tr,, where Tr, is the usual trace on M,,.
The associated L,-space L,(M, ) will be denoted by S,.

4. The space L,(R) associated with the hyperfinite II; factor R. Recall that
the hyperfinite II; factor R can be described as the von Neumann algebra
R = ®, M, the von Neumann infinite tensor product of copies of My. R
is equipped with the trace 7 = ®,,Tr,,.
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A few general properties of non-commutative L,-spaces

As in the commutative case, a basic property of non-commutative L,-spaces are
the following Clarkson type inequalities (for a proof in the more general case of
Haagerup L,-spaces, see [50]; see also [70] for the proof of the equality case when
1<p<2).

Proposition 1.1.1. Let M be a von Neumann algebra. For all x,y € L,(M)
we have

1
o

1 ’ / 1
Gl +ylly + e = yll) < (el + lyl[)r for 1 <p<2

and
1 1 ’ NS
(GUlz +yll; + [l = yll))» < (l=lly +lyll)7" for 2 < p < +oo.

The equality case occurs in the previous inequalities if and only if zy* = y*x =0

The equality case in these inequalities is a crucial tool in the study of the
structure of O(L,(M)), the group of bijective linear isometries of L,(M).
Recall the usual following formula, for x € L, (M, 1),

[|z[l, = sup 7(zy)
yELp/ (Mv’r)vnyllp/:l

Now let 1 < p < oco. The dual of L,(M) can be identified to L, (M) by means
of the duality map (z,y) — 7(xy). A straightforward consequence of the Clark-
son’s inequalities is that L,(M) is uniformly convex, and uniformly smooth. We
now recall the notions of uniformly convexity, uniformly smoothness for Banach
spaces, since this properties of convexity about L,-spaces are a crucial fact for
our study of property (717, ).

Some definitions about uniformly convex Banach spaces

Let B be a Banach space. The convexity modulus of B is the function € — §(€)
defined by

u+v
2

d(€) = inf{1 — || [ flull ol < 1 and fju —of| = € }.

B is said to be uniformly convez if 6(¢) > 0, whenever ¢ > 0. B is said to be
uniformly smooth if its dual space B* is uniformly convex. We will say that B is
ucus if it is uniformly convex and uniformly smooth.

Let B be a stricly convex Banach space, that is a Banach space satisfying

r+y
2

|| <1 for all z,y in the unit sphere S(B) of B.
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The duality map * : S(B) — S(B*) is the unique map that associates to each
unit vector x € B, the unit vector x* in B* such that < x,2* >= 1. Moreover,
if B is a ucus Banach space, then the map * is uniformly continuous with a
uniformly continuous inverse (see [10] for more details). We will describe this
map in Section 1.3 of this chapter in the special case of the L,-spaces, and we
will use it in our proofs later.

1.1.2 7-measurable operators and s-generalized numbers

Let M be a semi-finite von Neumann algebra acting on a Hilbert space H, and
equipped with a trace 7. Let us denote by P(M) the set of projections in M.
The elements of L,(M,7) can be seen as closed densily defined operators on
‘H. Recall that a densily defined closed operator x on ‘H is affiliated with M
if zu = uz for every unitary u in the commutant M’ of M. A densily defined
closed operator x with domain D(x) affiliated with M is called T-measurable if
for every t > 0, there exists P € P(M) such that 7(P) <t, (1 — P)(H) C D(x),
and z(1—P) € M. We will denote by Ly(M, T) the set of T-measurable operators
and Lo(M, ), the set of positive operators in Ly(M, 7). In particular, elements
of L,(M,7) can be seen as elements of Lo(M, 7).

Recall that the measure topology on Ly(M,7) is by definition the topology
whose fundamental system of neighborhoods of 0 is given by

Ve, 6) ={x € Loy(M,7) | 3P € P(M), ||zP||<eand 7(1 - P) <4 }.

For details on the 7-measurable operators and the measure topology, we refer to
the preliminaries in [29], and Chapter I in [79)].

In order to generalize Ando’s inequality, we need to introduce the notion of
s-generalized numbers (see the article [29] by Fack and Kosaki for more details
on s-numbers). These numbers are a generalization of the singular values of
matrices or the singular values of operators in B(H). The s-generalized numbers
are defined for = € Ly(M, ), and s > 0, by

s(x) = inf Pl)).
pole) =, dnf (Pl

For z € Ly(M,7), we have

Tr) = inf sup < x€, € >).
Ha() P€7’<M>vf(1*P>SS(§eP(H),||£||=1 8>)

In the next proposition, we recall some useful properties of the s-numbers.

Proposition 1.1.2. [29] Let z,y € Lo(M, 7). Let 1 <p < oo. Then :
(1) ps(wy) < [l ps(y)-



1.1. Lp(M)-SPACES ASSOCIATED WITH SEMI-FINITE VON NEUMANN ALGEBRAS M19

(i1) ps(x) < ps(y) if 0 < < y.

(iii) us(f(|z])) = f( (| 1)) for every continuous increasing function f on R*
such that f(0) >

(iv) For x € L (/\/l T), we have ||z||, = f us :c)pds

(v) If vy € Ly(M,T), we have |T(xy)| < fo ps () s (y )ds

(vi) ps(zy) = ps(yx) for x,y > 0 such that xy > 0.

Properties (i) — (v) are established in [29]. Notice that if x,y are positive
operators such that xy > 0, then

<y, & >=< & xyl >=>0
hence yx > 0 and (vi) follows from the definition of s.

We need to recall a few basic properties of elements in the L,(M, 7)-spaces.

Lemma 1.1.3. Let x,y be self-adjoint elements in L,(M,T). Let 1 < p < co.
(i) If 2 > y then |la* ||, > [[y*]],( with a* = max{z, 0 ).
(ii) If xy = yx =0 then ||z + yl[} = [|=([} + |[yl[}-

Proof. (i) If x > y and r = (p — 1)/2, then

||y !Z =7y yy*")

< 7(yTzy™)
< 7(yTaty™)

§ |y ™[5~ |||, (using Holder’s inequality) .

(ii) Observe that xy = yx = 0 implies that the C*-algebra generated by {z,y} is
abelian. Hence, we can assume that x and y are functions with disjoint supports
C°(X), X being a topological space. It is then obvious that |z + y|P = |zP +
lyl”. O

1.1.3 Generalization of Ando’s inequality

n [1], Ando proved the following inequality : let a,b be positive n x n-complex
matrices, f a non-negative operator monotone function, and || - || a unitarily
invariant norm on M,,(C); then

1f(a) = FOI < [1f(la = O]

We extend this inequality to measurable operators in the special case of the
operator monotone function f : A\ — A7 and the norm || - ||, when p < ¢. This
will be used later in order to show the local uniformly continuity of the Mazur
map in the case of a semi-finite von Neumann algebra.
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Proposition 1.1.4. Let M be a semi-finite von Neumann algebra. For a,b €
Lo(M,7)y, and 1 <p < q < 00, we have

P P L
llas = ba|[y < [la— by

Recall the following integral representation for operator monotone functions,
called the Lowner integral representation.

Proposition 1.1.5. [71] Let [ be a real-valued continuous function on (0,00).
Then f is operator monotone if and only if

FO) = ar+ o+ [ St

for somea € R, 3 > 0 and a positive measure v on (0, 00) such that fooo 1%rtdu(t) <

Q.

Remark 1.1.6. If p < ¢, the mapping A — \i s operator monotone, and by
the previous Proposition 1.1.5, it admits a Lowner decomposition. In fact, the
decomposition in this case is well-known and we have

_ snem) /OO AL e
0

[ Y]

A

T A+t

Proof of Proposition 1.1.4. We first prove the inequality in the case a > b > 0.

We have, by Remark 1.1.6, an integralprepresentation of the following form
for the operator monotone mapping A — A :

Y
= du(t
/0A+ty(>’

where v is a positive measure on (0, 00) such that [ Tdv(t) < oo.

SRS

A

Let ¢ =a —b > 0. We have to prove that
(b +¢)a = ballg < [lea]lg. (1.1)

For simplicity, let us denote by a(t) the operator ¢t((b+c)(b+c+t1)~' —b(b+
t1)~1), coming from the Lowner integral representation of (b+ c¢)e¢ — ba.

Now we check that

ps(a(t)) < ps(te(c+t1)71) for t > 0 and s > 0. (1.2)
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To prove this, observe that we can assume that ¢ = 1 by replacing b, ¢ by %b, %c.
As z(x +1)7! = 1 — (z + 1)7!, inequality (1.2) is equivalent to the following
inequality :

ps((b+ 1) = +e+ 1)) <p(l—(c+1)71). (1.3)
Since
G+ —(bt+c+1) = (b+1) 31— (1+(b+1)2e(b+1)"2) ) (b+1)2

and ||(b+ 1)7!|| < 1, using successively Properties (vi) and (i) of Proposition
1.1.2, we get

l\)\»—l

(b + 1) = (b e+ 1)) < pg(1— (L4 (b+ 1) 2e(b+1)72)71).
Since (b+1)"* < 1, we have ¢2(b+ 1)"'c2z < ¢ and therefore
1—(I+c2(b+1) " e2) ' <1—(14¢)"

Now with Properties (vi) (applied to (b + 1)"2 and ¢) and (ii) of Proposition
1.1.2, we obtain

pa(1=(1+(0+1)"2e(b+1)73)71) = po (1= (1+c3 (b+1)7"e2) ™) < pa(1—(c+1) 7).

This proves inequality 1.3 and hence inequality 1.2.

Let y € Ly(M); using the inequality 1.2 and inequality (v) in 1.1.2, we have

(b o) =8 = [ rlalomdny

/ / pa(a(8)) s (y)do (1) ds

/ / ps(te(c 4+ 1) Y ps(y)dv(t)ds

= [ ntc i

p
< [leallqllylly

where we used Holder inequality (iv) in Proposition 1.1.2 in the last inequality.
The inequality (1.1) follows by taking the supremum over y in the unit sphere of
Ly(M).

Next, we consider the general case of arbitrary a,b € Ly(M, 7). For this, we
proceed as in the proof of Theorem 1 in [1].
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Let a,b > 0. Since a + (b —a)t > b, we have

SN S|

bi —ai < (a+ (b—a)*)i —at.

P
q

e e e
The operator (a+ (b—a)™)7 —ad is positive since x — 7 is operator monotone.

Hence
P p p

(a+(b—a)")s —ab)* = (a+ (b—a))} —ab.
Therefore, by (i) in Lemma 1.1.3, we obtain that

D 2
¢ —aill,.

(b5 —as)™lg < |l(a+ (b—a)T)
Applying the first case to a and a + (b — a)™, it follows that

l(a+ (b —a))s —asll, < ||(0—a)"]|,
and hence
1(be —as) ly < ||(0—a)"e]l,
Exchanging the role of a and b, we also get

[I(as = ba) "]y < [l(a—b)"l],.

Using part (ii) of Lemma 1.1.3 and the inequalities above, we have

lat — ba[[2 = ||(as — ba)*||9+[|(bs — av)*||2
< |[l(a—=b)* e[|+ /(b —a)*u|l2
=l(a—b)"7 + (b—a)*7|l2
= ||]a— bl][2

b
q

since (a — b)) a(b—a)™@ =0 and (a —b)"% + (b—a)™% = |a — b|a. The resuls
follows. ]

1.2 General Haagerup L,-spaces

The previous construction of non-commutative L,-spaces associated with semi-
finite von Neumann algebras does not apply to von Neumann algebras of type
ITI, which do not admit a normal faithful semi-finite trace. However, it is known
that any von Neumann algebra admits a faithful semi-finite weight (an additive
homogeneous functional on the positive cone with values in [0, +oc]). In [35],
Haagerup gave a construction of L,-spaces using a crossed product to reduce von
Neumann of type III to semi-finite von Neumann algebras with a trace. Another
construction, using complex interpolation, is due to Kosaki (see[49] and [79]). We
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recall here the construction given by Haagerup.

Let M be a von Neumann algebra, acting on a Hilbert space H, and equipped
with a normal faithful semi-finite weight ¢q. Let ¢t — o7° be the one-parameter
group of modular automorphisms of M associated with g (see chapter VIII and
theorem 1.2 in [78] for more details). We denote by

Ngy = M x4, R

the crossed product von Neumann algebra, which is a von Neumann algebra
acting on L*(R,H), and generated by the operators m,,(z) and \s, defined for
xr € M and s € R by

o (2)(§) () = 024 (2)&(t)
A (&) (1) = &(t — s) for any ¢ € L*(R,’H) and t € R.

Denote by s — 6 the dual action of R on N, which is defined by
05 (oo () = o (), Os(Nr) = e "N, for all z € M and ¢, 5 € R.

By Lemma 5.2 in [37], there exists a semi-finite normal trace 7,, on N,
satisfying
Ty © 0y = € 1, for all s € R.

We denote by Lo(Ny,, 7y,) the *-algebra of 7, -measurable operators affiliated
with N,,. For 1 < p < oo, the Haagerup non-commutative L,-space associated
with M is defined by

Ly(M) ={ x € Loy(N,y, 7o) | 0s(x) = e™/Px for all s € R}.

It is known that this space is independent of a weight ¢y up to isomorphism.

The space L;(M) is isomorphic to M, (see Chapter 2 in [79] for more details).
The identification is as follows : there exists a normal faithful semi-finite operator
valued weight from N, to M defined by

P, (7) = ﬂ;()l(/R Os(x)ds) , for z € N,.

Now, if ¢ € M, and ¢ denotes the extension of ¢ to a normal weight on M,
the extended positive part of M (see Definition 1.1 in [36]), we then put

@%00 — @ o (I)goo-

We associate to ¢ the Radon-Nikodym derivative h, = do™0

= i of ¢¥° with respect

to the trace 7,,, which is the unique operator in L;(M)* satisfying

P (y) = Ty (hyy) for all y € N,
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The map ¢ — hy, = Zf% gives an isomorphism between M and L;(M)*,
0

which extends to the whole spaces by linearity.

If x € Li(M), and ¢, is the element of M associated to z, we define a linear
functional Tr by

Tr(x) = (1)
and we have, p’ being the conjugate exponent of p,
Tr(zy) = Tr(yx) for x € L,(M), y € Ly (M)
For 1 < p < oo, if x = u|z| is the polar decomposition of x € L,(M), we define
Jell, = T(jal?) .

Equipped with ||.||,, L,(M) is a Banach space. The dual space of L,(M) is
isometrically isomorphic to L, (M). For 1 < p < oo, the space L,(M) is ucus.

If M is a von Neumann algebra with a semi-finite trace 7, L,(M, 1) is iso-
metrically isomorphic to the Haagerup L,-space constructed with the weight 7.

1.3 The Mazur map

Let M be a von Neumann algebra, and ¢y a normal faithful semi-finite weight
on M. Let (N, 7y, ) be the crossed-product von Neumann algebra associated to
©o, and equipped with the corresponding trace 7, as described in the previous
section 1.2.

A useful tool which relates isometries of L, (M) to isometries of L,(M) is the
Mazur map.

Definition 1.3.1. Let 1 < p,q < oo. For an operator z, let «|z| be its polar
decomposition. The map

M., :LO(/VZpovTcpo) - LO(N’sﬂovao)

Y
r = alz| — alz|
is called the Mazur map.
We now give a few useful properties of the Mazur map.

Lemma 1.3.2. Let 1 < p,q,r <oo. Then M, ;0o M,, = M,,.
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Proof. Let a|z| be the polar decomposition of € Lo(N,,, 7). Let 3> 0, and
set y = a|z|’. We claim that the polar decomposition of y is given by a and |z|°.
To show this, it suffices to prove that Im(|z|?) = Im(|z|).

By taking orthogonals, we have to show that Ker(|z|) = Ker(|z|?) for all 3 > 0.
Let 8 > 0. Recall that the domain D(|z|?) of |z|? is

D(jaff) = {¢ | / A dug(N) < oo}

where p¢ denotes the spectral measure associated to .
If ¢ € Ker(|z|), we have

<lolé.§ >= [ Adue(h) o

In particular, pg(]0, o00[) = 0. So & € D(]z|%) and £ € Ker(]z|®) thanks to
I 126 1P =< fal*€.Jal’s >= [ Xaue(x) =0,
0

By exchanging the role of |z| and |z|%, we get the equality.
Let 1 < p,q,r < oo, and 3 = p/r; then M, ,.(z) = a|z|’. It follows from what we
have just seen that M, ,(M,.(z)) = afz]s = M, ,(z). O

Proposition 1.3.3. Let 1 < p,q < 0o, and x € L,(M). Then
|| My q ()]G = [][}-
Moreover, M, ,(L,(M)) C Ly(M).

Proof. Let x = a|x| be the polar decomposition of z € L,(M) and s € R. We
have already seen that |M, ,(a)| = la| 7. So we have

Tr(|Mp4(a)]") = Tr(lal?).

By uniqueness in the polar decomposition, we have 05(o) = « and 64(|z|) =
e~*/?|x|, and then

0s(Mp,4(z)) = 95(04)88(|x|§)

= a(b,(|«])7)
= e M, ,(x).

O

In the case of L,-spaces, an explicit formula gives the duality map, by means
of the Mazur map.
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Proposition 1.3.4. Let p €]1,00[ and p' its conjugate exponent. The map
S(Lp(M)) = S(Ly(M))

= My ()"
is the duality map from S(L,(M)) to S(Ly(M)).
Proof. Thanks to the defining property of the duality map, we just have to check
that Tr(M, (z)*x) = 1 for = in the unit sphere S(L,(M)) of L,(M).
Let © = afz| € S(L,(M)); then M, (z) = a|x|§. Since a*alx| = |z, it follows
that ., .,

Tr(jz[»" o ale]) = Tr(le| [z]) = Tr(jz]") = 1.
U

Proposition 1.3.5. Let a,b € Ly(N,,, 7,,) and let e, f be two central projections
in Ny, such that ef = 0. Then M, (ae+ bf) = M, ,(ae) + M, ,(bf).

Proof. As is easily checked, we have
|ae + bf| = |ale + [b] f.

Let v be the partial isometry occuring in the polar decomposition of ae+bf, and
let @ = alal, b = B|b] be the polar decompositions of a and b. We claim that
v = ae+ [f. Indeed, we have

ae +bf = ~y|ae + bf| and
ae +bf = (ae)(lale) + (Bf)([b]f) = (ae + Bf)|ae + bf].

Since ae is zero on Ker(|ale) and Sf is zero on Ker(|b|f), ae + Bf is zero on
Im(|ae+bf|)* = Ker(Jae +by|) = Ker(|ale) NKer(|b| f), since ef = 0. This shows
that

ae +bf = (e + Bf)|ae+ bf|

is the polar decomposition of ae + bf.
Using again the fact that ef = 0 and that e, f are central elements, we deduce
that

My qg(ae +bf) = (ae + 5f)|ac + bf|«
= (ae+ /) (elal + f1b]7)
= My q4(ac) + M, 4(bf).
]
Recall that a Jordan-homomorphism from a C*-algebra A to a C*-algebra
B is a x-preserving linear map J : A — B such that J(a?) = (J(a))? for every

a € A. The structure of a Jordan isomorphism between von Neumann algebra is
given in the following theorem (see Theorem 10 in [46] and Lemma 3.2 in [75].
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Theorem 1.3.6. ([46]) Let M, N von Neumann algebras, and J : M — N be a
Jordan isomorphism from M to N'. Then we have a decomposition J = J; + Js
with the following properties : Jy is a *~homomorphism of algebra on M, Jo
is a *-anti-homomorphism of algebra, and Jy(x) = J(x)e, Jo(x) = J(x)f for all
x € M, with e, f two orthogonal and central projections in N such that e+ f = I.

The previous decomposition and elementary properties of the Mazur map al-
low us to show that a Jordan-homomorphism on a von Neumann algebra remains
unchanged after conjugation by the Mazur map.

Proposition 1.3.7. Let J be a Jordan-isomorphism of Ny, and let 1 < p,q <
oo. Then we have

J(x) = My, 0Jo M,,(x) for all z € N,.

Proof. Take the decomposition J = J; 4+ J; as in the previous Theorem 1.3.6.
Observe first that, for a € N,, with a > 0 and a positive real number r, we have

Jl(CLT) = Jl(&y

and the same is true for Js.

If o is a partial isometry, then Ji(a)) and Jo(«) are partial isometries with initial
supports J; (a*a) and Jo(aa*), and final supports J(aa*)) and Jo(a*«)) respec-
tively.

Let © = alz| € N,,. Since the supports of J; and J, are orthogonal, it follows
from Proposition 1.3.5 that

My g0 J 0 Myy(x) = Myg(Ji(Myp(x)) + Jo(Myp(z)))

= My o(J1(Myp())) + My, q(JZ(qu( )
Moreover, we have
pa(T1 (M () = My (i (0]2] )

= My o(Ji() Ji(|z])?)

= Ji(z)

and
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The following result about the local uniform continuity of M, , is proved for
general Haagerup L,-spaces in Lemma 3.2 of [69] (for an independent proof in
the case L,(M, 1) = S,, see [68]). We give a proof in the semi-finite case, using
Ando’s inequality .

Theorem 1.3.8. [69] For 1 < p,q < oo, the Mazur map M,, is uniformly
continuous on the unit sphere S(L,(M)).

Until the end of the section, M will always denote a semi-finite von Neumann
algebra. We will need the following elementary lemma.

Lemma 1.3.9. Forr > 2, and a,b € L.(M), the following inequality holds :

llal* = 16P[l; < (llalls + [b]]:)lla = b|.

%
Proof. Notice that
a*a—bb=a"(a—0b)+ (a" —b")b

and use successively the triangle inequality and Holder ’s inequality. O

Proof of Theorem 1.3.8 in the semi-finite case. Let us first establish the uniform
continuity on the subset of positive elements of S(L,(M)). Denote by p’, ¢ the
conjugate exponents of p and ¢. To simplify notation, let denote until the end of
the proof by M, , the restriction of the Mazur map to the unit sphere.
e [irst case : p <q.
In this case, the uniform continuity of M, , is a consequence of the generalization
of Ando’s inequality ( Proposition 1.1.4).
e Second case : p > q and q > 2.
Since p and p’ are conjugate, M, is uniformly continuous by Proposition 1.3.4.
By the first case, M,y , is uniformly continuous (p’ < ¢). Since, by Lemma 1.3.2,
we have

Mpvq - Mplvq © Mp,p"

it follows that M, , is uniformly continuous.

e Third case : p > q and q < 2.

Assume that p < ¢'. Then M, , and M, are uniformly continuous, as before.
Hence M, , = M, ,oM,  is also uniformly continuous. Assume now that p > q.

. / / . . . .
Since p < q, My 4 is uniformly continuous and so is M, , = M oM, oM, ;.

Let us prove now the uniform continuity on the whole sphere S(L,(M,7)).
Let us first consider the case p > q.
Assume also that p > 2. We have

Myq(a) — My,y(b) = alals ™" — bJb|+™

= (a—"b)lals™" +b(lals~" — |p|=7)
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It follows from the triangle inequality and Hdélder’s inequality that
1 Mp,q(a) = My (B)llg < [la—bll, + [[las ™" = [b]a "] o..

The uniform continuity of M, , follows from the uniform continuity of the map
a— |a|§71 on the sphere ( see Lemma 1.3.9) and from the uniform continuity of
My, 220N positive elements (here, we require p > 2).

Now assume that 2 > p > ¢. Then we have p’ > 2 > ¢, and by the previous
case M,y , is uniformly continuous. Hence M, , = M,y , 0 M, is also uniformly
continuous.

The case p < q is proved by similar arguments as the second and third cases
above (by exchanging the roles of p and ¢). O

1.4 On classification and embeddings of non-
commutative L,-spaces

1.4.1 A result on classification of non-commutative L,-
spaces

Since we study groups actions by isometries on L,-spaces, we are interested in
classifying L,-spaces up to isometric isomorphism. In the commutative case for
L,(X,pn), with (X, u) a Borel standard space, the situation is simple : if the
measure g is atomic, then L, (X, u) is isometrically isomorphic to a discrete I, ;
if the measure is non-atomic, L, (X, ut) is isometrically isomorphic to L, ([0, 1], A),
denoted once and for all L,,. Thus, a general L,(X, p) is isometrically isomorphic
to a sum [, ©F L,,.

The situation in the non-commutative case is much more complicated, and
despite new important results in the recent years, we don’t have a complete classi-
fication of these spaces up to isomorphism. The classification up to isomorphism
of the L,(M)-spaces is not complete but a remarkable classification was obtained
by Haagerup, Rosenthal, and Sukochev in [39] when M is hyperfinite (see also
[77] for a survey on such classifications for semi-finite von Neumann algebras, and
[76] for proofs in the type I case).

Theorem 1.4.1. [39] Let M be a hyperfinite semi-finite Von Neumann algebra.
Let 1 < p < oo, p # 2. Then L,(M) is isomorphic to precisely one of the
following spaces :

lpv LP: SP? CP? LP®SP7 LP®CP7 LP(SP>7 CP@LP(SP)a
Ly(Cp), Lp(R), Cp @ Ly(R), Ly(Cp) & Lp(R), Ly(R® B(lz)).
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For 1 < p < 2, we have the following refinement of this theorem (see [67] for
remarks on these theorems and accurate references).

Theorem 1.4.2. Let 1 < p < 2 and M as in Theorem 1.4.1. If X # Y are
spaces listed in the following figure, then Y contains an isomorphic copy of X if
and only if X can be joined to Y by descending arrows :

h

p(Sp)
\
C, @y Ly(S,) Ly(R)
/ /
Ly(Cyp) Cp ®p Lp(R)
\

Ly(Cy) @y Ly(R)

l

Ly(R @ B(ly))

The following theorem, due to Sherman in [74], exactly gives the condition on
the von Neumann algebras M and A in order to have isometrically isomorphic
L,-spaces for p # 2 : the von Neumann algebras M and N have to be Jordan-*-
isomorphic.

Theorem 1.4.3. ([74]) Let M and N be von Neumann algebras. Let 1 < p < oco.
The following propositions are equivalent.

(i) M and N are Jordan-*-isomorphic.

(ii) L,(M) and L,(N) are isometrically isomorphic.

Remark 1.4.4. 1. Let M and N be factors. Then a Jordan-*-isomorphism
J : M — N is a *-algebra morphism or a *-algebra antimorphism (see
Theorem 1.3.6). Hence, in this case, L,(M) and L,(N) can be isometri-
cally isomorphic only if M and N are isomorphic as *-algebras, or anti-
isomorphic.
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2. There exists esamples of von Neumann algebras which are Jordan-*-isomorphic,
but not isomorphic as *-algebras. Indeed, in [16], Connes constructed a fac-
tor M of type III such that M is not anti-isomorphic to itself. Then, M
and N' = M (the algebra M with the opposite algebra law a.b := ba) are
not isomorphic as *-algebras, but they are Jordan-*-isomorphic.

1.4.2 Embeddings of L,-spaces into Hilbert spaces

It is well-known that L,([0, 1]) equipped with the metric (f,g) — ||f — g|[B?
embeds isometrically in Ly([0,1]) for 1 < p < 2 (see [82]). We will see here that
it is no longer true for non-commutative L,-spaces.

Embeddings of metric spaces in Hilbert spaces are intimatly linked to the
notion of kernels conditionally of negative type.

Definition 1.4.5. A kernel conditionally of negative type on a set X is a function
p: X x X — R with the following properties :

(i) p(z,z) =0 for all x € X.

(ii) p(z,y) = p(y,x) for all z,y € X.

(iii) for any n € N, any 1, ...,x, in X, and any real numbers A, ...\, such that
> pe1 Ak = 0, the following equality holds :

i=1 j=1

If f:X — His a mapping with values in a Hilbert space, then (z,y) —
||f(x) — f(y)||* defines a kernel conditionally of negative type on X. Conversely,
if p is conditionally of negative type on X, then there exists a Hilbert space H
and an embedding f : X — H such that p(x,y) = ||f(z) — f(y)||* (see [8]). The
isometric embedding of a commutative L,-space into Ly for 1 < p < 2, mentioned
above, can be rephrased as follows.

Theorem 1.4.6. Let 1 <p <2, let (X, u) be a measure space and L,(X, i) the
associated commutative Ly-space. The kernel (x,y) — ||z — y|[b is conditionally
of negative type on L,(X, p).

The previous theorem does not longer hold for non-commutative L,-spaces.
The following fact is well-known (see [57] where similar computations occur).

Theorem 1.4.7. Let p # 2, and let M be a von Neumann algebra such that
L,(M) contains an isometric copy of (Ma(R),||.||,). Then the kernel

(z,y) = [z =yl
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is not conditionally of negative type on L,(M). Therefore there is no embedding
J of L,(M) into a separable Hilbert space H such that

13(2) = JW)II* = |z —yll; for all z,y € Ly(M).

Proof. We can assume that H = l;. Suppose that such an embedding j :
L,(M) — [y exists. Then we consider Ms(R) as a 4-dimensional subspace of
L,(M). We can suppose that j(0) = 0. Then, by the Mazur-Ulam Theorem (see
Theorem 2 in chapter XI of [6]), j is R-linear on My (R). The subspace M3 (R) is
embedded as a subspace of [y generated by four sequences (ay)n, (0n)n, (Ca)ns (dn)n
as follows :

@)= (g o)+ n=i (g o) =3 (5 o) @h=i(y 9).

| (a b) 2 = [|a(an) + b(by) + c(cn) + d(dy)| | for all a,b,c,d € R. (x)

c
By simple computations, we have ||(a,)n|| = [[(0n)n]] = [[(cn)nl] = [|(dn)n]] =
1.
On the one hand, we have
10\ p_ (2 ONE_ s
I (1 0) ||P_Tr(0 0) =2
and ,
L 0\, 2 0\* _»
But
[1(@n)n + (en)nl* + [1(@n)n = (ca)al I = 2 (I@n)al I* + [I(ca)al?) = 4.
10 (1 0 .
Since j 1 O) (an (¢n)n and j ( . O) = (an)n — (Cn)n, it follows from
) that 4 = 2. 27. This is a contradiction since p # 2. U

1.5 Isometries on non-commutative L,-spaces

Let O(L,(M)) be the group of linear bijective isometries of L,(M). We need
to know the structure of O(L,(M)). We will state in this section some general
results on O(L,(M)), and will give a more precise description of this group in a
few special cases.

Let us start with the description of the group O(l,) for the usual space [, of
p-summable sequences. The following result appears in [6] (see chapter XI).
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Theorem 1.5.1. Let 1 < p < 400 and p # 2. Let U € O(l,). There ezist a
sequence (c(n))nen with values in S' and a permutation o : N — N such that

U(f(n)) =c(n)f(a(n)) for all f € I,(N).

More generally, one has the following description of O(L,(X, p)) due to Ba-
nach and Lamperti.

Theorem 1.5.2. ([7] and [53]) Let 1 < p < 0o and p # 2. Let U € L,(X, p).
There ezist a measurable, measure-class preserving map T of (X, ), and a mea-
surable function h with |h(x)| = 1 almost everywhere, such that

V) = hla)(CgL @) T @) for all £ € LX)

On the non-commutative side, the first result is due to Arazy, who describes
O(C,) for the Schatten ideals C,,.

Theorem 1.5.3. [3] Let 1 < p < +o0 andp # 2, and let U € O(C,). Then there
exist two unitaries u and v in B(H) such that :

U(z) = uxv or U(z) = u'zv for all z € C,,.

The next description was given by Yeadon, who described O(L,(M)) for
L,(M) the non-commutative L,-space associated to a semi-finite von Neumann
algebra M. Here is the result.

Theorem 1.5.4. [84] Let 1 < p < oo and p # 2. Let M be a Von Neumann
algebra equipped with a semi-finite trace 7. A linear map

U:L,(M,7)— L,(M,T)
15 a surjective isometry if and only if there exist

1. a normal Jordan *-isomorphism J : M — M,
2. a unitary u € M,

3. a positive self-adjoint operator B affiliated with M such that the spectral
projections of B commute with M, the support of B is s(B) = 1, and
7(x) = 7(B?J(z)) for all x € M™,

satisfying
U(z) =uBJ(x) for allz € M N L,(M).

Moreover, such a decomposition is unique.

Remark 1.5.5. Notice that if M is a factor, the operator B in the previous
decomposition is a scalar multiple of 1. Indeed, since B is affiliated to M, its
spectral projections are elements in M. Moreover, they commute with M since B
commutes with M. Therefore every spectral projection of B is a scalar multiple
of 1, and hence B itself is a scalar multiple of 1.
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Explicit description of O(L,(M)) in a few special cases

We now give an explicit description of the isometries of S,. Recall that S, =
{@nEN*xn | Tp S Mna Zn Tl"(|l’n|p) < OO}

Proposition 1.5.6. Let U € O(S,). There ezist bijective isometries U,, of M,,
such that U = @,U,,. More precisely, there exist sequences (u,), (v,) of unitaries
m M, such that

Un(z) = upzv, or U,(x) = u,(*z)v, for allx € S,

We will need the two following lemmas for the proof of the previous proposi-
tion.

Lemma 1.5.7. The two-sided ideals of (B,M,,)s are the subspaces ®;c; M, for
I C N*.

Proof. For every subset I C N*, it is clear that ®;c; M, is a two-sided ideal of M.

Conversely, let A is a two-sided ideal of M. Let I C N* be a minimal subset
of N* such that A C ®;c;M,;. Let i € I. Then M;NA is a two-sided ideal of M;.
By minimality of I, M;N A is non-zero. So M;NA = M,;. Thus &;M; C A. O

Lemma 1.5.8. If N is a von Neumann algebra, J a Jordan isomorphism of N,
and A an ideal of N, then J(A) is an ideal in J(N).

Proof. Recall from Theorem 1.3.6 that J = J' + J? with J' an algebra iso-
morphism and J? an algebra anti-isomorphism. More precisely, there exist two
central projections P, P, € N such that J'(z) = J(Pz) and J*(z) = J(Px)
for all x € N. We also have P, P, = 0 which implies that J'(z).J?(y) = 0 for all
z,y € N. Let a € A, and b,c € N. Then J(a) € J(A), J(b), J(c) € J(N), and

we have

J(b)J(a)J(c) = J(b)J (a)J(c) + J(b)J*(a)J](c)
= JYb)J (a)J (c) + J*(b)J?*(a)J?(c)
= J'(bac) + J*(cab)
= J(PibacP, + PycabPy) € J(A).

]

Proof of Proposition 1.5.6. Set M = (&, M,,)00 = {®nxn | v, € M, sup, ||z,]| <
oo}. Let U € O(S,). By Theorem 1.5.4, we know that U is given by the formula
U(x) =uBJ(x) for all z € M N L,(M), with v a unitary in M and J a Jordan
isomorphism of M.
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Write u = @®,u,, with u,, € M,, for all n. Let v = v=! = «*. Then v € M
and v = @,v,. It follows that v, = u}, and that u,v, = 1 for all n. Hence all
the wu,,’s are unitaries.

Since B belongs to the commutant M’ of M and since the support of B is
s(B) = 1, there exist non-zero scalars A, such that B ="\, 1.

Let n > 1. By Lemma 1.5.8, J(M,,) is a two-sided ideal of M. Hence
J(M,) = Dier, M
for I, C N* by Lemma 1.5.7. For every i € I,,, J~'(M;) is an ideal of M,, (since
M, # 0 and J is bijective) and therefore J~'(M;) = M,,. For dimension reasons,
it follows that ¢ = n, that is I,, = {n} and J(M,) = M,,.
In summary, we have

U(x) = ®p puyJ(xy,) for all (z,) € M.

Therefore U = &,,U,, for a sequence (U,,), with U, € O(M,,). Since isometries
of M,, are of the form given in Proposition 1.5.6, this completes the proof. [

Now we give a description of the group O(L, &” S,).

Proposition 1.5.9. We have the following decomposition O(L,@&"S,) = O(L,)®
O(Sp)-

Proof. By Theorem 1.5.4, it suffices to prove such a decomposition on a Jordan
isomorphism J of the von Neumann algebra N' = L™ @ (8, M,,)so-

Recall that a projection P in a von Neumann algebra N is said to be minimal
if there is no projection ) in N such that 0 < @ < P. Since a Jordan morphism
preserves the projections and the order on the set of projections, J preserves the
minimal projections.

Clearly, the minimal projections of L™ & (©,M,,) are the rank one projec-
tions in (6, M) and they generate the algebra (6,M, ). Then we have

J((BnMy)oo) C (BnMy)oo

and the same argument for J~! gives the equality J((®,M,)s) = (B M) oo
Since J is an isomorphism of A, we have also J(L>) = L. 0
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Description of O(L,(M)) for a von Neumann algebra M of type III

We are now interested in the general case, that is the case of general Haagerup
L,-spaces. The following result, which we proved in [65], is a consequence of the
description given in [74] and [81] of the action of isometries of Haagerup L,-spaces
on positive elements.

Theorem 1.5.10. Let 1 < p < oo and p # 2. Let M be a von Neumann algebra
equipped with a normal faithful semi-finite weight ¢y, and U a linear bijective
isometry of the Haagerup L,-space L,(M). Then there exist a unitary w € M
and a Jordan-isomorphism J of Lo(M X, R) such that U extends to the whole
Lo(M x4, R) with the form

U(x) =wd(x) for all x € Lo(M x4, R).
Proof. We recall that for ¢ € M, h, is the unique operator in L; (M) satisfying
G (y) = Ty (hyy) for all y € N,y = M i, R.

By Theorem 1.2 in [74], there exist a Jordan-isomorphism J of M and a unitary
w € M such that

U(hi:/p) = w(hgaoJ—1>1/p for all p € M.

It was shown in [81] that .J extends to a Jordan-*-isomorphism .J between Lo(N,y,, 7, )

and Lo(N,gos-1, Tpgos—1); moreover, J is an extension of an isomorphism be-
tween N, and N, ;-1 as well as a homeomorphism for the measure topology on

Lo(Nopy, Toy) and Lo(Nipgos 15 Tppos—1)- The isomorphism J satisfies the relations

=
Tpo © J = ppoJ 1

Jto Doyt =Dy 0 J!

We claim that for ¢ € M, we have

- ~ Lpoo
dg? _ o deo ! ’

dTy, ATppor—1

) (1)
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Indeed, let p € M. We have

d@‘ﬂo

dry,

'):900(1)900

Tooo (

:@OJ—locI)%oJfloj

~ oJ 1
dpo g1 <
— e (T ( )
®0oJ ™
~ oJ 1
~ L dpo g L
— 0 TS T ()
ooJ ~
~ oJ 1
~ dgpoJ*lwO
:TSDO(J 1( dT F ) . ) 9
oo ~1

where in the last equality we used the fact that J is Jordan homomorphism.

In Lemma 2.1 in [80], it is shown that there exists a x-isomorphism K be-
tween Lo(Ny,, Tp,) and Lo(Npyos—1, Tpgou~1), which is continuous with respect to
the measure topology, and which satisfies the following relation for the Radon-
Nikodym derivatives :

~ dpPo d~3000J71
e ' _ap

= for all ¢ € M.
dry, AT ppor—1 v

From the equality (1), we obtain

~ 71900 _ _ ~p
doo /7 v, je”

AT, Teo

) for all p € M.

This last equality shows that
oy =K ' o J(hy) for all p € M}

and, since ! o J is a Jordan isomorphism, we have also

1 ~ ~

(hpoy—1)7 = K=o J(hE) for all ¢ € M.

As a consequence, the linear and bijective isometry U of L,(M) is given by the
following relation on positive elements :

Uz) =w (Ko J(x)) for all z € Ly(M)™.

This relation extends by linearity to the whole space L,(M). O
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1.6 Isometries of closed subspaces of L, -spaces

In this section, we are interested in O(F') for F' a closed subspace of L,(M). We
first recall the results in the commutative case.

1.6.1 The commutative case

The following Theorem due to Hardin shows that every isometry of a closed sub-
space of L, (X, p1) extends uniquely to L,(X’, i) for some measure space (X', i').

Theorem 1.6.1. [40] Let (X, B, 1) be a measure space. For every closed subspace
F C LP(X, ), there is a canonical extension F' C FcC LP () which is isometric to
LP(X', 1) for som other measure space (X', i'). Furthermore, if 1 < p ¢ 2N, then
every linear isometry U : F' — LP(Y,v) extends to a surjective linear isometry

U:F —UFCLY,v).

As a consequence of the previous Theorem 1.6.1, we have that a linear bijective
isometry of a closed subspace of LP has the form given in Theorem 1.5.2.

1.6.2 The non-commutative case

There is no general result about the description of isometries of closed subspaces
in non-commutative L,-spaces. In the non-commutative context, it is natural
to consider complete isometries instead of isometries. Recall the definition of
n-isometries and complete isometries.

Definition 1.6.2. Let 1 < p < co. Let M and N be finite von Neumann
algebras. A linear map U : L,(M) — L,(N) is said to be a n-isometry from
L,(M) to L,(N) if the map

id® U : L,(M, @ M) — L,(M, @N)

is an isometry.
U is said to be a complete isometry if U is a n-isometry for all n > 1. U is said
to be wunital if U(1) = 1.

Example 1.6.3. (i) Let M = L*>°(X, ) be a commutative von Neumann al-
gebra. Let 1 < p < oo, p # 2. Let U € O(L,(X,p)) be a linear bijective
isometry of L,(X, ). By Banach-Lamperti Theorem 1.5.2, there exist a measur-
able, measure-class preserving bijection T of (X, 1), and a measurable function
h with |h(z)| almost everywhere, such that

dT. 1

(U()(x) = h(z)( n () f(T(x)) for all f € Ly(X, p).
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Let n > 1. We can identify L,(M,,® M) with the space L,(X, M,,) of measurable
matrix functions F' : X — M,, with finite norm

1 Ellp = (/X To(|F (@)]?)dp(x)) .

Let F € L,(X,M,). Then, for all z € X,

dT,p
dp

(id®@ U)F(x) = Mx)F(Tx), where A(z) = h(z)( (x))%

Hence,
(i@ V)l = (| TOA@PIFT)P)dula)

— /X To(|F (2)")dp(x))
= ||F||p

=

This shows that U is completely isometric.

(i) Let M = M5(C). Let p =n for n € N, n > 3. We claim that the isometry
of L,(M) defined by the anti-isomorphism

T: M—- M
r—la
is not 2-isometric. Indeed, let
1 010 0
0 0f1 O
A= | 5To 01| € Ma(M=(C)).
0 0[O0 1

Then (id @ T')(A) = B for

oy

I
_— Ol =
O OoOflo O©
o Ol O
_— Ol =

We have A* = A and A% = I. Hence
[Al[p = Tr(|A]") = Tr(1) = 4.
On the other hand, B* = B and B? = 2B. Hence
||B|[p = Tr(|B|") = 2" 1Ty (B) = 2™,
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So, |[(id @ T)(A)||, # ||Al|,- This example can obviously be generalized to the
case M = M,,(C) or M = B(ly). In view of Arazy’s result ( Theorem 1.5.3), we
see that U : €}, — C), is a complete surjective isometry of (), if and only if there
exist two unitaries u and v in B(ly) such that U(z) = uzv for all x € C,,.

When M is a finite von Neumann algebra, we have the following remarkable
result due to De La Salle about the extension of a unital complete isometry on a
closed subspace F' of L,(M).

Theorem 1.6.4. [24] Let M be a finite von Neumann algebra with normalized
trace 7. Let F' be a subspace of L,(M,T) and let U : F — L,(M, 1) be a linear
map. Let 1 < p < oo such that p ¢ 2N.

Assume that : F C M.

Assume also that for alln € N and all X € M,,(F), the following equality holds

1ag, @ I+ X||p = [T, @ Ly + (1d @ U)(X)] |,

Let VN(F') denote the von Neumann subalgebra generated by F' in M. Then
U(F) C M and U extends to a von Neumann algebra isomorphism U : VN(F') —
VN(U(F)) that preserves the trace, and this extension is unique.

Remark 1.6.5. With the assumptions of the previous Theorem 1.6.4, if U :
F — F'is a linear bijective complete isometry of F', then U extends uniquely
to M’ = VN(F') and therefore extends uniquely to a linear bijective complete
isometry on L,(M’) .



Chapter 2

Property (TLp(/\/l))

Property (T') for locally compact was introduced by D.Kazhdan in the end of
the 60’s in [47] to show that some lattices were finitely generated and have finite
abelianization. It is a rigidity property of the unitary representation theory of
the groups considered. Property (7T') found many applications in diverse areas :
ergodic theory, random walks, operator algebras, combinatorics, theoretical com-
puter science...Variants of property (") have been considered by several authors.
We will be interested in property (T5) defined by the authors of [4] for orthogonal
representations on a Banach space B. We will study the case where B is a non-
commutative L,-space. In section 1, we recall some general facts about unitary
representations and property (T'). Section 2 is devoted to orthogonal representa-
tions on a Banach space B and the definition of property (7). In section 3, we
recall the main result of the authors of [4] relative to property 77, for commu-
tative L,-spaces. The conjugation of an orthogonal representation on L,(M) by
the Mazur map, which is a crucial tool for our proofs, is explained in section 4.
In section 5, we give the proof of the main theorem of this chapter, which is that
property (7) implies property (17,(aq)) for any von Neumann algebra M. We
study the special case of property (7;,) in section 6. In section 7, we introduce
a weaker version of property (77, (aq)) for representations by complete isometries

on L,(M).

2.1 Introduction

2.1.1 Unitary representations of groups

We recall here basic facts about unitary representations that we will need later.
For the general facts concerning unitary representations, see Part II in [8]. Let
G be a topological group, and let H be a Hilbert space. Let U(H) be the group
of all unitary operators on H.

41
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Definition 2.1.1. A wunitary representation (w,’H) of G on H is a group homo-
morphism 7 : G — U(H) such that the mapping

G—H
g9 —7(9)¢
is continuous for every & € 'H.

We recall the notion of containment and weak containment of unitary repre-
sentations :

Definition 2.1.2. Let 7 and ¢ be unitary representations of G.

(i) We say that o is contained in w (in symbols o C 7) if o is unitarily equiv-
alent to a subrepresentation of .

(ii) We say that o is weakly contained in 7 (in symbols o < ) if every matrix
coefficient g —< 7(g)&, £ > can be approximated, uniformly on compact subsets
of G, by finite sums of matrix coefficients g —< o(g)n,n >.

Let (7, H) be a unitary representation of G. We will denote by
HYS = {e e H | n(g)¢ =€ for all g € G}
the closed subspace of 7(G)-invariant vectors in H.

Definition 2.1.3. For a subset () of G and a real number ¢ > 0, a vector £ € H
is called (Q, €)-invariant if

sup |7 (g)§ — &l < ell¢]]-

9eQ

We say that the representation (m,H) almost has invariant vectors if it has
(@, €)-invariant vectors for every compact subset @ of G and every € > 0.

We will sometimes use sequences of almost invariant vectors for 7 :

Definition 2.1.4. A sequence (&), of vectors of H is called a sequence of almost
1mwvariant vectors for the representation 7 if :

- [1€al] =1 for all n € N.
- lim,, sup ¢ ¢ ||7(9)&n — &al| = 0 for every compact subset K C G.

If 7 has a sequence of almost invariant vectors, then 7 almost has invariant
vectors. The converse is true when the group G is o-compact.

In the special case where o = 14 is the trivial representation of GG, the notions
of containment and weak containment can be rephrased as follows :
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Proposition 2.1.5. Let (w,H) be a unitary representation of G.
(i)lg Cm e HE £0 ;
(ii) 1¢ < m < m almost has invariant vectors.

Examples

1. The regular representation A of a locally compact group G on Ly(G, dg),
where dg stands for the left Haar measure on G, is given by

Aa(9)f(R) = f(g~"h) for all f € Ly(G,dg), g,h € G.

2. Let H be a closed subgroup of a locally compact group G. Then G/H
carries a quasi-invariant measure p. The unitary representation Ag/g of G
defined on Ly(G/H, 1) by

oymlo)eCott) = (L () ey e ) for all . € G € € L(G/H)

is called the quasi-regular representation of G associated to H.

3. Let G be a locally compact group and H a closed subgroup of G. Let X
be a Borel subset of G which is a fondamental domain for the action of H
by right translations on G; thus, G = |J,.y«H and 2H N yH has Haar
measure 0 if x # y.

For g € G and z € X, let a(g,x) € H and g.z € X be defined by

gr = (g.x)a(g, x).
Then G x X — X, (g,x) — g.x is an action of G on X for which the Haar
measure on X is quasi-invariant. Moreover, o : G x X — H is a cocycle.
Let now (7, H) be a unitary representation of H. The induced representa-
tion Ind$7 is the unitary representation of G on Ly(X,H, 1) defined by

1 (9)e(o) = (L)) Paaly™ (o0

forall g€ G,z € X, € € Lo( X, H).

The induced representation can also be realized on the Hilbert space H of
measurable mappings f : G — H such that :

(i) f(gh) =m(h™Y)f(g) for all h € H and almost every g € G ,

() [1FI1* = Joyu 11 f (IPdp(gH) < oo.
This realization is given by the formula

IndS} o) (o) = (L (@) 2 (g o)

forallge G,z € X and f € H.
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Remark 2.1.6. In the particular case where m = 14, Indfll g is equivalent to
the quasi-regular representation Ag,p.

2.1.2 Kazhdan’s property (7))

For details concerning this section, see [8]. It is useful to introduce the definition
of property (7T') for pairs of groups.

Definition 2.1.7. Let GG be a topological group and H a closed subgroup of G.
The pair (G, H) is said to have property (7') (or G is said to have the relative
property (7') with respect to H) if there exist a compact subset @ of G and € > 0
such that : whenever a unitary representation 7 of G on a Hilbert space H has
a (@, €)-invariant vector, then 7 has a non-zero 7(H )-invariant vector. The pair
(@, €) is called a Kazhdan pair.

A topological group G is said to have property (7) if the pair (G, G) has property

(7).
Property (7") can be rephrased as follows :

Remark 2.1.8. Let G be a topological group.

1. G has property (1') < For every unitary representation 7 of G, if 15 < ,
then 15 C 7.

2. G has property (T') < For every unitary representation = of G on a Hilbert
space H, the restriction 7’ of 7 to the orthogonal complement of H™(¢) does
not almost have invariant vectors.

Consequences of property (7)

Here are some important consequences properties of property (7).

Proposition 2.1.9. Let G be a locally compact topological group with property
(T'). Then G has the following properties :

(i) G is compactly generated ;

(i) the abelianised group G /|G, G| is compact ;

(iii) G is unimodular ;

() if G is amenable, then G is compact.

An important fact about property (7T') is that it is inherited by lattices or
more generally by subgroups with finite covolume.

Proposition 2.1.10. Let G be a locally compact group and let H be a closed
subgroup of G such that G/H has a finite invariant reqular Borel measure. The
following properties are equivalent :

- G has property (T).
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- H has property (T).
In particular, if T is a lattice in G then I' has property (T') if and only if G has
property (T').

Examples

1. Trivial examples of groups with property (7') are compact groups.

2. Important examples of pairs of groups with property (7') are the pairs
(R? x SLy(R),R?) and (Z? x SLy(Z),7?).

3. Let K a local field. Then SL,(K) for n > 3 and Sps,(K) for n > 2 have
property (7). More generally, higher rang groups (see Chapter III ) have
property (7).

4. The groups Sp(n, 1) for n > 2 have property (7).

2.2 Property (T) for representations on Banach
spaces

We give in this section general facts about a variant of property (1) relative to
a certain class of Banach spaces B, namely the ucus Banach spaces. It is called
property (75), and was introduced in [4], where more details and proofs concern-
ing general facts about property (T5)) can be found.

Let B be a Banach space. Denote by O(B) the group of linear bijective isome-
tries of B. Let 7 : G — O(B) be a homomorphism from a topological group G
to O(B) such that the maps g +— 7(g)z from G to B are continuous for every
r € B. Such a continuous homomorphism is called an orthogonal representation
of the group G on the space B.

Let G be a topological group and H a closed subgroup of G. Let 7 : G — O(B)
be an orthogonal representation of G on B. We denote by B™#) the subspace of
m(H)-invariant vectors in B. We can define almost invariant vectors for 7 and
sequences of almost invariant vectors for 7 as in the previous section. Observe
that if the subgroup H is normal in G, then the subspace B™") is 7(G)-invariant.

Definition 2.2.1. Let G be a topological group and H be a closed normal sub-
group of G. The pair (G, H) has relative property (Tg) for a Banach space B
if, for any orthogonal representation 7 : G — O(B), the quotient representation
7' G — O(B/B™ ) does not almost have 7’(G)-invariant vectors.

A topological group G has property (1) if the pair (G, G) has relative property
(Ts).
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If B =H is a Hilbert space, the representation n’ is equivalent to the restric-
tion of 7 to the orthogonal complement of the space of invariant vectors H™(),
and the definition of (75) agrees with that of Kazhdan’s property (7) (see Re-
mark 2.1.8).

We will deal with the case where B is a ucus Banach space, that is a uniformly
convex Banach space with a uniformly convex dual space. In this situation, we
will have a canonical complement of B™(¢).

From now on, let B be a ucus Banach space. We recall that the duality map
x: S(B) — S(B*) associates to each unit vector # € B, the unique unit vector *x
in B* such that < x,*x >= 1. Recall that since B is ucus, the duality map * is
uniformly continuous on the unit sphere S(B) with inverse uniformly continuous

on S(B*).

Let m : G — O(B) be an orthogonal representation of a topological group G
on B. The contragredient representation 7* : G — O(B*) of the representation
7 is defined by

<x,7(9)y >=< (g Ha,y > forallz € B,y € B*,g € G.
Let B™(@ be the space of 7(G)-invariant vectors. Notice that we have the equality

*(BT((G)) _ (B*)W*(G)

The following theorem asserts that the space B™“) admits a canonical 7(G)-
invariant complement B’.

Theorem 2.2.2. (Proposition 2.6 in [4]) Let G be a topological group, and let B
be a ucus Banach space. Let m: G — O(B) be an orthogonal representation of G
on B. Denote by B' = B'(r) the annihilator of (B*)™ %) in B, that is

B ={zecB|Ve(B) 9 <z y>=0}.

Then
B=pB"%9agp.

Notice that when B = H is a Hilbert space, the complement B’ is the or-
thogonal complement of H™®). As for property (T') (see Remark 2.1.8), property
(Tp) can be rephrased as follows :

Corollary 2.2.3. Let G be a topological group, and let B be a ucus Banach space.
Then the following assertions are equivalent :

(i) G has property (Tg) ;

(i) For every orthogonal representation m : G — O(B) of G on B, the restriction
7" of m to B' = B'(m), does not almost have invariant vectors.
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Remark 2.2.4. 1. Let m; : G — O(By), m : G — O(Bs) be orthogonal rep-
resentations of G on By and By. Let ¢ : By — By be a linear bijective
isometry intertwining the representations m; and my. Denote by p(m;) and
p/(m;) the projections on B; 19 and Bi(m;). Then the following diagrams
are commutative :

B,—— B, and B, — By

@ ]
p(m)l p(WQ)l p’(m)l P’(W2)J/

317'32 BIT'BQ

2. The authors of [4] studied representations on “superreflexive” Banach spaces,
which is a class of Banach spaces that contains the class of ucus Banach
spaces, and give an analog of Theorem 2.2.2 in this context.

We have the following basic facts concerning property (7) (see Proposition
2.15 and Corollary 2.12 in [4]).

Proposition 2.2.5. Let B be a ucus Banach space and G a topological group.
Then :

(i) any compact group has property (Tg);

(i) if G has property (Tg), then any quotient group of G has property (Tg);
(iii) if G = Gy X ... x Gy, is a finite product of topological groups, then G has
property (Ts) if and only if every G; have property (Tp);

(iv) G has property (Tg) if and only if G has property (Tp~).

2.3 Property (17, (x,))

The authors of [4] studied the particular case of the Banach spaces L,(X, i), for
a non-atomic o-finite measure p on a Borel space (X, B), and 1 < p < oo. Notice
that L1(X, ) and Lo (X, 1) are not ucus (they are not even stricly convex).

Recall that the Mazur map is the map defined by

M, - Lp(X> N) - Lq(Xa U)

F= /DU = (/DL
It is locally uniformly continuous and, if p’ is the conjugate exponent of p, M,

is the duality map between L, (X, ) and Ly (X, ) o~ (L,(X, p))*. The following
theorem is one of the main results in [4].

Theorem 2.3.1. (Theorem A in [4]) Let G be a locally compact second countable
group. If G has property (T'), then G has property (Tg) for Banach spaces B of
the following types.



48 CHAPTER 2. PROPERTY (T}, (m))

1. L,(X, ) for any o-finite measure j1 on a Borel space X, any 1 < p < 0o ;
2. closed subspaces of L,(X, ) for1 <p < oo with p#4,6,8... ;
3. quotient spaces of Ly(X, ) for 1 < p < oo withp # 3,2, 2....

If i is moreover non-atomic and G has property (17, (X, 1)), then G has Kazh-
dan’s property (T).

Remark 2.3.2. We give here some remarks concerning the proof of the theorem
above.

1. The proof of item 2 follows from the proof for L,-spaces, once we notice
that by Theorem 1.6.1, a representation on such a closed subspace ex-
tends to a representation on a space L,(X’, ') containing F', and hence
has the form given in Banach-Lamperti’s Theorem 1.5.2. A generalization
of Hardin’s Theorem 1.6.1 for extensions of isometries of closed subspaces
of non-commutative L,-spaces, is not known in general context. However,
a result of De La Salle (see Theorem 1.6.4) shows that complete isometries
admit sometimes such extensions. This will allow us to extend item 2 of
Theorem 2.3.1 to the non-commutative context (see Theorem 2.7.4).

2. The result for quotient spaces is deduced from the one for closed subspaces,
using (iv) in Proposition 2.2.5.

2.4 The conjugate of a representation by the
Mazur map

In order to study property (77, u)), a crucial tool will be the possibility to trans-
fer a representation on L, (M) to a representation on Ly(M) (and from Ly (M) to
L,(M) if possible). In this section, we establish some general facts about group
representations on non-commutative L,-spaces. More precisely, we show how to
construct a representation 7? on L,(M) from a representation 7? on L,(M). The
proofs of this section rely essentially on the properties of the Mazur map, and
on the structure of the group of isometries O(L,(M). For general properties on
the Mazur map and Jordan morphisms on von Neumann algebras, we refer to
Chapter 1 of this thesis.

Let M be a von Neumann algebra, and 1 < p,q < co. Let
Mg+ Ly(M) — Ly(M)

be the Mazur map, as defined in Section 3 of Chapter 1. Recall that O(L,(M))
denotes the group of linear bijective isometries of the space L,(M).
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Proposition 2.4.1. Let p # 2. For U € O(L,(M)), we have
V=M,,0UocM,, € O(L(M)).

Moreover, if M is semi-finite and U = W BJ is the Yeadon decomposition of U,
then the isometry V' is given by the formula

V(z) = WB4J(z) for all z € M N Ly(M, 7).

Proof. The fact that the map V' is norm-preserving on L,(M) is a consequence
of the norm-preserving property of the Mazur map (see Proposition 1.3.3). It
remains to show that V' is linear. We first give the proof in the semi-finite case,
and then the more involved proof for general Haagerup L,-spaces.

o Semi-finite case : Assume that M admits a faithful semi-finite normal
trace 7. By Yeadon’s Theorem 1.5.4, there exist a Jordan-isomorphism J of M,
a positive operator B commuting with M, and a partial isometry W in M with
the property that W*W is the support of B, such that

U(x) =WBJ(x) for all z € M N L,(M,T).
From Proposition 1.3.7, we have the equality
M, 0JoM,,="/J.

Since B commutes with every z € M N L,(M), the polar decomposition of By
is By = aBly| if y = ay| is the polar decomposition of y. Hence

M, o(BJ(M, () = B M,  (J(M,,(x))for all z € M N Ly(M, 7).

Therefore, we have

V(x) = WMp,q(BJ(Mq,p(x»
= W B My (J(My,(x))
= WBJ(z)

for all z € M N Ly(M, 7). This shows that V' is linear on M N L, (M, 7). The
linearity on the whole space L,(M, 1) follows from the density of M N L,(M,T)
in L,(M, 7) and the continuity of V.

e General case : Let g be a normal semi-finite faithful weight on M. Recall
from Theorem 1.5.10 that there exist a unitary w in M and a Jordan isomorphism
J of Lo(M Xy, R, 7,,) = Lo(Nyy, Ty,) such that the linear isometry U has the
form

U(x) = wd(x) for all @ € Lo(Nyy, Ty )-
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Recall that the restriction J : N,  — N, is an isomorphism. Hence, by Propo-
sition 1.3.7, we have

V(z) = MygoU o Myy(x)
= w(Mpq0J o Myp(z))
=wJ(x)
for all x € N,,. Recall from [69] that the Mazur map is continuous for the
measure topology on Lo(Ny,, Ty, ). So by density of Ny, in Lo(Ny,, 7,,) for the
measure topology, we have
V(z) =wlJ(x) for all z € Ly,(M)
which gives the linearity of V' on L,(M). O
Corollary 2.4.2. Let G be a topological group, and let M be a von Neumann
algebra. Letp # 2, and 1 < g < co. Let P : G — O(L,(M)) be a representation
of G on L,(M). For g € G, define m%(g) : Ly(M) — L,(M) by
m(g) = Mp,q 0 m(g) © Myyp.
Then 74 : g — w(g) is an orthogonal representation of G on L, (M).
Proof. By the previous proposition, 79(g) € O(Lo(M)) for every g in G. More-
over, for every x € L,(M), the map ¢ — 7%(g)z is continuous, since g
P (g)Mgp(x) and M, , : L,(M) — L,(M) are continuous (see Proposition 1.3.8).

It remains to check that 79 is a homomorphism. Let g, g2 € G. Using Lemma
1.3.2,

(1) (g2) = My 0 7 (g1) © Mgy 0 Myq 07 (g2) © My,
= My q0m(g1) 0 7(g2) © My,
= My 07 (9192) © My,
= 1(g192)-
U
Let M be a semi-finite von Neumann algebra and 7* : G — O(L,(M)) an

orthogonal representation of G on L,(M). Then, by Yeadon’s Theorem 1.5.4,
every 7(g) has a decomposition

7(g) = ugByJy(z) , © € M N Ly,(M),

where u, is a unitary in M, By a positive operator commuting with M and J, a
Jordan isomorphism of M. We will need a description of the decomposition for
the conjugate isometries

7(g) = My 07" 0o M,,
as well as the decomposition of the product

7 (g1)7(g2) for g1, 92 € G.
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Lemma 2.4.3. Let M be a semi-finite von Neumann algebra. Let u be a unitary
i M, B a positive operator affiliated with M and commuting with M, and J a
Jordan isomorphism of M. Then, for all y € L,(M)., we have

J(uBy) = J(u)J(B)(J'(y) + J*(uyu”))
where J' is a Jordan x-algebra isomorphism, and J* is a x-algebra anti-isomorphism.

Proof. Recall from Theorem 1.3.6 that J = J'+.J? where J! is a Jordan *-algebra
isomorphism, and J? is a *-algebra anti-isomorphism. Let y € L,(M),. Then

J(uBy) = J*(uBy) + J*(uyu*Bu)
W) JH(B) T (y) + T () J*(B) J* (uyu”)

J
J()J(B)(J'(y) + J* (uyu”)).

O

Theorem 2.4.4. Let GG be a topological group. Let M be a semi-finite von Neu-
mann algebra. Let 1 < p,q < oo. Let P be an orthogonal representation of a
topological group G on L,(M) such that, for every g € G, 7P(g) has the decom-
position

(g)(x) = uyByJ,(z) for all x € L,(M),

where ug s a unitary in M, By a positive operator commuting with M and J, a
Jordan isomorphism of M. Then

7(g)(x) = uyBg J,(z) for all z € Ly(M) and all g € G.
Moreover, the following relations hold for all g1, g2 € G and all x € L,(M),

Ugygy = Ugy Jgy (ugz):
BQIQQ = Bg1 ng (Bgz)a

Sy, () = J;l((]gg(x)) + JgQI(ugzjgz(@U* ).

g2

Proof of Theorem 2.4.4. The fact that 7?7 has the claimed form follows from
Proposition 2.4.1.

Let g1,92 € G. By Lemma 2.4.3, and using that the B,’s commute with M,
we have

7™(9192)(x) = 7(g1)(7(g2)(2))
= g, By, Jg, (g, By, J g (7))
= g, Jg, (Ug,) By, Jg1(Bgz)(Jg12 (z) + ‘]32 (u92:1:u;2))

for g1,92 € G and x € L,(M). Hence, by the uniqueness of the decomposition in
Yeadon’s theorem 1.5.4, we obtain the relations in 2.4.4. ]
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Remark 2.4.5. (i) Let M be a von Neumann algebra, and let 1 < p, ¢ < oo. Let
P G — O(L,(M)) be an orthogonal representation of the group G. Assume
that, for every g € G, the isometry 7”(g) has the form

7 (9)(z) = ugJy(x) for all x € L,(M) (%)

for a unitary uy in M, and a Jordan isomorphism J, of M. Then, for every
g € G, the conjugate isometry 7%(g) = M, , o wP(g) o M,, € O(L,(M)) has the
form

m(g)(x) = ugJy(x) for all x € L,(M).

(ii) Let M be a semi-finite factor or M = [*. Let 1 < p < o0, p # 2. Let
G — O(L,(M)) be an orthogonal representation of the group G. Then, for
every g € G, the isometry 77(g) has the form (x) as above.

Now we give a useful description of the contragradient representation (7)*
of an orthogonal representation 7* : G — O(L,(M)) of a topological group G.
Recall that Tr is the linear functional on Ly (M) defined (for any von Neumann
algebra M) in Chapter 1 Section 1.2 and the duality bracket between L,(M)
and L, (M) is given by (z,y) — Tr(zy). The contragradient representation of
™ G — O(Ly(M)) is therefore equivalent to the representation on L, (M),
also denoted by (7P)* for simplicity, defined by the formula

Te((7")"(9)(x)y) = Tr(zn?(g~")(y)) for all z € Ly(M),y € Ly(M),g € G.
We recall that we denote by * : L,(M) — L, (M) the duality map.

Proposition 2.4.6. Let G be a topological group, M a von Neumann algebra,
and 1 <p < oo, p#2. Let m: G — O(L,(M)) be an orthogonal representation.
Let g € G. Then

() (g)x = # 0 77(g) 0 % (2) for all & € S(Ly(M)). (1)
In particular, if M is semi-finite and if 7°(q) = u,B,.J, is the Yeadon decompo-
sition of 7°(g), then we have
() (g)x = w2 B3 ugJy(x)s, for all = € Ly(M). (2)
Proof. Tet @ € S(Ly(M)). We have
Tr((7”)"(g)(x) 7P (g)(x 'x)) = Tr(znP (g~ )P (g)(+ 'x))

= Tr(z* ' )

=1.

This shows the equality (1) for x, by the defining property of the duality map.

By linearity of the maps = — (7?)*(g)z and = — u;Bg’T'ung(x)u;, it suffices
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to show the equality (2) on positive elements x € S(L,(M)). By Proposition

1.3.4, the duality map is given by the formula xy = (M, y)* = |y|r%oz* for all
y = aly| € S(L,(M)). Let now = € S(Ly(M)), x > 0. Then, by the equality
(1), we have

0

2.5 Property (17 (\)) for non-commutative L,(M)-
spaces

In this section, we generalize item 1 in Theorem 2.3.1 to all non-commutative
Ly-spaces, that is, we show that property (7') implies property (17,q)) for
1 < p < o and for any von Neumann algebra M. We then show that the
converse is true for some von Neumann algebras M whose group of isometries
O(Ly(M)) is sufficiently large.

2.5.1 Property (T') implies property (17 (u))

Let M be a von Neumann algebra. Let 1 < p < oo and p # 2. Let G be
a topological group. Let 7P be an orthogonal representation of G on a non-
commutative L,(M). The space of 77(G)-invariant vectors in L,(M) is

L,(M)™ @ =1z € L,(M) | 7mP(g)xz =z forall g€ G }

Let p’ be the conjugate exponent of p, and let (77)* be the contragradient rep-
resentation of 7 on L,(M)*. Recall that (7P)* is equivalent to a representation
(also denoted by (7?)*) on L,,(M), and since L,(M) is a ucus space, the space

L,(M) (7P) = {v € L,(M) | Tr(ve) = 0 for all ¢ € Ly (M) (D}

is a topological complement for LP(M)’TP(G).
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Let now H be a closed normal subgroup of G. Then L,(M)™®H) as well as
its complement Lp(/\/l)’(w? ) are mP(G)-invariant.

The following proposition will play a crucial role in our study of property
(T,(my)- It will be also used in Chapter 4 for our study of property (Hp, 1))

Proposition 2.5.1. Let G be a topological group, and H a closed normal subgroup
of G. Let M be a von Neumann algebra. Let p # 2, and 1 < q < co. Let P be a
representation of G on L,(M). Suppose that w7 almost has invariant vectors in
Ly(M) (resp. in Ly(M)' (7)) for G. Then its conjugate by the Mazur map m
defined by

m(g) = Mpq 0 m*(g) o My, for all g € G,

almost has invariant vectors in Ly(M) (resp. in Ly(M)'(77)) for G.

The proof of Proposition 2.5.1 depends on an essential way on the following
Lemma 2.5.2.

Lemma 2.5.2. With the notations as in Proposition 2.5.1, letv € S(L,(M) (7%,,)).

/H
Then .
(v, L(M)"®) >
Proof. Assume, by contradiction, that there exists b € L,(M)™®) such that
1
—b —.
o =Bl < 5
Then § < [Joll, < .
b
Set ¢ = . Then [|c|[, =1 and [|b— ||, < 3.

151
We claim that M, (c)* € Ly (M)™) W) Indeed, M, (c)* = *c by Proposition
1.3.4. Moreover, ||c||, = 1, and by Proposition 2.4.6, for all g € G, we have
(77)*(g)(xc) = (x o mP(g) 0% 1) % c
= x7P(g)c
fr— *C
since ¢ € L,(M)™ (). Hence
Tr((c = v) My (€)*) = Tr(eMyp (€)7) = [lell; = 1.
On the other hand, using Holder’s inequality, we have
1= Tr((c — v)Mpp(c)")
< le = vllp||Mpp ()"
= |lc = vllpllell¥’

= [le = vllp-
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This implies that ||¢c —v||, > 1 and we have

N —

o =0l > |[v—cllp = llc = bl[, >
This is a contradiction. O

We are now in position to give the proof of Proposition 2.5.1.

Proof of Proposition 2.5.1. Assume that 7” almost has invariant vectors in L, (M)’ (7))

(the proof is identical in the case of almost invariant vectors in L,(M)). Let @
be a compact subset in G, and take ¢ > 0. We have to show that 7?¢ has a
(Q, e)-invariant vector in Ly (M)’ (7] ).

We can find, for every n, a unit vector v, € L,(M)'(7);) such that

1
sup [177(9)tn — vally < =
geQ n

Let w,, be the projection of M, ,(v,) on the canonical complement Lq(./\/l)/(ﬂ'?H)

of Ly(M)™H) We claim that w, is (Q, €)-invariant for 77 for n sufficiently large.

We first show that there exists § > 0 such that
d(M, 4(vy), Ly M)™ Y > 6 for every n.

Indeed, otherwise for some ng, there exists a sequence (ay), in € L,(M)™#H)
such that
|| Mp,q(vng) — arllq PR 0.
— 00

By Proposition 1.3.3, we have

p
|| Mg (0ny)lg = [lomo[5 = 1.

Since ||ag||q — || My, q(vng)|lq = 1, we can assume that ||ay||, = 1. Recall that
— 00

Mq,p(Lq(M)ﬂq(H)) - Lp(M>7rp(H)-
Hence, M, ,(a;.) belongs to L,(M)™H) for every k. Moreover

lomg = Myp(ar)lly —— 0
—00

by the uniform continuity of M, , on the unit sphere (see Proposition 1.3.8). This
is a contradiction to lemma 2.5.2.
In particular, we have

[wnlg = d(M, (), Ly M)™H)) > 5" for all n.
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Since H is normal in G, the projection on the complement Ly(M)'(77;)

commutes with 79(g) for every g € G. Hence, for g € @), we have

|7 (g)wn — wallg < [179(9) Mp,q(v) — Mp,q(va)llq
= |[Mp (7P (g)vn) — Mpq(vn)llq-

Recall that ||vn||§ =1 and that

1
sup || 7P (g)vn, — vn||p, < — for all n.
9€Q n

Hence, by the uniform continuity of M, , on S(L,(M)), there exists an integer
N (depending only on (@, €)) such that

sup ||79(g)w, — wy||, < €6 for n > N.
9€Q

Since ||wy||, > &', it follows that

sup ||74(g)w, — wyl|q < €|wy||, for n > N.

9€Q
This shows that w, is (@, €)-invariant for 7T(/ZH when n > N. This finishes the
proof of Proposition 2.5.1. 0

Here is one of the main results of this thesis.

Theorem 2.5.3. Let G be a topological group and H a closed normal subgroup
of G. Assume that the pair (G, H) has property (T'). Let M be a von Neumann
algebra, and 1 < p < oco. Then the pair (G, H) has property (Tr,m))-

Proof. We follow the strategy of the proof of Theorem A in [4]. Let p €]1, 00[. Let
H be a closed normal subgroup of G such that the pair (G, H) has property (7).
Assume by contradiction that the pair (G, H) does not have property (17,(m))-
Then there exists an orthogonal representation 7* : G — O(L,(M)) almost hav-
ing invariant vectors in L,(M)'(7?, H), the complement of L,(M)™#).
Now define 7 = M, 0 7 o M,,. By Corollary 2.4.2, 7 is an orthogonal
representation of G on Ly(M). Then by Proposition 2.5.1, 72 almost has invariant
vectors in Ly(M)'(m7), which is the orthogonal subspace of Ly(M)™H) - This
contradicts the fact that the pair (G, H) has property (7).

]

The following stronger version of property (Ts) for some pairs of groups was
used in [4] in order to establish some rigidity results for higher rank groups. Let
H be a closed normal subgroup of G and let L be a closed group of G. Assume
that G = L x H. The following strong relative property (7) was considered in

4]
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Definition 2.5.4. The pair (L x H, H) has the strong property (7) if, for
every orthogonal representation p : L x H — O(B), the quotient representation
o i L — O(B/B*™)) does not almost have p'(L)-invariant vectors.

A straightforward modification of our proof of Theorem 2.5.3 shows that we
also have the following result :

Theorem 2.5.5. Let M be a von Neumann algebra. Let (L x H, H) be a pair
with the strong relative property (T'). Then (L x H, H) has the strong relative

property (Ty,am)) for 1 <p < oo.

2.5.2 Property (1} (v)) implies property (7') for some al-
gebras M

The authors of [4] showed the following theorem for the classical L,-spaces L, (X, 1)
associated to a standard Borel space (X, i) equipped with a non-atomic measure
1. We will see in the next section that the result is no longer true for the space [,,,
that is, there exist groups with property (7;,) for p # 2 and without Kazhdan’s

property (7).

Theorem 2.5.6. Let 1 < p < co. Let G be a second countable locally compact
group. Assume that G has property (Ty,am)) for one of the following von Neu-
mann algebras :

- M = L>®(X,u) (with u non-atomic),

- M = R the hyperfinite 11, factor,

- M = B(H).

Then G has property (T).

The result for M = L>(X, ;1) was given in [4].

Proof. Assume that G does not have property (7'). We are going to show that G
does not have property (17,(m))-

- Case M = R : Assume that G does not have property (7). Let 7 be the
normalized trace on Ly(R). The Hilbert space Lo(R) is defined as the completion
of R for the norm

2]l; = 7(2z)2, @ € R.

As G does not have property (T'), a construction of Araki and Choda [2] gives
an action a of G by automorphisms of R, which has a non-trivial asymptotically
invariant sequence (e,), of projections (see Definition 5.1.3). The action « in-
duces a unitary representation 72 : G — U(Ly(R)) given on the dense subspace
R of Ly(R) by

72(g)x = a(g)(z) for all g € G,z € R.
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Set, forn > 1,

oo en — 7(en)l
" len = T(en)1]l2

Then, for n > 1, €/, belongs to the orthogonal complement Ls(R)" of the space
of m%(G)-invariant vectors in Ly(R), and (e,), is a sequence of almost invariant
vectors for 2.

The representation 7¥ of G on L,(R) associated to 7%, which is given on the dense
subspace R of L,(R) by the same formula as 7%, almost has invariant vectors in
L,(R)" by Proposition 2.5.1.

- Case M = B(H) : Since G does not have property (7'), there exists a
unitary representation p : G — U(H) with almost invariant vectors and without

non-zero finite-dimensional subrepresentation (see Remark 2.12.11 in [8]).
Define 7? : G — O(C,) by

7™ (g)x = p(g)xp(g~') for all g € G,z € C,,.

The corresponding conjugate representation 72 on Cy is given by the same formula
as mP. Moreover, " does not have non-zero invariant vector in C), since p has no
non-zero finite-dimensional subrepresentations.

Now we show that 7P almost has invariant vectors. In view of Proposition 2.5.1,
it suffices to prove that 7% almost has invariant vectors. For & € H with ||¢]| =1,
denote by P: € U the orthogonal projection on the subspace C{. Observe that
|| Pe||2 = 1 and for &, n two unit vectors in H, we have

[[Pe — Pyll2 < 2[€ — nlla.

Let (&,), be a sequence of almost invariant vectors for w. Set v, = P, for all n.
Then, for every g € G, ﬁg(vn) = P,g),- The previous inequality therefore shows
that (v,), is a sequence of almost invariant vectors for 7.

Hence 7P almost has invariant vectors but has no non-zero invariant vector, and
G does not have property (7t ). O

2.6 Property (1}

In this section, we will study the property (7;,), that is the property (77, () for
M = [1*. As we will show, there exist examples of groups with property (7,)
and without property (7'). Our study of property (7},) is made prossible by the
simple structure of the isometry group O(l,) of [,. We start by establishing some
general facts about group representations on [,. Recall that [, is the space of
p-summable complex valued sequences.
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2.6.1 Group representations on [,

We begin with some preliminary remarks on permutation representations of topo-
logical groups twisted by a cocycle with values in S'. Let G be a topological
group. Let X be a discrete space equipped with a G-action. We assume that this
action is continuous, or equivalently, that the stabilizers of points in X are open
subgroups of G. Let ¢ : G x X — S! be a continuous cocycle with values in S*;
thus, ¢ satisfies the cocycle relation

c(g192, ) = c(g1,92x)c(g2, x) for all g1,90 € G, z € X. (%)

We associate to the G-action and the cocycle ¢ the permutation representation
twisted by ¢, which is the continuous representation of G on l(X), denoted by
A% and defined by the formula

X (9)f(2) = g~ @) f(g ") for all g € G, [ € l(X), x € X.

The following lemma is a very special case of Mackey’s imprimitivity (see theorem
3.10 in [55]).

Lemma 2.6.1. Assume that G acts transitively on X. Let xy € X and denote
by H the stabilizer of xg in G. Let x : H — S! be defined by x(h) = c(h,xo) for
all h € H. Then x is a unitary character of H and \§ s unitarily equivalent to
the monomial representation IndS .

Proof. The fact that y is a homomorphism follows immediately from the cocycle
relation (x).

Fix a set T C G of representatives for the left cosets of H. The space l(X) is the
direct sum @,cxV,, where V, is the one-dimensional space Co,. The restriction
of A to H leaves V,, invariant, with the corresponding H-action given by the
character x. Moreover, we have \§ (t)V,, = Vi, for all t € T. This shows that \§
is equivalent to Indgx, by the defining property of induced representations. [

Remark 2.6.2. Conversely, every monomial representation of GG associated to
an open subgroup H and a character y on H can be realized as a representation
of the form A5 for the action of G on X = G/H and a continuous cocycle
c:GxG/H — S'. We recall the construction of c¢. Choose a section s : G/H —
G for the canonical projection G — G/H, with s(H) = e. Define a cocycle
a: G x X — H with values in H, given by

a(g,z) = s(gz) 'gs(x) forall g € G, x € X.
Then ¢: G x G/H — S' is defined by ¢(g,z) = x(a(g, ).

The following corollary is an immediate consequence of Lemma 2.6.1 and the
previous remark.
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Corollary 2.6.3. Let G be a topological group.

(i) Let X be a discrete space equipped with a continuous G-action and let ¢ :
G x X — S' be a continuous cocycle. The associated representation N\ of G
on l3(X) is equivalent to a direct sum of monomial representations associated to
open subgroups of G.

(i) Let m = @iellndgixi be a direct sum of monomial representations associated
to open subgroups H; of G. Set X = | |,., G/H,;, the disjoint sum of the G/H;’s,
with the obvious G-action. Then 7 is unitarily equivalent to the representation
N of G on l3(X) for a cocycle ¢ : G x X — S!.

Now let 1 < p < o0, p # 2. Let G be a topological group and 7 : G — O(1,,)
an orthogonal representation of G on l, = [,(X), where X is an infinite countable
set. Recall from Banach’s result (see Theorem 1.5.1) that there exists mappings

0:G—Sym(X)andc: G x X — S
such that

m(g)f(z) = (g™, 2) f(p(g~")(2)) for all g € g, f € ,(X), v € X.

Since 7 is a group homomorphism, one checks that ¢ is also a group homomor-
phism; so ¢ defines an action of G’ on X. Moreover, ¢ : G x X — S! satisfies the
cocycle relation (x).

Observe that {6, | z € X } is a discrete subset of [,,(X), equipped with the norm
topology. Since 7 is continuous, it follows that the action of G on the discrete
space X is continuous. Similarly, one checks that ¢ : G x X — S! is continuous.

In summary, to a continuous orthogonal representation 7 of G on [,(X) (for
p # 2and 1 < p < o0), is associated an action of G on X with open point
stabilizers and a continuous cocycle ¢ : G x X — S'. (It is clear that, conversely,
such an action of G on X and a continuous cocycle ¢ : G x X — S! define an
orthogonal representation of G on [,(X)). Moreover, the conjugate representation
by the Mazur map 72 = M, 5 0¥ o My, is the permutation representation \§ on
lo(X) twisted by c.

2.6.2 A characterization of property (7;))

In the sequel, the sets of representations which are considered are sets of classes
of unitary representations for the unitarily equivalence. We recall the notation
7 for the restriction of a unitary representation 7 : G — U(H) to the orthogonal
complement of the space H™ @) of 7(G)-invariant vectors.

Definition 2.6.4. Let GG be a topological group and R a set of unitary repre-
sentations. We say that 14 is isolated in R if 14 is not weakly contained in
@WERTH'
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Notice that from Remark 2.1.8, property (7') can be rephrased as follows : G
has property (7') if and only if 14 is isolated in the set of (equivalence classes of)
unitary representations of G.

Recall that a unitary representation o of a topological group G is monomial
if o is unitarily equivalent to the induced representation Indgx, where H is a
closed subgroup of G, and y : H — S! a unitary character of H.

Examples of monomial representations are the quasi-regular representations
Mg/ of G on Ly(G/H) since A/ = Ind% 1. Let Ryon be the set of monomial
representations m = Indgx, associated to an open subgroup H of G.

Theorem 2.6.5. Let G be a second countable locally compact group. The follow-
ing properties are equivalent.

(1) G has property (1;,) for some 1 < p < oo and p # 2.

(ii) The trivial representation of G is isolated in the set Roon-

Proof. (ii) = (i) :

Assume that G does not have property (7;,). Then there exists an orthogonal
representation 7 : G — O(l,) such that (77)" almost has invariant vectors. By
Proposition 2.5.1, the representation 7% is such that (%) almost has invariant
vectors. On the other hand, by Corollary 2.6.3, 72 is unitarily equivalent to a
direct sum of monomial representations associated to open subgroups. Then 14
is not isolated in R,,o.

(1) = (di) :

Assume that 1¢ is not isolated in R,0,. Thus there exist open subgroups (H;)er
and unitary characters y; : H; — S' with the following property : the representa-
tion BierIndy of G on H = B;erl*(G/ H;) almost has invariant vectors in H(r?)'.
For f € H, the projection of f on [*(G/H,) is non-zero for at most countably
many 7. It follows that we can assume that I is infinite countable (if I happens
to be finite, we replace I by I x N and set H; ) = H;).

Let X =|],.; G/H,. By Corollary 2.6.3, @ieIIndgi is unitarily equivalent to the
permutation representation 72 = A\ of G on ly(X) associated with a cocycle
c:GxX — St

By Proposition 2.5.1, the conjugate representation 7% of G on [,(X) almost has
invariant vectors in [, Therefore, G' does not have property (17,). [

When G is connected, the only open subgroup of G is G itself and R,,on
therefore coincides with the group of unitary characters of G, that is, with the
Pontrjagin dual of the abelianization G/[G,G]. The following corollary is an
immediate consequence of Theorem 2.6.5.

Corollary 2.6.6. Let 1 < p < 0o, p# 2. A connected second countable group G
has property (17,) if and only if its abelianization G /|G, G| is compact.
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2.6.3 Consequences of property (1)

Groups with property (7;,) share some important properties with Kazhdan groups.

Theorem 2.6.7. Let G be a second countable locally compact group. Assume
that G has property (17,) for some 1 < p < oco. The following statements hold :

(i) G is compactly generated.

(i1) The abelianized group G /|G, G] is compact.

(iii) Every subgroup of finite index in G and every topological group containing
G as a finite index subgroup has property (13,). (In other words, property (1;,)
only depends on the commensurability class of G.)

(iv) If G is amenable and totally disconnected, then G is compact.

Proof. (i) The proof is similar to Kazhdan’s one in [47]. Let C be the family
of open and compactly generated subgroups of G. Since G is locally compact,
1¢ is weakly contained in the family of quasi-regular representations (Ag/m)mec.
Hence, by Theorem 2.6.5, there exists H € C such that G has a non-zero invariant
vector in lo(G/H). This implies that H has finite index and therefore that G is
compacly generated.

(ii) Assume, by contradiction, that G/[G, G| is not compact. Then there ex-
ists a sequence (x,), of unitary characters of G such that x,, # 1 and y,, — 1
uniformly on compact subsets of G. This contradicts Theorem 2.6.5.

(iii) e Let L be a finite index subgroup of G. We want to show that L has
property (73,).
Let £ be the set of pairs (H, ) consisting of an open subgroup H of L and a
unitary character x of H. For (H, x) € £, denote by Ay ) the induced represen-
tation Ind% . Set

P = DHy)eLAH,y)-

Assume, by contradiction, that L does not have property (7;,) for p # 2. Then,
by Theorem 2.6.5, the trivial representation 1, of L is weakly contained in p'.
It follows, by continuity of induction, that Ag/ is weakly contained in Indgp’ ,
which is a subrepresentation of

Btectndf (M) ~ Becndfx.

On the other hand, 1¢ is contained in A/, since G/ L is finite. Therefore, 1¢ is
weakly contained in Indfp’ . However, Indfp’ has no non-zero invariant vector,
since p' has no non-zero L-invariant vector (see Theorem E.3.1 in [8]). This is a
contradiction to Theorem 2.6.5. We conclude that L has property (7;,) for p # 2.

o Let C~¥~be a group containing G as a subgroup of finite index. We want to
show that G has property (7}, ).
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Since G contains a normal subgroup in G of finite index and since this subgroup
has property (7;,) for p # 2, by the previous proof, we can assume that G is a
normal subgroup of G.

Assume, by contradiction, that G does not have property (73,) for p # 2. Then
there exists an orthogonal representation 7” : G — O(l,) which has a sequence of
almost invariant vectors in the complement [ (7?) of 77 (G)-invariant vectors in
l,. Denote by 7% : G — O(l2) the conjugate of 7? by the Mazur map. By Propo-
sition 2.5.1, w2 has also a sequence (&, ),, of almost invariant vectors in I}, = I} (7?).

Let P : I, — (1,)" @ be the orthogonal prOJectlon on the Subspace of m(G)-
invariant vectors in I;. Observe that (1,)™ (@) is invariant under 72(Q3), since G
is normal in G. For every n € N, the vector &, — P&, belongs to the orthogonal
complement of (Iy))™ (@) in . Hence, &, — P&, belongs to the orthogonal com-

plement in /5 of the space ZQQ(G), since ng(G) = (lg’)”Q(G) & ng(G)
Moreover, we have

lim ||7*(g) (§n — P&a) — (6 — P&a)l| =0 for all g € G.

It follows that inf,, ||£,— P&, || = 0; indeed, otherwise, m(fn—]%n) would be

a sequence of almost invariant vectors in the orthogonal complement of l;Q(G) in Iy
and, by Proposition 2.5.1, this would contradict the fact that G has property (13, ).
Hence, upon passing to a subsequence, we can assume that lim, ||£, — P&,|| = 0.

Since P&, is m*(G)-invariant, we can define the following sequence (1,), of

vectors in [y : .
2
Mn = = ™ (t)an
|G/G] te;/G

It is clear that 7, is 72(G)-invariant. Moreover, we have

172 — é’nll_f > 176 Pé — &l
teG/G
=y Z |7 (t) P& — 7 (H)6nl | + Z ||7*(t)€n — &all
teG/G teG/G
teG/G teG/G

It follows that lim, ||, — &|| = 0. Hence, 1, # 0 for sufficiently large n, since

[1€n]I=1. i
For every t € G, the vector *(t)(P¢,) belongs o (15" (@) since (15)™ @ is in-

variant under 72(G). It follows that 5, € (1,)™ (@) and, in partlcular M € 1.
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This is a contradiction, as there are no non-zero 72(G)-invariant vector in [j.

(iv) Since G is totally disconnected, we can find a compact open subgroup K

of G, by van Dantzig’s theorem (see Theorem 7.7 in [41]). The amenability of G

implies the amenability of its action on G/K : 1g is weakly contained in Ag/x

(see Theorem p.28 in [28]). As G has property (73,), it follows from Theorem

2.6.5 that G has a non-zero invariant vector in l5(G/K). Hence, K has finite
index in G and G is compact.

]

Remark 2.6.8. 1. It follows from the previous theorem that, for instance,
(abelian or non-abelian) free groups as well as the groups SL,(Q) do not
have property (73,).

2. Property (1;,) for p # 2 is not inherited by lattices, even in the totally dis-
connected case. Indeed, SLy(Q;) has property (7;,) for p # 2 (see example
2.6.12 below), whereas torsion-free discrete subgroups in SLs(Q;) are free
groups (see Chap. II, théoreme 5 in [73]).

2.6.4 Property (7)) for totally disconnected groups

The next result shows that, when G is totally disconnected, isolation of 15 in the
set of quasi-regular representations associated to open subgroups suffices to char-
acterize property (Tlp) Let Ryuasi—reg be the set of quasi-regular representations
(Ag/m,12(G/H)), associated to an open subgroup H of G.

Theorem 2.6.9. Let G be a totally disconnected, second countable locally com-
pact group. The following properties are equivalent.

(i) G has property (1;,) for some 1 < p < oo and p # 2.

(11) The trivial representation of G is isolated in Ryuasi—reg-

The proof of Theorem 2.6.9 will be an easy consequence of the following
lemma.

Lemma 2.6.10. Let G be a locally compact totally disconnected group, H an
open subgroup of G, and x a continuous unitary character of H. There exists
an open subgroup L of G contained in H such that the monomial representation
Indgx is weakly contained in the quasi-reqular representation A m.

Proof. Since GG, and hence H, is totally disconnected, every neighborhood of the
group unit in H contains a compact open subgroup, by van Dantzig’s theorem.
By continuity of x, there exists a compact open subgroup K of H such that

Ix(k) —1| <1forall k € K.
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For every k € K, we then have |x (k)" — 1] < 1 for all n € N and hence y(k) = 1.
Therefore x is trivial on K.

Let L be the subgroup of G generated by K U [H, H|. Then L is a normal and
open subgroup of H and Y is trivial on L. So, x factorizes to a unitary character
X of the abelian quotient group H = H/L.

Since H is amenable, Y is weakly contained in the regular representation Ay
of H, by the Hulanicki-Reiter theorem (see Theorem G.3.2 in [8]). Hence, x is
weakly contained in the quasi-regular representation Ag/r, since Mg/, = A o p,
where p : H — H is the quotient homomorphism. By continuity of induction
(see Theorem F.3.5 in [8]), it follows that Ind%y is weakly contained in

Indg)\g/}] ~ /\G/L'
]

Proof of Theorem 2.6.9. By Theorem 2.6.5, it suffices to show that if 14 is iso-
lated in Ryugsi—reg, then 1 is isolated in Ry, for G a second countable locally
compact and totally disonnected group.

Assume that for such a group G, 14 is not isolated in R,,,,. Then there exists a
family (H;, x:)ier of open subgroups H; with unitary characters y; such that 14
is weakly contained in the restriction 7" of

™= @iellndgi Xi

to the orthogonal complement of the 7(G)-invariant vectors. On the other hand,
by Lemma 2.6.10, there exists a family (L;);c; of open subgroups L; of H; such
that 7 is weakly contained in

p = BierAg/L;-

This implies that 7’ is weakly contained in p’. Hence, 15 is not isolated in
unasifreg' ]

The next result will provide us with a class of examples of totally disconnected
non discrete groups with property (7;,) for p # 2 and without property (7).
A locally compact group has the Howe-Moore property if, for every unitary rep-
resentation 7 of G without non-zero invariant vectors, the matrix coefficients of
m are in Cy(G). For an extensive study of groups with this property, see [15].

Corollary 2.6.11. Let G be a totally disconnected, second countable locally com-
pact group with the Howe-Moore property. Assume that G is non-amenable. Then
G has property (1;,) for every 1 < p < oo and p # 2.

Proof. Since G has the Howe-Moore property, every proper open subgroup of G
is compact (see Proposition 3.2 in [15]). It follows that, for every proper open
subgroup H, the space lo(G/H) can be identified with the G-invariant subspace
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of Ly(G) of functions on G which are right H-invariant. As a consequence, we see
that Ag/g is a subrepresentation of the regular representation Ag. Denoting by
L the set of proper open subgroups of G, this implies that ©pesAq/m is weakly
contained in the regular representation A\g.

On the other hand, since G is not amenable, 14 is not weakly contained in Ag,
by the Hulanicki-Reiter theorem. It follows that 15 is not weakly contained in
®recAa/p and Theorem 2.6.9 shows that G has property (73, ). O

Examples 2.6.12. 1. Let k be a non-archimedean local field, G a simple
linear algebraic group over k and G = G(k) the group of k-points in G (an
example is G = SL,(Q,) for n > 2, where Q is the field of [-adic numbers
for a prime number /). Then G has the Howe-Moore property (see Theorem
5.1 in [43]). Moreover, G is amenable if and only if G is compact. So, G
has property (7;,) for p # 2. Observe that if k¥ —rank(G) = 1, then G does
not have property (7') (see Remark 1.6.3 in [8]). This is, for instance, the
case for G = SLy(Qy).

2. Let G = Aut(T) be the group of color preserving automorphisms of a k-
regular tree of type (m,n) for m,n > 3. Then G is a totally disonnected
locally compact group and, as shown in [54], G has the Howe-Moore prop-
erty. Since G is non-amenable, it has property (7j,) for p # 2. Observe
that G does not have property (7'), since G acts without fixed point on a
tree (see chapter 2 section 3 in [8]).

2.7 Property (7)) and complete isometries

In a purely non-commutative context, it is more natural to use complete isome-
tries instead of isometries. We have already noticed (see Remark 2.3.2) that, for
example, results on isometries of closed subspaces of L,-spaces require to deal with
complete isometries. Hence we introduce a weak version of property (77,) us-
ing representations by unital complete isometries on non-commutative L,-spaces.

2.7.1 Weak property (1) for closed subspaces of L,(M)

Let M be a semi-finite von Neumann algebra, 1 < p < co. Recall that a complete
isometry on L,(M) is a linear map U : L,(M) — L,(M) such that

id@ U : Ly(My & M) — Ly(M, @ M)

is an isometry for all n > 1. We say that U is unital if U(1) = 1. In particular,
if p # 2, a unital complete isometry U on L,(M) is the extension of a Jordan
isomorphism of M, in view of the Yeadon decomposition (Theorem 2.7.1 shows
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that U is in fact an automorphism of M).

If M is finite, we define the notion of complete isometries for a closed subspace
F C L,(M) containing 1. A complete isometry on F'is a linear map U : F' — F
such that

llid ® U(X)||, = ||X]||, for all X € M,,(F) and all n € N.

We say that U is unital if U(1) = 1.

Denote by O“*(L,(M)) (resp. O%*(F)) the group of unital complete isome-
tries of L,(M) (resp. F' C L,(M)). Recall from Example 1.6.3 that in general
O%““(Ly(M)) # O(L,(M)). Junge, Ruan and Sherman obtained a result on the
structure of complete isometries of general non-commutative L,(M)-spaces. We
recall it in the case where the von Neumann algebra M is semi-finite.

Theorem 2.7.1. [45] Let M be a semi-finite von Neumann algebra, and 1 <
p < o0, p # 2. For an isometry U = uBJ : L,(M) — L,(M), the following
statements are equivalent :

(i) U is a complete isometry,

(i) U is a 2-isometry,

(111) the Jordan map J : M — M is multiplicative.

Let G be a topological group, and let 7 : G — O%*(L,(M)) be a representa-
tion of GG by unital complete isometries. It follows from the previous result that
every 7(g) has a form

m(g)(z) = Jy(x) for all z € L,(M)

where J : G — Aut(M) is a morphism of the group G in the group Aut(M) of
automorphisms of M.

Definition 2.7.2. Let M be a finite von Neumann algebra. Let F' be a closed
subspace of a non-commutative space L,(M) such that 1 € F. A topological
group G is said to have property (T&") if, for every representation G — O%*(F),
the restriction 7/p/(r) of m on F'(7) does not almost have invariant vectors.

Let 7 : G — O(B) be an orthogonal representation of a topological group on
a ucus Banach space B. Let F' be a m(G)-invariant closed subspace of B. The
following lemma shows that the decomposition F' = F™(@ @ F'() from Theorem
2.2.2 is coherent with the decomposition B = B™%) @ B/(r).

Lemma 2.7.3. Let B be a ucus Banach space, and w : G — O(B) be an orthogo-
nal representation of a topological group G on B. Let F be a closed w(G)-invariant
subspace of B. Then F'(w) C B'(r).
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Proof. Notice that the contragradient representation 7* : G — O(B*) on B*
defines also a representation 7* : G — O(F*) on F*, since F' is 7(G)-invariant.
Now let z € F'(r) and ¢ € (B*)™ (@, It is straightforward that the restriction
¢/r of ¢ to F belongs to the subspace (F*)™ (@), Recall that

Flin)={yeF|Ve (F) "D <y y>=0}.
Hence, by definition of F'(x), we have
<@, T >px p=< QP/F, T >p* p= 0.

Notice that Lemma 2.7.3 is also a consequence of Remark 2.2.4 (with B; = F,
B, = B and ¢ the canonical inclusion). 0

Our next result generalizes item 2 in Theorem 2.3.1 to the case of non-
commutative Ly-spaces. The proof shows that property (77 (VN( F))) implies prop-

erty (T§") for some subspaces F' of L,(M).

Theorem 2.7.4. Let 1 < p < oo, p ¢ 2N. Let M be a finite von Neumann
algebra, and F' a closed subspace of L,(M) such that ' C M, and 1 € F.
Assume that G is a topological group with property (T). Then G has property
(7).

Proof. By contradiction, assume that there exists a representation
TG — O (F)

of G on F' by unital complete isometries with almost invariant vectors in F”(r).
By Theorem 1.6.4 and Remark 1.6.5, every 7(g) extends uniquely to a complete
isometry on L,(VN(F)), also denoted by m(g). Then 7 : G — O““(L,(VN(F)))
defines a representation of G' by unital complete isometries on L, = L,(VN(F)),
denoted again by 7. By the previous Lemma 2.7.3, 7 has almost invariant vectors
in L) (7). By Theorem 2.5.3, this contradicts the fact that G has Kazhdan’s
property (7). O

2.7.2 Relationship between property (77 ) and property
(T5)

We give an analog of Definition 2.7.2 in the case of L,(M)-spaces associated to

semi-finite von Neumann algebras M.

Definition 2.7.5. Let M be a semi-finite von Neumann algebra. A topo-
logical group G is said to have property (T}j;( M)) if, for every representation
G — O“"(Ly(M)), the restriction 7,1, ry of mon L,(M') does not almost have
invariant vectors.
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It is obvious that property (77,) implies property (T7"). We can show that
the converse implication holds for some specific von Neumann algebras.

Theorem 2.7.6. Let 1 < p < oo, p # 2.

(i) Let M be a von Neumann algebra, and let G be a topological group with Kazh-
dan’s property (T'). Then G has property (TEZ(M))

(ii) Let M be one of the following von Neumann algebras :

- M= L>®(X,u) (u being non-atomic);

- M = R the hyperfinite 11y factor;

- M = B(H).

Let G be a locally compact second countable group such that G has property
(T7%imy)- Then G has property (T).

Proof. (i) This follows from Theorem 2.5.3 and the obvious fact that (77, 1))
implies (Tfpz( M)

(ii) The three cases are consequences of the construction of a representation
™ G — O(L,(M)) given in the proof of Theorem 2.5.6, which almost has
invariant vectors in L, (M)" when the group G does not have property (7'). In
every case, P is a representation by unital complete isometries.

- For the case M = L*(X, ), 7P is the representation induced by a measure-
preserving action o on (X, ) (see the proof of Theorem A in [4]). By Example
1.6.3, 7P is a complete isometry. It is unital since the action « is measure-
preserving.

- For the case M = R, nP is the representation induced by an action a of G
on R by automorphisms. Forn > 1, and g € G, id ® m°(g) coincides with the au-
tomorphism id ® oy on M,, ® R, which is dense in L,(M,, ® R). Hence id®@7"(g)
is a unital isometry in O(L,(M,, ® R)). This shows that 79 € O%*(L,(R)).

- For the case M = B(H), every 7P(g) is given by the following formula

m(9)(x) = p(g)zp(g)~" for x € Cp,

where every p(g) is a unitary in U (H). Therefore it is clear that 77(g) € O“*(C,,).
U

We cannot expect that property (7') and property (T f;( M)) are equivalent for
every von Neumann algebra M. In the next proposition, we give an example of
a group G without property (7'), such that G does not have property (Tf;( M))
for p # 2 and for some von Neumann algebras M.
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Let M be a II; factor, with trace 7. We view M as a subalgebra of Ly(M),
where Ly(M) is the completion of M for the norm

1
|2]l2 = 7(2"2)>.

We define a topology on Aut(M), as the group topology given by the following
fundamental system of neighborhoods of id, :

V(21 .y @n,€) = {a € Aut(M) | ||a(x;) — z4l|a < eforalli=1,...,n }.

Then Aut(M) is a polish group.

Let T" be a group such that every non-trivial conjugacy class is infinite. Then
the group von Neumann algebra M = L(I') is a II; factor. Assume that T’
has property (7). Connes proved in [17] that the subgroup Inn(M) of inner
automorphisms is open, and hence Out(M) = Aut(M)/Int(M) is countable
discrete.

Proposition 2.7.7. Let M be a 11y factor such that Out(M) = Aut(M)/Int(M)
is discrete. Then SLy(R) has property (TE:(M))

Proof. Set SLy(R) = G, and let 7 : G — O““(L,(M)) be a representation
by unital complete isometries on L,(M). We have already noticed that the
representation has the form

m(g)(z) = Jy(x) for all g € G,z € L,(M)

where the map J : G — Aut(M) is a continuous group homomorphism (see
Theorem 2.4.4). Let J : G — Out(M) be the composition map of J with the
quotient map Aut(M) — Out(M).

Since G is connected, the continuous map J is constant, as Out(M) is dis-
crete. So, J, € Int(M) for every g € G since J, € Int(M).

There exists a continuous homomorphism ¢ : G — U(M), satistying J,(z) =
gpga:gz);l for all g € G and x € M. Let 7 be the normalized trace on M; let
Ly(M) be the completion of M for the inner product

<xzy >=T1(y'x)

and let p : M — B(Ly(M)) be the x-homomorphism defined by p(z)y = zy for
all z,y € M. Then

7(x) =< p(z)1,1 > for all x € M.

Set ¢y =170 : G — R. Then v is a continuous positive definite function on
(G, which is constant on every conjugacy class. We claim that 1) is constant on
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G, that is ¢, =1 for all g € G.

Indeed, let

T+:{(é Cf) |a€R}andT‘:{(61L (1)) la € R).

For a > 0 and b € R, we have

a 0 1 b\ [at 0\ (1 a*b

0 a! 01 0 a/ \O 1)/
Hence, by continuity of ¢ at e, we have ¢(g) = 1 for all g € T". Similarly, we
have (g) =1 forall g € T~. As

U(g) =< plpg)l, 1>,
the equality case of Cauchy-Schwarz inequality shows that
plpg) =1forallge TTUT.
Since T LT~ generates G as a group, this implies that
p(py) =1forall g € G.

Therefore we have p, =1 for all g € G, that is, J, = id for all g € G.

Then J has to be trivial. Hence the representation  is trivial and the group
has property (T7:"). O

Remark 2.7.8. Ioana, Peterson and Popa constructed in [44] IT; factors M such
that Out(M) is trivial.
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Chapter 3

Fixed-point property (FLp(/\/l)>

Property (7'), which was originally defined in terms of unitary group representa-
tions, can be rephrased, at least for o-compact locally compact groups, in terms
of property (F'H), a fixed-point property for actions by affine isometries on a real
Hilbert space. A similar fixed-point property (Fp) can be defined for every Ba-
nach space B. It is known that, for o-compact locally compact groups, property
(Fg) always implies property (Tg). However, in general, property (Tg) is weaker
than property (Fp); this happens already for the classical L,-spaces L, ([0, 1]),
and p sufficiently large ([66]).

3.1 Introduction

3.1.1 Property (Fp)

We recall the basic facts concerning property (Fg). We refer to Chapter 2 in [§]
for more details when B = H is a Hilbert space, and to Section 2.d in [4] for
details about group actions by affine isometries on Banach spaces.

Let B be an affine real Banach space. Denote by Isom(B) the group of bi-
jective isometries of B. Observe that, by the Mazur-Ulam theorem [56], every
bijective isometry is an affine map.

An affine isometric action of a topological group G on B is a group homomor-
phism « : G — Isom(B) such that the map G — B, g — «a(g)x is continuous for

every x € H.

Let « : G — Isom(B) be such an action. For every g € G, let 7(g) be the
linear part of a(g), and b(g) the translation part; thus

a(g)x =7(g)x +b(g) for all g € G,z € B.

73
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Then 7 : G — O(B) is an orthogonal representation and b : G — B is a
continuous map satisfying the following cocycle relation:

b(gh) = b(g) + 7(g)(b(h))

for all g,h € G and x € H. So, b is a continuous 1-cocycle of G with values in
B, associated to the representation 7. The set of all such 1-cocycles is denoted
by Z'(G,); this is a real vector space under the pointwise operations.

The action « has a fixed point z € B if and only if

b(g) =7(g)(—x) — (—x) for all g € G.

Cocycles of this form are called 1-coboundaries with respect to m. The set of
all 1-coboudaries is a subspace of Z'(G, ), denoted by B'(G,w). The quotient

vector space
HYG,7) = Z\(G,7)/B*(G,)

is called the first cohomology group with coefficients in 7.

Definition 3.1.1. Let B be a Banach space. A topological group G has property
(F'p) if every affine isometric action of G on a real affine Banach space B has a
fixed-point.

Remark 3.1.2. Let G be a topological group. Then G has property (Fp) if and
only if H'(G,7) = 0 for every orthogonal representation 7 : G — O(B).

Recall the following “lemma of the center” (see Remark (5) in [4]):

Lemma 3.1.3. Let B a ucus Banach space, and A a non-empty bounded subset
A C B. Then there exists a unique v € B minimizing inf{r >0 | A C B(x,r) }.
The point v = x(A) is called the Chebyshev center of A.

A consequence of the previous lemma is that, for affine actions by isometries
on ucus Banach spaces, it is equivalent to have bounded orbits or to have a fixed
point.

Proposition 3.1.4. Let B be a ucus real Banach space. Let m be an orthogonal
representation of G on B, and b a 1-cocycle with respect to w. Let o the associated
affine isometric action associated to w and b. Then the following assertions are
equivalent :

(i) @ has a fized point in B ;

(i) b is bounded ;

(#1) all the orbits of o are bounded ;

(iv) some orbit of a is bounded.

The following proposition shows that, for o-compact locally compact groups,
property (Fp) is always stronger than property (75).
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Proposition 3.1.5. Let G be a o-compact locally compact group, and let B be a
Banach space. If G has property (Fg), then G has property (T's).

For the proof of the previous proposition, see Theorem 1.3 in [4]. We will see
later (Remark 3.1.8) that the converse of this proposition is not true in general.

3.1.2 Property (FH)

A topological group G is said to have property (FH) if every affine action of G
by isometries on a real Hilbert space has a fixed-point. The following theorem
shows that property (7') and property (F H) are equivalent for o-compact locally
compact groups. It is due to Delorme (Theorem V.1 in [25]) and Guichardet
(Theorem 1 in [33]).

Theorem 3.1.6. Let G be a topological group.
1. If G has property (T), then G has property (F'H).

2. If G is a o-compact locally compact group and if G has property (F'H), then
G has property (T).

Property (F'H) does not imply property (7)) when G is not o-compact: it is
shown by de Cornulier in [22] that the group of all permutations of an infinite
set has property (F'H), but not property (7).

3.1.3 Property (FLP(XM)

The authors of [4] proved the following theorem which relates property (7') and
property (Fr,x,.)) for L,(X, 1) a commutative L,-space.

Theorem 3.1.7. ([4] and see [5] for the point 2.)
Let G be a locally compact second countable group.

1. Let 1 < p <2, and let B be a closed subspace of L,. If G has property (T'),
then G has property (Fg) ;

2. If G has property (T'), then G has property (Fr,) ;

3. If G has property (T), then there exists e(G) > 0 such that, for2 < p < ¢(G)
and for every closed subspace B of L,, G has property (Fg).

Remark 3.1.8. The analog of the Delorme-Guichardet theorem 3.1.6 is no longer
true in general for actions on Banach spaces. It was shown by several authors that
property (T") does not imply property (F7,) for some commutative L,-spaces, and
for p > 2 sufficiently large :
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(i) Pansu in [66] proved that Sp(n, 1) and cocompact lattices in these groups
admit fixed-point-free affine isometric actions on LP(G) for p > 4n + 2.

(ii) Bourdon and Pajot ([11]) more generally proved that a non-elementary
hyperbolic group does not have property (Fp») for p large enough.

(iii) Cornulier, Tessera and Valette in [23] proved that, for G' a rank-one Lie
(or algebraic) group, if p is sufficiently large, there is a proper affine isometric
action of G on LP(G) whose linear part is the regular representation.

(iv) Yu also gave a short proof that any hyperbolic group I" admits a proper
action by affine isometries on (P(I" x I') if p is large enough (see [85]); in Chapter
4, we will use his construction to define a proper action on a non-commutative
L,-space.

(v) Nica ([62]) uses the latter result to prove that, if I' is a non-elementary
hyperbolic group with boundary 9I', then for p large enough I' admits an affine
isometric action on LP(O' x OI') that is proper.

3.2 Property (F} (u)) for higher rank groups

Property (F7,(x,.)) Was established in [4] for higher rank groups and their lattices.
We first give the definition of higher rank groups.

Definition 3.2.1. For 1 <1i < m, let k; be local fields and G;(k;) be the k;-points
of connected simple k;-algebraic groups G;. Assume that each simple factor G;
has k;-rank > 2. The group G = II1* |G, (k;) is called a higher rank group.

Example 3.2.2. The groups G = SL,(R) for n > 3 and G = Spy,(R) for
n > 2 are higher rank groups. This is also true for their corresponding groups
G = SL,(Q;) and G = Sp,(Qy) over the field of l-adic numbers.

Our next result shows that Theorem B in [4] remains true for non-commutative
L,-spaces. In fact, it was conjectured in [4] that higher rank groups have property
Fp for all superreflexive space B.

Theorem 3.2.3. Let G be a higher rank group and M a von Neumann algebra.
Then G, as well as every lattice in G, has property F ) for 1 <p < oo.

Given our Theorem 2.5.5, the proof of Theorem 3.2.3 is a straightforward
adaptation of the proof given in [4] for classical L,-spaces. For this reason, we
just give an indication of the main steps involved in this proof.
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Strategy of proof of theorem 3.2.3. e We first show the result when G is a higher
rank group.

Using an analogue of Howe-Moore’s theorem on vanishing of matrix coefficients,
it was shown in [4] that G has property (Fp) for every ucus Banach space B,
whenever a certain pair (L x H, H) of subgroups, which has strong property (7'),
has also strong property (7). In view of Theorem 2.5.5, this shows that G has

property (Fr,(m))-

e Let GG be a lattice in a higher rank group. The result for GG is obtained by

an induction procedure exactly as in the Proposition 8.8 of [4]. O
Example 3.2.4. I' = SL3(Z[v/2]) is a lattice in the higher rank group SLsz(R) x
SL3(R).

Remark 3.2.5. (i) Theorem 3.2.3 was proved by Puschnigg in [68] in the case
L,(M)=S5,.

(i) Others examples of groups with fixed-point property on non-commutative
L,-spaces were given by Mimura in [59], using our Theorem 3.2.3: for n > 4,
E>1 1< p < oo, and M a von Neumann algebra, the universal lattice
G = SL,(Z[xy, ..., x1]) has property (Fr, ).

3.3 Property (Fr u))

3.3.1 Property (Fy () for p close to 2

We recall that in general property (1) does not imply property (Fy,) for com-
mutative L,-spaces and p > 2. However, Fisher and Margulis proved in [30] that
(17,) and (F,) are equivalent for p close to 2. We show that this result is true
for non-commutative L,-spaces. Our method of proof is an adaptation of Fisher
and Margulis’ proof, as given in [4].

Theorem 3.3.1. Let G be a locally compact group with property (T). There
exists € with the following property : for every von Neumann algebra M, for
every p €]2 —€,2 + €[, and every closed subspace B of L,(M), G has property
(Fg).

If o is a G-action by affine isometries on a space (B,|l.||), K a subset of G
and z € B, we will use the notation,

o(a(K)z) = sup [la(g)z — a(h)z(|.
g,he K
Let 1 < p < oo and let M be a von Neumann algebra. In the following, we
simply denote by L, = L,(M) the non-commutative L,-space associated to M.
The main step of the proof of Theorem 3.3.1 is the following lemma.
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Lemma 3.3.2. Let G be a locally compact group with property (T) and K is a
generating compact set of G. There exist constants C' < oo and € > 0 with the
following property : for every p €]2 —¢€,2+ €[, for every closed subspace B C L,,
for every action o of G by affine isometries on B, and for every x € B, there
exists a point y € B with

S(alK)r)

e = lly < C(a(K)z) , Sa(K)y) < “0F

Proof. Assume, by contradiction, that the lemma does not hold. Then we can find
a sequence (p,) tending to 2, affine isometric G-actions «,, on closed subspaces
B, of L, and z, € B, such that

(o (K)y,)
2

dan(K)y) > for all y € B(x,, nd(a,(K)z,)).

The strict inequality above implies that ¢ (c,(K)z,) > 0. Set

Tn

T S (K) )

in order to have §(«,(K)T,) = 1. For every y € B(T,,n), we have that
Man(K)x,)y € B(xy,nd(an(K)z,)).

So we have 6(a,(K)y) > 3.

To sum up, we get sequences (p,), with lim, p, = 2 and closed subspaces
B, C L,,, affine isometric G-actions o, on B,, and points z,, € B,, (which were
the T,, above) satisfying

Slan(K)mn) =1, 8lan(K)y) > % for all y € B(zn, n).

We now construct a Hilbert space H, together with a G-action o by affine
isometries without fixed point, which will contradict property (F'H) and then
property (T'). Let

Ho={y = (ya) € [ [ Ba | suplyullp, < o0 }.

n

We define a semi-norm on Hy by ||y|| = lim,||y.||p,. Then, the quotient of H,
by the subspace N' = { y € Ho | ||y|| = 0 }, denoted by H, is a Banach space.
For simplicity, we will identify the elements of H with one of their representative
in Ho.
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We next show that H is a Hilbert space. In fact, by considering [2,2 + €[
before instead of |2 — €,2 + €[, the p, can be taken in [2,00[. By the Clarkson
type inequalities (see Proposition 1.1.1), we have for all n and all a,, b, € B,,

llan + ballp: + llan — ballpr < 277 (llanl 2 + 1164l [77)-
By passing to the limit superior, we obtain, for all a,b € 'H,
lla +0l* + [la — bl1* < 2(|lal[* + [[b]]*).

And if we apply this inequality to a replaced by a + b and b replaced by a — b,
we obtain the parallelogram identity :

lla +0[1* + [la = bl[* = 2(|[al[* + [|b][*) for all a,b € H.
This proves that H is a Hilbert space.

Now we define a G-action by affine isometries on the affine Hilbert space

(xn) +H by
a(g)((xn)n + Y)n = an(g)(xn + yn)n for all y = (y,), € H and all g € G.

This action is isometric (and so affine) since the a,,(g) are isometries. The ho-
momorphism property follows as well.

Passing to the limit, the conditions on the L,
1
dan(K)x,) =1 and 0(a,(K)y) > 3 for all y € B(x,,n) C L,
imply the following conditions in ‘H with x = (z,,) :

d(a(K)xr) =1 and 6(a(K)y) > ; for all y € H.

In particular, the action is not degenerate and §(«(K)y) < oo for all y € H.

As we deal with topological groups, we have to restrict a to an invariant sub-
space H; on which the action is continuous, that is, such that the maps g — a(g)y
are continuous for all y € H;.

For this, we adapt the method from Section 4 in [14], which deals with the
case of an ultraproduct of unitary group representations. We can assume without
loss of generality that K is a neighborhood of the group unit e.
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Let n € N. For f € C.(G) and v € B,,, we define

an(f)o = /G f(9)an(g)vdv € B

Then «,(f) is an affine map from B, to B,, and
[l (F)v = an(fwllp, < |[flli]lv = wllp, for allv,w e B,. (1)

Moreover, if f, g are positive functions on G with supp(f) C K, supp(g) C K
and || f||1 = ||g]l1 = 1, we have

| (v — an(9)vl]p, < |If — gll1d(c,(K)v) for all v € B,. (2)

Indeed, we have v = [, f(h)v dh = [, g(h)v dh, and hence

llan(f)v = an(g)ollp, <| /Gf(h)(@(h)v —v) dh - /Gg(h)(a(h)v —v) dhlfp,
< If = glhd(on(K)v).

For y = (yn)n € H, and f € C.(G) with supp(f) C K, we define

a(f)y = (en(f)yn)n-

Notice that o(f)y € H by inequality (1).

Let f, f1, f2 € C.(G) be such that L = supp(f) satisfies L? C K, L.L™' C K,
and (supp(f1))(supp(f2)) C K. For g € L, we have

a(yf)y = alg)a(f)y, alfy)y = Alg)a(f)a(g)y
and
alfi* fo)y = a(fi)a(f2)y

where A is the modular function of G, and ,f(h) = f(gh), fy(h) = f(gh) for all
g,h € G.

Let L C K be a neighborhood of e such that L? ¢ K and L.L7! Cc K. Fix
an approximate identity (f,), of functions with supports in L, that is a sequence
(fu)n in C.(G) such that suppf, C L, f, > 0, ||fall1 = 1 for all n, and for every
neighborhood V' of e there exists N such that supp(f,) C V for all n > N.

Define the following subspace H; of H

Hy = {y e H | lim|la(f)y —yll =0 }.
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We claim that H; is independant of the choice of the approximate identity (f,)y.
Indeed, let (f!), be another approximate identity. Let y € H;. Then for all m, n,
we have

la(fm)y = yll < lla(fm)y — alfm ) (fo)yll + lla(fm)a(fn)y — alfa)yl]
+ [le(fa)y =yl
<2[|la(fo)y = yll + || f * fro = full16(a(K)y)
where we used inequality (2) to obtain the last inequality.

Since lim,, ||a(f.)y — y|| = 0 and lim,, || f,,/ * f. — full1 = 0 for every fixed n, it
follows that lim,, ||a(f. )y — y|| = 0.

We claim that H; is closed in H. Indeed, let ¥y € H; and y € H; such that
lim; y = y. Then, for all n,[, we have
e fa)y =yl < llalfa)y — alfa)y @l + lla(f)y® =y @l + 11y —yl|
= 2|y =yl + [l (f)y® = 4]

and the claim follows.

We claim that H; is a(G)-invariant. Indeed, let y € H; and fix g € G. Let
fn € C.(G) be defined by

£ =AY f(ghg™") for all h € G.

Then (f,), is an approximate of the identity for n sufficiently large. Hence,
lim,, ||a(f.)y — y|| = 0 by what we have seen above. Since we have

la(fu)alg)y — alg)yll = lla(g™a(f.)alg)y — yll
= |la(f)y —vll,

it follows that a(g)y € H;.

Let y € H;. We claim that G — Hy, g — «a(g)y is continuous. Indeed, let
¢ > 0. Choose n € N such that ||a(f,)y — y|| < € and choose a neighborhood V'
of e with Vsupp(f,) C K such that ||,f, — fu|[1 < € for all g € V. Then, for all
g €V, we have

la(g)y = yll < lla(g)y — alg)alfu)yll + llalg)alfu)y — alfu)yll + [lalfa)y =yl
< 2lla(fu)y = yll + g fu)y — a(f)yl]
< e+ lgfu = fall10(a(K)y)
< 2e+ ed(a(K)y).

This shows the continuity of g — a(g)y.
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The action a of G by affine isometries on the Hilbert space H; has clearly no
a(G)-fixed point. This contradicts property (F'H) and hence property (7).

0

We are now able to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Take ¢ > 0 and C' > 0 such as in the lemma. Now let
p €]2 —¢€,2+¢|, B a closed subspace of L,(M) and « an action of the Kazhdan
group by affine isometries on B. Starting from an arbitrary point zy € B, we can
find by induction a sequence (x,) of elements in B satisfying :

571 60
2~ el

Tpy1 € B(x,,C6,) and 0,41 <
by setting 0, = 0(a(K)z,,).

Then, z,, = xg + ZZ;(I) Tri1 — o) defines a convergent sequence in B, and its
limit point is a fixed point for the action . O

3.3.2 Consequences of embeddings between L,-spaces

We will give a simple procedure to construct an affine isometric action on a non-
commutative L,-space from an action on a commutative L,-space.

The next statement is obviously true in a more general context. We say that
a cocycle b: G — L, is proper if lim,_. ||b(g)||, = +o0.

Lemma 3.3.3. Let 1 < p < oco. Let M and M’ be von Neumann algebras such
that there exists an isometric linear embedding

Ly(M) — Ly (M)

r — I.

Let G be a topological group and let 7 : G — O(L,(M)) be an orthogonal rep-
resentation. Assume that © extends to a representation 7 of G on L,(M'), that
is, there exists an orthogonal representation @ : G — O(L,(M')) such that
7(g) (&) = 7(g)x for all g € G, x € Ly(M). Let b : G — Ly(M) be a 1-
cocycle associated to . 3

Then the map b : G — L,(M"), defined by B(g) = b(g) for every g € G, is a
1-cocycle associated to the representation 7. Moreover, b is proper if and only if
b is proper.
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Proof. Let g,h € G. We have

b(gh) = b(gh)
= b(g) +7(g)b(h)
= b(g) + 7(g)b(h)
= b(g) +7(g)b(h).
Sobis a 1-cocycle. The last claim is obvious. O

Proposition 3.3.4. Let G be a topological group. Let m: G — O(L,(]0,1])) be
an orthogonal representation and b : G — L,([0,1]) a 1-cocycle for w. Let M
be a finite von Neumann algebra. Then b : G — L,(L>([0,1]) ® M), defined by
b(g) = blg) for all g € G, is a cocycle satisfying 16()||, = 116(9)||, for all g € G.
In particular :

- b is proper < b is proper ;

- b is bounded < b is bounded.

Proof. Let 7 be the normalized trace on M. Recall that L,(L>([0,1]) ® M)
is isometrically isomorphic to the Bochner space L,(L,(M)) equipped with the
norm

1 1
el = [ Nt = [ (e
We have the natural isometric embedding of L, ([0, 1]) into L,(L,(M)) by
f=f=fel=/fL

Let 7 : G — O(L,(]0,1])) be an orthogonal representation of a topological group
G. By Theorem 1.5.2, 7 has the form

7(9)(1)(0) = ) (FEE @) (o) for all g € G and £ € L, (0,1).

We then extend 7 to an orthogonal representation 7 on L,(L,(M)) by

F)((00) = (g E L (0) ) for all g € G and () € L(L, (M)

=

Since we have 7(g)(f) = 7(9)(f1) = 7(g)(f)1 for all g € G and f € L,([0,1]),
the claim is proved. ]

Using the description of O(

l,) given in Theorem 1.5.1, we can prove Proposi-
tion 3.3.4 when we replace L,([0,

1]) by 1.
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We can also prove the same result with the embedding of [, in C,. The
construction is as follows : let 7 : G — O(l,) be an orthogonal representation of
the topological group G on l,. By Theorem 1.5.1, 7 is given by

m(9)((zn)) = (c(n, 9)20, () for all (x,) € 1,

Now take a Hilbert space H and an orthonormal basis (e;) of H. We have the
following isometric linear embedding of [P in the subspaces of diagonal operators
of C,(H) i

(xn) ¥ (z,) = diag(xy,).
Now for g € G, let p, be the unitary operator defined by py(e;) = €4,¢;). Then we

define the following representation 7 : G — O(C,), extending the representation
7 on (), by

7(g)(z) = (c(n:g))npgxpg_1 for all g € G and z € C,,.

We have then

7(9) () = 7(g)((zn)) for all g € G and (z,,) € L.

Using this latter property and the fact that x +— 7 is a linear isometric embedding,
we see, as in Proposition 3.3.4, that cocycles for 7 in [, isometrically extend to
cocycles for 7 on C,. We obtain as corollary the following result.

Corollary 3.3.5. Let 1 <p < oo and M be a finite von Neumann algebra. If a
topological group G has property (Fr (r~em)), then G has property (Fr,).
If a topological group G has property (Fc,), then G has also property (Fy,).



Chapter 4

The Haagerup property for
actions on L,(M)-spaces

The Haagerup property (H ), or a-T-menability, is a strong negation of property
(T'). As the latter property, the Haagerup property may be defined either in
terms of unitary representations or in terms of actions by affine isometries on
Hilbert spaces. Several authors (Nowak, Chatterji, Drutu, Haglund) considered
the Haagerup property, called a-FL,-menability in [12], for actions by affine
isometries on commutative L,-spaces.

We will define and study in the setting of non-commutative L,-spaces, both
versions of the Haagerup property : one through orthogonal representations, and
the other through affine isometric actions. We will call these properties (Hp,)
and a-F'L,-menability. As we will see, these properties are different from each
other, and different from the classical property (H), even for classical L,-spaces.
In order to study more closely the relationships between these properties and
the original Haagerup property, it will be useful to introduce further versions of
property (Hp,), which we call properties (Hp,a),+) and (Hp,a),7)-

To our knowledge, property (H,) has not been yet considered in the literature,
even in the commutative case. We will characterize totally disconnected groups
with property (H;,) as the amenable ones. We see therefore that properties (H;,)
and (H) do not coincide. Property (Hp, o)) seems to be more closely related
to property (H) : we prove that both properties coincide for linear Lie groups.

4.1 Introduction

4.1.1 The Haagerup property

For an accurate survey on the Haagerup property (H), see [13].

Theorem-Definition 4.1.1. Let G be a second countable locally compact group.
The following properties are equivalent :

85
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(i) There exists a unitary representation of G on a Hilbert space H which almost
has invariant vectors, and has vanishing coefficients.

(i) There exists a proper affine isometric action of the group G on some Hilbert
space H.

(111) There exists a continuous function ¥ : G — RY which is conditionally of
negative type and proper, that is, lim,_,. 1 (g) = +o0.

A group G has the Haagerup property (H), or is said to be a-T-menable, if it has
one of the equivalent properties above.

In contrast with property (7'), the Haagerup property was first established
for some specific groups by constructing proper actions (or proper functions con-
ditionally of negative type). For instance, Haagerup ([34]) proved in 1979 that
the word length on a free group is a conditionally negative definite function on
this group.

4.1.2 Some examples of groups with property (H)

Groups with the Haagerup property (H) form a large class of groups containing
for example amenable groups, free groups, and more generally groups acting
properly on trees, Coxeter groups (the list is non-exhaustive, more can be found
in [13]). For connected Lie groups, we have the following classification result :

Theorem 4.1.2. (Theorem 4.0.1 in [13]) Let G be a connected Lie group. Then
the following assertions are equivalent :

- G has the Haagerup property (H) ;

- if, for some closed subgroup H, the pair (G, H) has relative property (T'), then
H is compact ;

- G is locally 1somorphic to a direct product

M x SO(ny,1) x ... x SO(ng, 1) x SU(my, 1) x ... x SU(my, 1)
where M 1s an amenable Lie group.

Therefore, a non-compact simple Lie group has the Haagerup property (H) if
it is locally isomorphic to SO(n, 1) or SU(n,1); otherwise, it has property (7).
Only compact groups have property (7') and property (H) at the same time,
and a well-known general obstruction to have property (H) is the following : if
a group G contains a non-compact subgroup H such that the pair (G, H) has
relative property (T'), then G does not have property (H). It is not the only
known obstruction, as shown by de Cornulier in [21].

4.1.3 Some hereditary properties of property (H)

We list here some group constructions under which the Haagerup property is
stable :
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- if GG is a group with the Haagerup property, and H is a closed subgroup of G,
then H has also the Haagerup property ;

- if (G},) is an increasing sequence of open subgroups of a locally compact group
G, and if all G,, have the Haagerup property, then so does G (see Proposition
6.1.1 in [13]);

- if H is a closed subgroup of a locally compact group which is co-Fglner in G,
that is such that there exists a G-invariant state on L*°(G/H) (see Proposition
6.1.5 in [13]), and H has property (H), then G has property (H).

- if G and H are two discrete groups with the Haagerup property and containing
a finite subgroup A, then the amalgamated product G4 H has also the Haagerup
property (see Proposition 6.2.3 in [13]).

4.2 Property (Hp ()

In this section, we introduce a variant of the version (i) (see Theorem-Definition
4.1.1) of property (H) involving orthogonal representations on non-commutative
L,-spaces.

We recall that if M is a von Neumann algebra, and L,(M) is its associated
Haagerup L,-space, we denote by Tr the Haagerup trace defined on Ly(M) =~
M..

Definition 4.2.1. Let GG be a topological group, 1 < p < oo, and let M be a
von Neumann algebra. We say that a representation 7 : G — O(L,(M)) has
vanishing coefficients (or 7 is said to be Cp) if
lim Tr(7(g)(x)y) = 0 for all x € L,(M) and y € L, (M).
g—00
Remark 4.2.2. Notice that if M is a semi-finite von Neumann algebra equipped
with a trace 7, by density of the subspace M N Ly (M) in every L,(M), a repre-
sentation has vanishing coefficients if and only if
lim 7(7(g)(z)y) =0 for all z,y € M N Ly(M).
g—oo
The previous definition is motivated by the following theorem, called the
Howe-Moore theorem. It was first proved for unitary representations (see [43]);

the authors of [4] gave a proof of the theorem for representations on ucus Banach
spaces (and more generally for representations on superreflexive Banach spaces).

Theorem 4.2.3. Let I be a finite set, k; (i € I) be local fields, G; be connected
semisimple simply-connected k;-groups, G; = G;(k;) be the locally compact group

of ki-points, and
¢=1]¢:

i€l
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Let 1 < p < 00, and let M be a von Neumann algebra. Let m: G — O(L,(M))
be an orthogonal representation such that L,(M)™¢) = {0} for everyi. Then
has vanishing coefficients.

Now we give the definition of property (Hr,(u)-

Definition 4.2.4. Let G be a topological group. Let M be a von Neumann
algebra, and 1 < p < 0.

We say that a group G has property (Hp,uy) if there exists a representation
7 : G — O(L,(M)) with vanishing coefficients , which almost has invariant
vectors.

Remark 4.2.5. By analogy with property (7") and property (H), property
(Hp,amy) is a strong negation of property (77,(a) in the following sense : if a
topological group G admits a closed normal non-compact subgroup H such that
the pair (G, H) has property (17,(u:)), then G' does not have property (Hp, ().

The following proposition is obvious.

Proposition 4.2.6. Let 1 < p < oo and let M be a von Neumann algebra.
Property (Hp,umy) is inherited by closed subgroups.

We will only study property (Hp, (z) for semi-finite von Neumann algebras.
If M is a semi-finite von Neumann algebra, denote by [M], the class of von
Neumann algebras M’ such that L,(M) is isometrically isomorphic to L,(M)
(notice that such a von Neumann algebra M’ is also semi-finite by Remark 1.4.4
since it has the same type as M).

Proposition 4.2.7. Let 1 < p < oo, and let M be a semi-finite von Neumann
algebra. Let M’ €[M],. Properties (Hy, ) and (Hp, ur) are equivalent.

Proof. Let U : L,(M,7) — L,(M’,7') be an isometric isomorphism. Denote by
U*: Ly(M',7") — Ly(M,7) its dual map. Let m be a representation of group
G on L,(M, 1) with almost invariant vectors and vanishing coefficients. Then
7 =UomoU™! defines a representation on L,(M’, 7"), which is easily seen to

have almost invariant vectors. The representation 7 has vanishing coefficients
since we have for all 2’ € L,(M', 1),y € Ly(M’,7"),and all g € G

(7 (g)(@)y) = 7 (U(r(g) (U (2))) )
= 7(m(g)(U(x)) U"(¥/)).
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4.3 Property (H;)

Let G be a second countable locally compact group, and let 1 < p < oo, p # 2.
Let 77 : G — O(l,) be a representation G on [,,.

We recall from Chapter 2 that the conjugate representation 72 of G on I,
is unitarily equivalent to a sum of monomial representations associated to open
subgroups of G, that is, there exist open subgroups (H;);c; of G and unitary
characters (x;)icr on the H;’s such that

7 = M,

G
p2 0T o My, ~ @icrIndyy x;.

If G is connected, the only open subgroup of G is G itself and a character on G
is Cp if and only if G is compact. Therefore we have the following result.

Theorem 4.3.1. Let G be a connected second countable locally compact group.
Let 1 <p < oo, p#2. Then G has property (H,,) if and only if G is compact.

Now we turn to property (H;,) for totally disconnected groups.

Theorem 4.3.2. Let GG be a totally disconnected locally compact second countable
group. The following properties are equivalent :

(i) G has property (Hy,).

(i1) G is amenable.

Proof. (i) = (ii) : Let 7 : G — O(l,) be an orthogonal representation with
almost invariant vectors, and with vanishing coefficients. Then we have 7% ~
Dic IIndfli x; for some open subgroups H; and unitary characters y; on H;.

Since 72 has the same form as 7P, 72 has vanishing coefficients, and so does
= Indflixi for every ¢ € I. Let ¢ € I be fixed. Then W}' g, contains x;; indeed,
we have

Wz(h>5Hl = Xz(h>5Hl for all h € H;.

It follows that x; € Cy(H;) and hence H; is compact.

Since H; is compact, x; C Ay, and hence m; = Indflixi C Indfli)\Hi = \¢. So, 72
is weakly contained in Ag. Since we have also 1¢ < 72, it follows that 15 < Ag.
By Hulanicki-Reiter theorem, GG is amenable.

(ii) = (i) : Since G is totally disconnected, by van Dantzig’s theorem, there
exists a compact open subgroup K of G. Let (7%, 15(G/K)) be the quasi-regular
representation of G on ly(G/K), and let 7" = My, o w* o M,,. Notice that, for
g € G, every 7P(g) is given by the same formula as 7%(g) on the common dense
subspace [;(G/K), so w? : G — O(l,(G/K)) defines an orthogonal representa-
tion. Since K is compact, Ag/k is contained in the regular representation A¢ (by
identifying l(G'/K) with the K-invariant functions in Ly(G)). Hence gk has
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vanishing coefficients, since all matrix coefficients of A\ are Cy. It follows that
7P has vanishing coefficients.
Since G is amenable, the action of G on G/K is amenable (see p.28 in [28]).
Hence, A\g/x almost has invariant vectors. Therefore, G has (H,).

O

4.4 Property (Hy (o1]))

We give a classification of (almost all) Lie groups with property (Hz,o)); it
turns out that this class of groups coincides with the class of Lie groups with the
Haagerup property (H) (see Theorem 4.1.2).

Theorem 4.4.1. Let G be a connected Lie group such that in its Levi decompo-
sition G = SR, the semi-simple part S has finite center. Then the following are
equivalent :

(i) G has property (Hp, (o,1))) ;

(i) G has the Haagerup property (H) ;

(iii) G is locally isomorphic to a product [[,.; Si x M, where M is amenable, I
is finite, and for every i € I, S; is a group SO(n;, 1) or SU(m;, 1) with n; > 2,
m; > 1.

Remark 4.4.2. (i) The previous theorem gives a classification of linear groups
since, for any such group, the center of the semi-simple part in the Levi decom-
position is finite (see Proposition 4.1 of Chapter XVIII in [42]).

(ii) We had to exclude groups G = SR with S having infinte center, as we
could not be able to prove (iii) = (i) for the universal covers of SO(n,1) and
SU(n,1).

Theorem 4.4.1 has the following immediate consequence.

Corollary 4.4.3. Let G be a closed subgroup of a Lie group of the form ], , Si x
M, where M is amenable, I is finite, and for every i € I, S; is a group SO(n, 1)
or SU(m,1). Then G has property (Hp, o)) for all 1 < p < oo.

The most difficult part of the proof of Theorem 4.4.1 is the proof of (iii) =
(7). Actually, we will show that groups as in Corollary 4.4.3 have a stronger
version of property (Hp,o,1))), called property (Hp,o,1])+) and introduced later
in this chapter. We mention that the proof, even for the groups SO(n,1) or
SU(n, 1), is not elementary since it depends heavily on the fact that these groups
have lattices I' with non-trivial first Betti number, that is, lattices with infi-

nite abelianization. The latter result was shown by Millson in [58] for the case
SO(n, 1), and by Kazhdan in [48] for the case SU(n, 1).
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In the proof of (#ii) = (i), we will need the following technical lemma which
asserts that vanishing coefficients and almost invariant vectors are preserved for
the quasi-regular representation, when passing from a group to a finite cover, and
from the finite cover to the group.

Lemma 4.4.4. Let G1 and Gy be locally compact topological groups and p : Gy —
G be a finite covering.

1. Let Hy be a closed subgroup of Gy such that Go/Hy carries a Gy-invariant
measure, and the quasi-reqular representation Ag,/m, has almost invariant
vectors and vanishing coefficients. Set H; = p‘l(Hg). Then Ag,/m, has
almost invariant vectors and vanishing coefficients.

2. Let Hy be a closed subgroup of Gy such that G1/Hy carries a Gy-invariant
measure, and the quasi-reqular representation A\g,/m, has almost invariant
vectors and vanishing coefficients. Set Hy = p(Hy). Then Hy is closed and
NGy H, has almost invariant vectors and vanishing coefficients.

Proof. In the two cases, let p : G1/H; — G9/Hy be the map induced by the
covering map p : G; — G,. Observe that p is GGi-invariant, for the natural action
of G on G1/H; and the action of G on G2/ H, given by p :

91-(92H2) = p(91)g2H, for all g1 € Gy, g2 € Gs.

Since Z; = Ker(p), the map p has finite fibers : indeed, the fiber over p(g; Hs) is
{grzH, | z€ Zy } ={z2q1H, | z € Zy }, as Z; is central.

1. Let puy be a Go-invariant measure on Gy/Hs. In this case, Z; C H; and
so P is bijective. Then gy = P! * po is a Gy-invariant measure on Gy/H;.
The quasi-regular representation Ag,/p, is equivalent to the representation
AGs/Hs © P-

Since 1g, < Ag,/H, and Ag,/m, has vanishing coefficients, we have 1, <
Ay /a, and Ag, /g, has vanishing coefficients.

2. Notice that Hy = p(H;) is a closed subgroup of G5 since the cover p : G; —
G is finite. Let py be a Gi-invariant measure on GG1/H;. Since the fibers
of p are finite, we can define a Go-invariant measure ps on Go/Hy by

/ f d/,LQ = / f Oﬁ d,ul for all f € OC(GQ/H2> (*)
GQ/HQ Gl/Hl

The induced mapping

(O L2(G2/H2,M2) - Lz(Gl/Hl,M)
f = fop
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is a linear isometry which intertwines the G'i-representations A, /q, o p and
AGy/Hy - S0, Agy/H, © P 1s equivalent to a subrepresentation of Ag,,/q,. Since
AG, /i, has vanishing coefficients, the same is true for Ag,/m, o p. As pis
surjective and had finite kernel, it follows that the Gy-representation g,
has vanishing coefficients.

It remains to prove that 1, < Ag,/m,. To show this we claim that
Im(w) = LZ(Gl/Hl))\Gl/ﬁH(Zl),

the space of Zj-invariant vectors in Lo(G/Hy).

Indeed, let f; € L2(G1/H1)>\01/H1 (1) As mentioned above, the fiber over
p(g1Hs) is {zg1Hy, z € Z;} for every g; € Hy. Hence, f; is constant on the
fibers of p and there exists a map fy on G5/ Hs such that foop = fi. It is
clear that fo € Lo(Go/Hs) by formula (x).

Conversely, if f € Ly(Gy/Hs), it is clear that fop is a Z;-invariant function
in Ly(Gy/Hy).

We now show that Ag,,m, almost has invariant vectors. It suffices to show
that the restriction of Ag,/m, to the subspace Lo(Gy/H;) o1/ (Z1) almost
has invariant vectors. Take a sequence (v,), of almost invariant vectors for
Ay /i, - For n € N, define

o \Zl 2 Aam(2)
2€Z1

For every n € N, w,, € Lg(Gl/Hl))‘Gl/Hl(Zl). Moreover, for g € G,

H)\Gl/Hl(g)wn_wnH2 Z H)‘G1/H1 Zg _UnHQ
ZEZl

so that lim, sup ¢ |[Aa, /m, (9)wn — wyl|l2 = 0 for every compact K C G.

We have
[wn = vall2 < Z 1A/, (2)vn = nlls
ZEZ
and the left side of the inequality tends to 0; hence, since ||v,|l2 = 1,

lim,, [|w,||s = 1. The sequence (w,),, defined by w, = o Wns 18 a se-
quence of almost invariant vectors for the restriction of Ag, /g, to
Ly(Gy/Hy) e1/m ) The lemma is proved.

We are now able to give the proof of Theorem 4.4.1.
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Proof of Theorem 4.4.1. (i) = (ii) : Assume that G is a connected Lie group
without property (H). By Theorem 3.3.1 of Cornulier in [19], there exists a nor-
mal subgroup Ry in G such that G/Rr has the Haagerup property, and the pair
(G, Rr) has property (7). Since G/Rr has the Haagerup property (H), and G
does not have property (H), the subgroup Ry is non-compact. By Theorem 2.5.3,
the pair (G, Ry) has property (77, (o,1)) for every 1 < p < oo. Hence, by Remark
4.2.5, G does not have property (Hp,o,1)))-

(il) = (iii) : This is the result from [13], stated in Theorem 4.1.2.

(ili) = (i) : We will show that G admits a closed subgroup H such that the
quasi-regular representation gy : G — O(Ly(G/H)) has almost invariant vec-
tors and vanishing coefficients. Then we will conjugate this representation by the
Mazur map to obtain the desired representation on L,(G/H).

Since the semi-simple part S of G has finite center, and since G is locally
isomorphic to the direct product [[, S; x M, using Proposition 8.1 in [20], there
exists a finite covering p : G* — G such that G? is a direct product of closed
connected subgroups [ ], S? x M?, where every SE is a simple Lie group with finite
center, and M? is amenable.

Let i € I. Let S; = SO(n;, 1) or S; = SU(m;, 1) be such that S; is locally
isomorphic to S7. By the results in [58] and [48], there exists a lattice I'; in S;
such that |PZ/[FZ, PZH = Q.

Set G =[], Sf x M?*. We consider the closed subgroup of G; defined by
Hy = [ [0y, Ti] x {e}.
icl
We claim that the quasi-regular representation g, m, of Gi on Lyo(G1/H,) has
almost invariant vectors and vanishing coefficients. Indeed, we have
)\GI/HI = ®z’€1)\Si/[Fi,Fi] ® A, (1)

the right hand-side being the exterior tensor product of the representations.

We first show that Ag, g, has vanishing coefficients. Since the representation
Ay has vanishing coefficients, it suffices to show that Ag,/r,r, has vanishing
coefficients for every ¢ € I. By the Howe-Moore Theorem 4.2.3, this is the case
if and only if

Ly (S; /[0y, Ty sererad (51 = {0} for all i € 1.

To show this, let ¢ € I be fixed. Since I';/[I';,I';] is infinite, the space
lo(I;/[I;,T;]) does not have non-zero Ar, /i, r,)(I';)-invariant vector. Since S;/T’;
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carries a S;-invariant finite measure, this implies by induction (see theore a1
in [8]) that n h mE
LQ(SZ/[Fz, Fi]))‘si/[Fiﬂ](Si) — {0}

We have therefore proved that Ag,,q, has vanishing coefficients.

Next we show that Ag, /g, almost has invariant vectors. For this, it suffices
to show that Ay and all Ag,/r, r,) have almost invariant vectors, by formula
(1). Indeed, by the Hulanicki-Reiter Theorem, this is clear for A,z since M? is
amenable. Fix ¢ € I. Since I';/[I';, ;] is abelian and therefore amenable, we
have 1p, < Ap,/r,,r,]- Since S;/T; has a finite S;-invariant measure, we have also

Is, < Ag,/[ry.ri-

Denote by S; = PSO(n;,1) or S; = PSU(m;, 1) the quotient of S; by its
(finite) center. Denote by Gy and G5 the groups

Gy =[S x M* and G5 = [ [ 57 x M*.

el el

Observe that we have three finite covering maps p; : G; — Ga, ps : Gz — Gy
and p3 (= p) : G5 — G. We apply now Lemma 4.4.4 successively to p1, po and
p3. We obtain the existence of a closed subgroup H in G such that G/H carries
a G-invariant measure, and A\g/g almost has invariant vectors and has vanishing
coefficients.

Let 7 be the orthogonal representation of G on L,(G/H) defined by the same
formula as A\g /g :

™ (9)f(¢’'H) = f(g7'g'H) for all f € L,(G/H) and g,4’ € G.

By proposition 2.5.1, 7¥ almost has invariant vectors. Since G/H carries a G-
invariant measure, we have Moreover, for z,y € C.(G/H), the matrix coefficient
g —< 7 (g)x,y > is in Cy(G). By density of C.(G/H) in L,(G/H), the repre-
sentation 7P has vanishing coefficients.

[

4.5 Properties (H¢,) and (Hg,)

Let us study (Hp, ) for the two discrete von Neumann algebras B(H) and
(BM,)s = {x = Bpay | sup,, ||za|| < oo }. The associated L,-spaces are re-
spectively the Schatten p-classes C), and the space

Sp = {1 = @pwn | 20 € My, > Trp(|z,[P) < 00 }.
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We show that, for p # 2, property (He¢,) is equivalent to property (H), and that
only compact groups have property (Hg,).

Theorem 4.5.1. Let 1 < p < oo, p # 2. Let G be a locally compact second
countable group. Then the following properties are equivalent.

(1) G has property (He,).

(ii) G has property (H).

Proof. (i) = (ii) : Let #? : G — O(C,) be an orthogonal representation with
vanishing coefficients and which almost has invariant vectors. Then by Remark
2.4.5, the conjugate representation 72 = M, 507 o My, has the same form as 7?,
hence 72 has vanishing coefficients. By Proposition 2.5.1, 72 almost has invariant
vectors. Hence G has property (H).

(ii) = (i) : Let 7 : G — U(H) be a unitary representation of the group G on
the Hilbert space ‘H with almost invariant vectors and vanishing coefficients.
Define

ay(z) = w(g)zm(g~") for x € B(H).

Clearly, the previous formula defines an orthogonal representation o : G —
O(C,). Let us show that a has vanishing coefficients.

By density of finite rank operators and linearity of the trace, it suffices to show
that lim, . Tr(ay(x)y) = 0 for x,y positive finite rank operators. This is
straightforward to check. Indeed, we can write

x:i<7€l>€z
=1

y=>_ <.n>mn
j=1

Let (¢x) be an orthonormal basis of H. Then, for vectors ¢;,n; € H,

Z < (@)Y, G >
= ZZ Z < Gy >< (g™ )y, & >< m(g)&i, G >
k j=1 =1
Hence,
Tr(ay (2 ZZ|<W Yng, & > nilll1&l -

As 7 has vanishing coefficients, the right side of the inequality tends to 0 as ¢
tends to infinity.
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It remains to show that a has almost invariant vectors in C),. In view of
Proposition 2.5.1, it suffices to prove this for p = 2. This is the same proof as
the one given for the third case of (i7) of Theorem 2.5.6.

O

The following proposition implies that only compact groups have property
(Hg,) or property (Hprgrs,) for p # 2.

Theorem 4.5.2. Let G be a non-compact topological group. Let p # 2. There
is no representation of G on S, or on LP @P S,. Consequently, G does not have

property (Hg,) or property (Hiraprs,).

Proof. Assume, by contradiction, that we have a representation 7 : G — O(S,)
with vanishing coefficients. By Proposition 1.5.6, such a representation can be
written as a sum w© = @,7m, of representations m, on M,,. For all n and g € G,
there exist wu,(g), v,(g) unitaries in M,, such that m,(g)r = u,(g)zv,(g) or
Tn(g)x = un(g)(*x)v,(g) for all x € M,,. Since 7 has vanishing coefficients, each
7, has also vanishing coefficients. Hence

lim Tr,,(u,(g)vn(g)x) = 0 for all x € M,,.

g—0o0

This implies that every coefficient of the matrix u,(g)v,(¢g) tends to 0 as g tends
to oo, which contradicts the facts that ||u,(g)v,.(g)|| = 1 for all ¢ € G and that
G is non-compact.

The claim about property (Hpsgrs,) is proved with a similar way, using the
decomposition O(LP & S,) = O(LP) & O(S,) from Proposition 1.5.9.
U

4.6 Stronger versions of property (Hy (u))

We have seen that the Mazur map gives a mean to transfer orthogonal represen-
tations on L,(M) on orthogonal representations on Ly(M). In order to study
the relationship between properties (H, (n)) and (H), the Cy-property of a rep-
resentation has to be preserved during this process.

If we restrict to isometries with some further properties (positivity, measure
preservation), the vanishing property of the involved representation is preserved.
We do not know if the conjugation by the Mazur map preserves the vanishing
property for all representations.
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Definition 4.6.1. Let M be a semi-finite von Neumann algebra.

(i) U € O(L,(M)) is said to be trace-preserving if it has the form U = u.J in the
Yeadon decomposition given in theorem 1.5.4.

(ii) U is said to be positive if it has the form U = BJ in this decomposition.
We denote by O™ (L,(M)) (resp. OT(L,(M))) the subgroup of trace-preserving
isometries in O(L,(M)) (resp. the subgroup of positive isometries in O(L,(M))).

Remark 4.6.2. The terminology in the previous definition is motivated by the
two following facts :

- a trace-preserving isometry U = uJ has a Jordan part which preserves the trace
7, that is 7(J(z)) = 7(x) for all x € Ly (M, 7) ;

- a positive isometry B.J sends the positive cone L,(M)" into itself.
Now we give the definitions of stronger versions of property (Hp, ).

Definition 4.6.3. Let G be a topological group. Let M be a semi-finite von Neu-
mann algebra, and 1 < p < oco.

We say that a group G has property (Hp, ) (resp. (Hp, 7)) if there ex-
ists a representation m : G — OT(L,(M)) (resp. a representation © : G —
O7(L,(M))) which has vanishing coefficients and which almost has invariant
vectors.

We have already seen that property (Hp, ) implies property (H) when M
is one of the following algebras : M = B(H) and M = L>([0, 1]) for some Lie
groups. The following theorem gives a similar result for the stronger versions of

(Hr,m))-

Theorem 4.6.4. Let G be a locally compact topological group. Let M be a semi-
finite von Neumann algebra. Let 1 < p < oo.

(i) Let M be a semi-finite von Neumann algebra and assume that G has property
(Hp,(m),)- Then G has property (H).

(ii) Let M be a finite von Neumann algebra and assume that G has property
(Hp,(my4). Then G has property (H).

The proof of the previous theorem will be an easy consequence of the following
proposition.

Proposition 4.6.5. Let 1 < p < co. (i) Let M be a semi-finite von Neumann
algebra. Let 7w : G — O7(L,(M)) be a representation with vanishing coefficients.
Then, for 1 < g < 00, its conjugate by the Mazur map 7¢ = M, , o 7P o M,, has
also vanishing coefficients.

(11) Let M be a finite von Neumann algebra. Let 7P : G — OT(L,(M)) be a
representation with vanishing coefficients. Then, for 1 < q¢ < oo, ©? has also
vanishing coefficients.
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Proof of proposition 4.6.5. (i) This is clear since 77 = 7” on the common dense
subset M N Ly (M) of L,(M) and L,(M) (see Remark 2.4.5).

(ii) Take a representation 7? : G — O™ (L,(M)) with vanishing coefficients.
We have 7P(g)(x) = ByJy(x) for all g € G and « € L,(M). If 7P has vanishing
coefficients, its contragradient representation (77)" has also vanishing coefficients.
This latter representation is given by

() (g)(x) = BY J,(x) for all g € G and z € Ly (M).

Since every element in M is a linear combination of positive operators or a
linear combination of unitaries, it suffices to show that the conjugate 7% =
M, jomPoM,,, = B4 J has vanishing coefficients on positive elements or unitaries.

Assume ¢ € [p,p/] (or ¢ € [p', p]). Let t € [0,1] be such that £ =t + (1—1¢)L.
Then, for z a positive element in M N L;(M), and y a unitary in M, we have

b t+(1-t) & _ _
T(By Jo(x)y) = 7(By 7 Jy(at )y 70

T(Bly'Jy(a') (By )ttty
1 £ - R
< 7(Byly' Jy(z")[7) (B | Jy(z' ")yt =)

using the tracial property of 7 and Hoélder’s inequality with conjugate exponents

T and . Since y is unitary, we have |ya| = |a| and |ay| = y*|aly for all @ and

therefore ,
L 1 1
(B Jy(x)y) < 7(7%(g)(x)) 7((x") (9)(x)) 7.
Assume ¢ € [1,p]. Let ¢t € [0,1] be such that £ = tp 4+ (1 —t). We have

7(BP) = 7(1) = 1 for all g € G. Then by the same computation as before, we
have

Assume that ¢ € [2, o[, then ¢’ € [1, ¢] and by the previous case, 79 has vanishing
coefficients. Then 77 has vanishing coefficients for all ¢ € [1, oo[. 0

Proof of theorem 4.6.4. (i) Let 7P be a trace-preserving on L,(M) which has
vanishing coefficients and almost has invariant vectors. Then the conjugate rep-
resentation 72 has vanishing coefficients by (i) in Proposition 4.6.5 and almost
has invariant vectors by Proposition 2.5.1.

(ii) The proof is similar as the previous one above, using (i7) in Proposition
4.6.5. O
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Remark 4.6.6. Let 7 : G — O(L,(M)) be an orthogonal representation of the
group GG with vanishing coefficients. We can define its positive part 7 : G —
O(L,(M)) by ©(g) = ByJ, for all ¢ € G if 7(g) = uy,ByJ,. One might be
tempted to think that 7" is a representation with vanishing coefficients. This
would imply that (Hp,a) and (Hp,a4)) are equivalent. However, the first
problem is that 7t is not necessarily a group homomorphism (compare with the
formulas in Theorem 2.4.4). But even if 7" happens to be a representation, 7+
can have non vanishing matrix coefficients, as the following example shows.

Let G = SLy(R). The free group H = [Fy on two generators embeds as a
finite index subgroup in the lattice SLy(Z), and hence as a lattice in G. Let x be
a non-trivial character on H (such a character exists since the abelianized group
of H is non-trivial). Let 7 = Ind$x. There exists a cocycle ¢ : G x G/H — H
such that

m(9)f(g'H) = x(c(g~',¢'H)) f(g~'g'H) for all f € Ly(G/H), g,9' € G.

The positive part 7 of 7 = Indgx is the quasi-regular representation on ly(G/H),
which has a non-zero invariant vector since H has finite covolume in G. Hence,
7" has non-vanishing coefficients.

On the other hand, m does not have non-zero invariant vectors since y is
non-trivial on H (see Theorem E.3.1 in [8]). Hence, by the Howe-Moore theorem
4.2.3, 7 has vanishing coefficients.

Corollary 4.6.7. Let M be a finite factor and G a locally compact group with
property (Hy,my). Then G has property (H).
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Chapter 5

Strongly mixing representations

on Ly(M)

In this chapter, we define and study strongly mixing representations on non-
commutative L,-spaces associated with finite von Neumann algebras. We give a
variant of the Haagerup property for strongly mixing representations on L,(M),
which seems to be closer to (H) than property (Hp, ). The proofs of our re-
sults rely on two important constructions of strongly mixing actions on measures
spaces; we recall them in the first part of this chapter with some useful facts from
ergodic theory. The second part of the chapter is devoted to our results.

5.1 Strongly mixing actions on measured spaces

The aim of this section is to recall two constructions from ergodic theory which
we will use use in our proofs later.

5.1.1 The Connes-Weiss construction

We first recall some definitions from ergodic theory. Let G be a locally com-
pact second countable group that acts on a standard probability space (X, i) by
measure-preserving Borel automorphisms.

Definition 5.1.1. - The action of G on (X, ) is said to be strongly mixing if,
for all Borel subsets A and B of X,

lim p(g~' AN B) = pu(A)u(B)

g—o0
that is, for all € > 0, there exists a compact subset K C G such that

(g P AN B) — u(A)u(B)| < eforall g € G\ K.

101
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- A sequence of Borel subsets (A,,) of X is said to be asymptotically invariant if,
for all compact subsets K of G,

lim sup pu(g~'A, A A,) = 0.

n—=0 ge K

It is said to be non-trivial if moreover inf,, u(A,)(1 — u(A,)) > 0.
- A sequence of nonnull Borel subsets (A4,) of X is said to be a Fglner sequence
if, for all compact subset K C G,

1A, N A
lim p(A,) =0 and lim sup o™ An & An)

oo nek (A

= 0.

The following theorem of Connes and Weiss gives a construction of a strongly
mixing action with a nontrivial asymptotically invariant sequence for every non-
Kazhdan group.

Theorem 5.1.2. ([31] and [18]) Let G be a second countable group which does not
have property (T). There exists a measure-preserving G-action on a probability
space (X, p), which is strongly mizing and which has a nontrivial asymptotically
movariant sequence.

5.1.2 A result of Jolissaint

We recall here the analog of the previous definitions appearing in ergodic theory,
but in a non-commutative setting.

Let GG be a second countable locally compact group. Let M be a von Neumann
algebra with separable predual, and ¢ be a faithful normal state on M. Assume
that there exists a G-action o : G — Aut(M) by automorphisms of M such that
© is a-invariant, that is

o(ay(z)) = p(x) for all g € G, z € M.

Definition 5.1.3. - The action of G on (M, ) is said to be strongly mixing if,
for all x,y € M,

lim p(ay(7)y) = ¢()e(y).

g—

- A sequence of projections (e,) in M is said to be asymptotically invariant if,
for all compact subsets K of G,

lim sup ¢(|ay(e,) — en|*) = 0.

n—00 g ¢
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It is said to be non-trivial if moreover inf, ¢(e,)(1 — ¢(e,)) > 0.
- A sequence of nonnull projections (e,) in M is said to be a Fglner sequence if,
for all compact subset K C G,

_ 2
hm (p(en) = O and hm Sup 90(|ag(€n) €n| )

=0.
n—oo n—oo geK gp(en))

The following theorem, due to Jolissaint, gives an analog of the Connes-Weiss
construction, in this non-commutative context.

Theorem 5.1.4. ([13]) Let G be a locally compact second countable group with
the Haagerup property (H). Then, for each factor M listed below, there exist
an action of G on M by automorphisms, and an a-invariant state ¢ on M for
which « s strongly mizing, and such that M contains a Folner sequence and a
non-trivial asymptotically invariant sequence for o and @ :

(i) M is the hyperfinite 11, factor R, and ¢ is the canonical trace .

(11) M is the factor Ry; = R ® B(ly) of type Il and ¢ = 7 @ w, where w is a
suitable normal state on B(ly).

(7ii) M is the Powers factor Ry of type 111, and ¢ = ¢, is the associated Powers
state.

5.2 Strongly mixing actions on L,(M)

We assume in this section that M is a finite von Neumann algebra, equipped
with a finite trace 7. We will always assume in this chapter that 7 is normalized,
that is 7(1) = 1, and that 7 is faithful, that is 7(z) > 0 if z € M™, x # 0.

5.2.1 Property (H}'",)

Let GG be a locally compact group. Given a finite von Neumann algebra, we define
a notion of strongly mixing orthogonal representation of G on L,(M).

Definition 5.2.1. Let M be a finite von Neumann algebra with trace 7. We say
that a representation 7 : G — O(L,(M)) is strongly mizing if

lim 7(7(g)(x)y) = 7(x)71(y) for all ,y € M.
g—00
We will study the following variant of property (H) with strongly mixing
orthogonal representations.

Definition 5.2.2. Let M be a finite von Neumann algebra. We say that a group
G has property (priz‘M)) if there exists a representation 7 : G — O(L,(M))
which is strongly mixing and which almost has invariant vectors in the comple-
ment L,(M)" of the 7(G)-invariant vectors.



104 CHAPTER 5. STRONGLY MIXING REPRESENTATIONS ON Lp(M)

Here are our main results concerning the relationship between property (H ﬁig”M))

and property (H).

Theorem 5.2.3. Let G be a locally compact group. Let M be a finite von Neu-
mann algebra, and let 1 < p < oco. If G has property (Hz;‘jé’“"M)), then G has the
Haagerup property (H).

Theorem 5.2.4. Let G be a locally compact group with the Haagerup property
(H). Let 1 <p < oo, p#2. Then G has property (HZZ'(”CM)) in the two following
cases :

(i) (M, 1) = (L>(]0,1]), \) with \ the Lebesque measure ;

(ii) M = R is the hyperfinite 11, factor.

The proofs of the previous theorems will be given in the next subsection. The
main technical tools for these proofs are the two following lemmas.

Lemma 5.2.5. Let GG be a locally compact group. Let M be a finite von Neumann
algebra, and let 1 < p < oo, p# 2. Let m: G — O(L,(M)) be a strongly mizing
orthogonal representation. Then w(g) is a Jordan *-automorphism of M for every
geqG.

The following corollary is a straightforward consequence of the previous lemma,
using Remark 2.4.5.

Corollary 5.2.6. Let 1 < p < oo, p # 2, and1 < g < co. Let P : G —
O(L,(M)) be a strongly mizing representation. Then the conjugate representation
7w 45 strongly mizing.

The following lemma asserts that the multiples of the unit 1 € M are the
only invariant vectors for a strongly mixing representation. We set

Ly(M) ={z € L,M)|7(x) =0}

Lemma 5.2.7. Let GG be a locally compact group. Let M be a finite von Neumann
algebra and let 1 < p < oo. Let m : G — O(L,(M)) be a strongly mizing
representation. Then L,(M)'(m) = L)(M).

5.2.2 Proofs

Proof of Lemma 5.2.5. Let g € G. By Yeadon’s theorem 1.5.4, 7(g) has a de-
composition

7(g) = uyB,J,

with u, a unitary in M, B, a positive operator affiliated with M such that its
spectral projections commute with M, and J, a *-Jordan automorphism. Set
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vy = ugB, for all g € G.

We will show that v, =1 and B, =1 for all g € G. We claim that it suffices
to give the proof when p > 2. Indeed, if p < 2, let 7P(g) = u,B,J, for every
g € G. By Proposition 2.4.6, the contragradient representation (7”)" of 7¥ on L,
with p’ > 2 the conjugate exponent of p, is given by the following formula

D
(7)) (9)x = u} By ugJy(x)u} for all g € G,z € M.
Moreover, the contragradient is obviously strongly mixing. Hence, if the claim is

ya
true for p’ > 2, then uy = 1 =u,, By =1= B, and the claim is true for p.

So we can assume that p > 2. For g € G, J,(1) = 1 since J, is a sum of a
*_algebra morphism and a *-algebra antimorphism by Theorem 1.3.6. Since 7 is
strongly mixing, for x = 1, we have

lim 7(7(g)(y)) = lim 7(7(g)(y)1) = 7(y) for all y € M.
g—00 g—o0
Therefore, for y = 1, we obtain

lim 7(vy) = 1.
g—00

On the other hand, for gy € G be fixed, we have
T (1y5,) = T (x{g)m(g0) (1)) = (e (g0) (1)) = 701
Hence 7(v,) =1 for all g € G.
Let g € G be fixed. Since w(g9) € O(L,(M)) and 1 € L,(M), we have

(|7 (g)1P) = [[1][} = 1, that is 7(B?) = 1. Using twice Hélder’s inequality, we
have

1 =7(uyBy) < 7(By) < 7(B)Y' < 7(BP)'/? =1 for 1 <t <p,

and it follows that T(Bg) = 1. Now by the Cauchy-Schwarz inequality,

1 =7(vy) < y/7(B2%) = 1.

The equality case gives that v, = uy,B, = 1. From the uniqueness in the polar
decomposition, it follows that v, = 1 and B, = 1. Hence the lemma is proved. [

Proof of Lemma 5.2.7. Let (7?) = ¥ : G — O(Ly(M)) be the contragradient

representation of 77 : G — O(Ly(M)). Let z € L)(M), and y € Lp/(j\/l)”p/(G).
Then,

T(yz) = lim (77 (g)(y)z) = lim (yn*(g~")(z)) = 7(y)7(x) = 0.

g—o0 g—o
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Thus LY)(M) C Ly(M)' (7).

To show that L,(M)'(7?) C L)(M), it suffices to show that 1 € L, (./\/l)”p/(G).
Indeed, if 1 € L,y (M)WPI(G), then for every x € L,(M)'(n?), we have
7(x) = 1(x1) = 0.

Now let g € G. By Lemma 5.2.5, 77 (g) is a Jordan *-automorphism, so that
™ (g)(1) = 1. O

Proof of Theorem 5.2.4. (ii) By Theorem 5.1.4, there exists an action w of G by
automorphisms on the hyperfinite II; factor R such that
- 7 is strongly mixing,
- there exists a non-trivial asymptotically invariant sequence (e,) of projections
in R, that is there exists a sequence of projections (e,) such that 7(e,) = 1/2 for
all n and

lim sup ||7(g)(en) — enl]2 = 0 for all compact K of G.

n—00 g i
This action defines a unitary representation 72 : G — U(Ly(R)) by
m(g)x = n(g)(z) for all g € G, z € R,

as well as an orthogonal representation 7?7 : G — O(L,(R)) for every 1 < p < oo.
It is clear that 7P is strongly mixing in the sense of Definition 5.2.1.

By Lemma 5.2.7, LY(R) = Ly(R)'(7?). Define a sequence (v,) in R by
Uy = €, — T(en) 1.

Then (v,) is a sequence of almost invariant vectors for 7 in LY(R) = Ly(R)'(7?).
It is straightforward to check that [|v,||3 = 1/4. Hence, 72 has almost invariant
vectors in Ly(R)'(7%). By Proposition 2.5.1, 7” has almost invariant vectors in
Ly(R)'(77).

(i) The proof is similar as the previous proof, using Theorem 5.1.2 based on
the Connes-Weiss construction instead of Theorem 5.1.4 of Jolissaint. O

Proof of Theorem 5.2.3. Let ©P be a strongly mixing representation of G on
L,(M) which almost has invariant vectors in L,(M)’(7?). Then the conjugate
representation 72 defines a strongly mixing representation on Ly(M) by Corol-
lary 5.2.6.

By Proposition 2.5.1, 7 almost has invariant vectors in Ly(M)'(7?). By
Lemma 5.2.7, we have Ly(M)'(7?) = LY(M). Since 72 is strongly mixing, the
restriction ’/T?LQ (MY (x2) OF 7% to Ly(M)/(7?) almost has invariant vectors and has
vanishing coefficients. Hence G has property (H). 0



Chapter 6

Proper actions by affine
isometries on L,(M)

In this chapter, we consider a more geometric approach to the Haagerup prop-
erty (H) by studying the existence of proper actions by affine isometries on non-
commutative L,-spaces. We will use a terminology already used in [12] : a group
is said to be a-F'L,(M)-menable if it admits a proper action by affine isometries
on L,(M).

We relate a-F'L,(M)-menability with the property (Hp,(v) that we have intro-
duced in chapter 5 : we show that if a locally compact second countable group
G has property (Hp (am)), then G is a-FL,(M)-menable for M = [*(M) or
M=Me B(ly). We also show that every group with the Haagerup property
(H) admits a proper action by affine isometries on L,(R® B(ly)), where R® B(l>)
is the hyperfinite II,, factor associated to the hyperfinite II; factor R.

In [85], Yu showed that every hyperbolic group I' x I" admits a proper action by
affine isometries on [,(I' x I') for p large enough. We show that his construction
yields a proper action of I' by affine isometries on the non-commutative L,-space
C, for p sufficiently large.

6.1 Introduction

Let G be a topological group, and let B be a real Banach space. Let o : G —
Isom(B) be a continuous action of G on B by affine isometries. Let 7 : G — O(B)
be the linear part and b : G — B the translation part of «, so that

a(g)x =7(g)x +b(g) for all g € G,z € B.

Recall that b is a 1-cocycle on G with values in B.

Definition 6.1.1. (i) The action « is proper if, for every bounded subset X of
B, the set {g € G | a(g)X N X # 0 } is relatively compact in G.
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This is equivalent to the fact that the cocycle is proper :
Tim [[b(g)]| = +oc.

(ii) The group G is said to be a-F' B-menable if G admits a proper action by affine
isometries on B.

Gromov defined in [32] a-T-menable groups as those groups G which admit
a proper action by affine isometries on Hilbert spaces. It turned out that the
class of a-T-menable groups coincide with the class of groups with the Haagerup
property (see [13]).

Proper actions by affine isometries on commutative L,-spaces were studied by
Nowak in [63], and Chatterji-Drutu-Haglund in [12]. The following characteriza-
tion of the Haagerup property was announced in [63] and proved in an updated
version in [64] (see also Corollary 1.5 in [12]).

Theorem 6.1.2. ([64]) Let 1 < p < 2 and let G be a second countable locally
compact group. Then the following conditions are equivalent :

1. G has the Haagerup property (H).
2. G admits a proper action on LP([0,1]) by affine isometries.

Let us mention also the following result about proper actions on some strictly
convex spaces. It is due to Haagerup and Przybyszewska in [38].

Theorem 6.1.3. Let GG be a locally compact second countable group. Then G
admits a proper action by affine isometries on the lo-sum

@ LQn(Gv M)
n=1

where 1 1s the Haar measure on G.

6.2 Proper actions on L,(M) and property (H)

The following theorem shows that a group which has the property (H,rq)) intro-
duced in chapter 5, has a proper action by affine isometries on a non-commutative
L,-space associated to an amplification of M.

Theorem 6.2.1. Let G be a locally compact second countable group, let M be a
von Neumann algebra and let 1 < p < oo. Assume that G has property (Hp um))-
Then there ezists a proper action of G by affine isometries on L,(I*° @ M).
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Proof. Let m: G — O(L,(M)) a representation which has vanishing coefficients
and almost invariant vectors. Let (v,), be a sequence of almost invariant vectors
for 7.

We claim that b: G — @F L,(M) defined by

b(g) = ®nm(9)(vn) — vn

is a proper cocycle with values in @? L,(M), the [,-sum of infinite many copies
of the space L,(M). This cocycle is associated to the orthogonal representation
@, G — O(@! L,(M)), defined for all g € G and all @,,x,, € B L,(M) by

Snm(9)(Enzn) = On (7(9)Tn).

Let (K,,) be an increasing sequence of compact subsets such that G = U, K,.
Since (v,,) is a sequence of almost invariant vectors for 7, we can assume (passing
to a subsequence of the v,,’s if necessary) that

sup ||m(g)vn — v|[h < 1/2" for all n € N.
geKn,

Fix N € N and let g € K. Then g € K, for all n > N and hence
|7 (g)vn — vallh < 1/2" for all n > N.

Thus b(g) is well-defined as an element in &2 L,(M). It is obvious that b is a
cocycle for @, 7.

Moreover, for all g € G and n € N, we have
[ (g)on — vnllp = Sup Tr((m(g)vn — vn)a)
a ple
> Tr((vn = 7(g)vn) My (0n)")
= Tr(vy M (v0)") — Tr(m(g)vn My (vs))
=1—Tr(n(g)va My (v,)%).

Since 7 has vanishing coefficients, it follows that

lim [[7(g)vn — vonll, = 1.
g—00

This shows that lim, . [|b(g)||, = +o0. Hence, the affine isometric action as-
sociated to (®,m,b) on @ L,(M). The latter space is isometrically isomor-
phic to L,(I® ® M), hence there exists a proper cocycle of G with values in
L,(*® M). O

As a consequence of the previous proposition, property (H Ly( Mm)) implies a-
FL,(M)-menability for M a factor of type Il.
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Proposition 6.2.2. Let G be a locally compact second countable group. Let M
be a factor of type Ilo. Let 1 < p < co. Assume that G has property (Hr,my)-
Then G is a-F L,(M)-menable.

We will need two lemmas for the proof of Proposition 6.2.2. The first lemma
is a well-known result on von Neumann algebras.

Lemma 6.2.3. Let M be a von Neumann algebra of type 1. Then M is
isomorphic, as a x-algebra, to B(ly) ® M. In particular, L,(M) is isometrically
isomorphic to L,(B(ls) @ M) for 1 <p < oo, p # 2.

Proof. We only recall how to get the desired isomorphism between M and B(ly)®
M. Since M is of type Il there exist a sequence of pairwise orthogonal pro-
jections (F;);e; in M, and a sequence of partial isometries (v;);e; in M, such

that
1=)"P,

iel
*
1 =
*
P, = vv].

Recall from [27] (see chapter I, Proposition 4) that the elements of B(ls) ® M can
be identified with matrices (a; ;) with coefficients a; ; in M. Then the *-algebra
isomorphism between M and B(ly) ® M is given by

T = (V0]
U

Let M be a factor. Recall from Remark 1.4.4 that if J : M — M is a Jordan
morphism, then J is a x-algebra morphism, or J is a *-algebra antimorphism.
Moreover, the Yeadon’s decomposition of an element U € O(L,(M)) has Radon-
Nikodym derivative B equal to 1, that is U = uJ, where u is a unitary in M and
J a Jordan isomorphism of M (see Remark 1.5.5).

Lemma 6.2.4. Let M be a von Neumann algebra which is a factor. Let 1 < p <
00, p# 2. Let U € O(L,(M)) and let U = uJ its Yeadon’s decomposition.
Define the map T : B(ly) — B(ly) by

Tx =z if J is a x-algebra morphism ,

Tx = x* if J is a *-algebra antimorphism.

Define also @ € B(ly) @ M and J : B(ly) @ M — B(ly) @ M by
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Then the formula U(a) = @J(a), for a € Ly(B(ly) @ M), defines a linear bijective
isometry U : Ly(B(ly) @ M) — L,(B(la) ® M), whose Yeadon’s decomposition is
U=ual.

Proof. We first show that U takes its values in L,(B(ly) ® M). By linearity, and
since the linear subspace generated by {A ® x |A € B(ly),z € M } is dense (in
the strong operator topology) in B(ly) ® M, it suffices to prove

FJ(A®z)) =7(A® ) for all A e B(ly)y,x € My N Ly(M).
Let A € B(ly)+ and x € My N Ly(M). Then we have

FJ(A®z)) =7(T(A) ® J(z))

Now we check that the elements @, and J give the Yeadon’s decomposition of

U.
It is clear that @ is a unitary in B(ly) ® M, since u is a unitary in M.

Now we check that J is a Jordan-s-isomorphism of the algebra B(ly) @ M.
The fact that .J is a linear *-isomorphism of B(ly) ® M is clear. We only have to
show that J is Jordan, that is J(a?) = J(a)? for all a € B(ly) ® M. By density,
it suffices to prove the latter relation on finite sums of the form ) ., A, ® ;.
We may assume that J is a x-algebra antimorphism: the computation when J is
a *-algebra morphism is the same and simpler. Let I be a finite set, A,, € B(ls),
T, € M for n € I. Then we have

T A @)’ =T J(D_ AA; @ zix))

nel (NS
i,j€l
=) AT @ J(x) ] ()
i,j€l

= (DA @ J(x,))

nel

=(JO_ Ay ®x,)).

nel

Now we give the proof of Proposition 6.2.2.
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Proof of Proposition 6.2.2. Let m be an orthogonal representation of G on L, (M)
such that 7 has almost invariant vectors and has vanishing coefficients. We first
extend 7 to an orthogonal representation 7 of G on the space L,(B(l2) @ M).

For every g € G, define T}, : B(ly) — B(ly) and 7(g) as in Lemma 6.2.4. By
Lemma 6.2.4, 7(g) € O(L,(B(ly) ® M)) for every g € G. Then we have a map
7: G — O(L,(B(ly) ® M)) given by 7(g) = 7(g) for all g € G. We claim that 7
defines an orthogonal representation; we have to check that 7(g192) = 7(g1)7(g2)
for all g1, 9, € G.

For every g € G, denote by m(g) = uyJ, the Yeadon’s decomposition of
7(g), and by 7(g) = @,J, the corresponding decomposition of 7(g) = #(g). By
Theorem 2.4.4, to prove that 7 is a homomorphism, we have to show the following
relations, for all g1, g, € G, and all y € B(ly) @ M :

=g

(1) ﬁg1g2 = agl gl( gz) )
102 (Y) = Jg (Jg,(y)) if Jy, is & % -morphism ,

g
(3) Jyigo(y) = Jyy (Ugy Ty (y)uy,) if Jy, is a * -antimorphism.

Let g1,92 € G. By density of the linear subspace generated by {A ® = |A €
B(ly),z € M } in B(l) ® M, it suffices to show relations (3) and (4) on elements
of the form y = A ® .

(1) : Notice that T,(1) =1 for every g € G. Hence we have

a9192 =1® Uggo
=1® uy, Jy (ugz)
- (1 ® u!h)(l ® Jg1(ug2))

= (1 (82%1)(1(11(1 ® Ug,))

= ﬂ91 Jg1 (ﬂgg)‘

(2) : In this case, J,, is a *-morphism, 7, = id and jg1 is a *-morphism.
Moreover, Jg 4, = Jg, © Jg, is a x-morphism if and only if J,, is a *-morphism;
hence we have the relation T,,,, = T,, = T, o T,,. Then, for A € B(ly) and
x € M, we have

g1 (A ® x) = Tg1ng ® Jg1g, (x)
=Ty, o Ty, (4)® Jgy 0 ng(flf)
- jg1(j92(A ® 'I))

(3) : In this case, .J,, and J,, are x-antimorphisms; moreover, T,, (A) = A* for
all A € B(lg)
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We have Jg, g, () = Jg, (ug, g, (2)uy,) for all z € M; hence Jy,,, is a *-morphism
if and only if J,, is a *-antimorphism. So the relation T, ,, = T}, 0Ty, is satisfied.

Then, for A € B(ly) and z € M, we have

g1 (A®z) = Tg1g2A ® Jy1g2 (z)
=Ty 0Ty, (4) ® Jg (u92J92 (z)uy,)

g2

=Ty & Jy, (T92 (4) ® Ugy g, (w)u;)
= Jo (1 @ 1y, )Ty, ® Jg (A® 2)(1 @ uy,))

So we have proved that 7 : G — O(L,(B(lz) ® M)) is an orthogonal representa-
tion.

Now by Proposition 6.2.1, there exists a proper cocycle b : G — L,(lc ® M).
Recall from the proof of Proposition 6.2.1 that b, viewed as a cocycle with values
in L,(I1>°(M)), is associated to the representation @,m € O(@! L,(M)). We
identify {*°(M) with {*® ® M, and then " L,(M) with L,(loc ® M). Now we
claim that b, viewed as a cocycle with values in L, ({* ® M), is associated to the
representation 7 : G — O(L,(I*° ® M)) whose Yeadon’s decomposition is given
by

T(g) = (1 ®@uy)(id® J,) for all g € G.

Indeed, an element u,®@z € [*®M is identified with an element &, u,z € [*(M).
Such elements generate the von Neumann algebras [*° @ M and [*°(M), and the
latter von Neumann algebras contain a dense subspace (in the norm topology) of
the respective L,-spaces L,(I* @ M) and L,({*°(M)). Hence, it suffices to show
the identification of the representation 7™ with the representation @, 7 on elements
of the form u, ® x and ®,u,x. This is clear since for all g € G, (u,) € [*° and
x € M, we have

T(9)(un ® ) = u, @ w(g)()
and (©,7(9))(unz) = @y (u,7(g)(2)).

Hence, there exists a proper cocycle b : G — L,(I*° ® M) associated to the rep-
resentation @ : G — O(L,(I*° @ M)).

The space L,(I*° ® M) embeds linearly and isometrically in L,(B(l2) ® M).
Indeed, the elements in B(ly)®M can be identified with matrices (a; ;) with values
in M, and with this identification, the von Neumann algebra [*°(M) ~ [*° & M
embeds diagonally in B(ly) ® M. This induces a linear embedding x — & from
L,(I*° ® M) into L,(B(ly) @ M). Moreover, this embedding is isometric since
the traces 7 and 7, on I ® M and B(ly) ® M respectively, satisfy the following
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relation

where (z,,), € [*°(M) N L,(I*(M)) and (x,) denotes the diagonal embedding of
(Tn)n in B(ls) @ M.

Now we claim that the restriction of the representation 7 : G — O(L,(B(ly) ®
M) to the 7(G)-invariant subspace L, (I° ® M) coincides with the representa-
tion 7 : G — O(L,(I*° ® M)). Indeed, for every g € G, the restriction of T,
to the diagonal (identified with (*°) is the identity, that is Ty~ = id, hence the
Yeadon’s decompositions of 7 and 7 coincide on L,(I*° ® M).

For every g € G, define b(g) = b(Ng) Then, by Lemma 3.3.3, b : G —
O(L,(B(l2) ®M)) is a proper cocycle. Moreover, by Lemma 6.2.3, L, (B(ls) @ M)
is isometrically isomorphic to L,(M), since the von Neumann algebra M is of
type Ilo. Hence, there exists a proper cocycle of G with values in L,(M), and
G is a-(F'L,(M))-menable.

O

The following theorem extends the implication 1 = 2 of Theorem 6.1.2, in
a non-commutative setting. We do not know whether the implication 2 = 1 of
Theorem 6.1.2 is true in this setting. The method used in [64] for the classical
L,-spaces breaks down in the non-commutative context, since in general the
distance associated to the norm of a non-commutative L,-space is no longer a
kernel conditionally of negative type (see Theorem 1.4.7).

Theorem 6.2.5. Let G be a second countable locally compact group with the
Haagerup property. Then there exists a proper action of G' by affine isometries
on L,(I*° ® R), where R is the hyperfinite 11, factor.

Proof. We adapt the method of the proof of Theorem 3 given in [63] to our non-
commutative setting. Denote by 7 the normalized faithful trace on the hyperfinite
I, factor R.

By Jolissaint’s Theorem 5.1.4, there exists a trace-preserving action «a of ¢
on R by automorphisms, which is strongly mixing and has a nontrivial asymp-
totically invariant sequence (e,). Recall that (see the proof of Theorem 5.2.4) «
induces an orthogonal representation 7% of G' on Ly(R), which is strongly mixing.
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Set v, = e, — 3 1 for all n € N. Then ||v,]|3 = . We have

17*(g)vn — valls = [|7*(g)en — enll5-

So,

lim sup ||72(g)v, — vp|]2 = 0 for every compact subset K of G.
n—o0 g ¢

Moreover, we have

17%(9)vn — vall3 = 2l|vall3 = T(7*(9)vyvn) — T(7*(g)vavy,).
Since the action is strongly mixing, it follows that

. 1
lim ||7T2(g)vn - Un||g =5
g—o0 2
Set w,, = My ,(v,) for all n € N, and let 7P be the conjugate representation of
7% on L,(R). Notice that [|w,|[? = ;. Since the Mazur map is locally uniformly
continuous, there exists C' > 0 such that

lim ||7”(g)w, — w,|[h) > C for all n € N.

g—00
and we have (see Proposition 2.5.1)

lim sup ||7”(g)w, — wy||2 = 0 for every compact subset K of G.
n—00 g I

Then b: G — @7 L,(R) defined by
b(g) = @n(g)wn — wn

is 1-cocycle with values @! L,(R) associated to the representation @, on
B L,(R). We conclude the proof with arguments similar to those used in the
proof of Theorem 6.2.1. O

Using the same construction as in the proof of Proposition 6.2.2, we deduce
from the previous theorem the following corollary.

Corollary 6.2.6. Let G be a second countable locally compact group with the
Haagerup property. Then there exists a proper action by affine isometries of G

on L,(R® B(ly)).
6.3 Proper actions of hyperbolic groups on L,(M)
Let I" be a hyperbolic group. We recall Yu’s construction from [85] of a proper

cocycle on [,,(I' x I') for p large enough, and then we show that it can be used to
produce a proper action of I' by affine isometries on C,,.
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6.3.1 Mineyev construction and Yu’s result on hyperbolic
groups

In [85], Yu showed the following result.

Theorem 6.3.1. ([85]) If I is a hyperbolic group, then there ezists 2 < p < 0o
such that I' admits a proper isometric action on [,(I' x I').

We recall some general facts and notations about hyperbolic groups and then
explain Yu’s construction. In the next subsection, we construct a proper action
of I' by isometries on C,.

Let I be a hyperbolic group and G its Cayley graph with respect to a finite
generating set. Let 6 > 1 be a positive integer such that all the geodesic triangles
in GG are -fine. Denote by d the path-metric and by

(ble), = %(d(a, b) +d(a,c) — d(b,c))

the Gromov product for a, b, ¢ vertices of G. For a,b € G, denote by ¢|a, b] the
oriented geodesic edge-path from a to b. Let ¢[a, b](t) be the point at distance ¢
from a on the geodesic path ¢[a, b].

Yu’s construction is based on the following result of Mineyev from [60].

Theorem 6.3.2. ([60]) There exists a function h: I' x I' — 1,(I") satisfying the
following conditions :

(1) ||h(b,a)l|, =1 for alla,beT ;

(2) if d(a,b) > 100, then supp(h(b,a)) C B(q[b,al(100),6) N S(b,100) ;

(3) if d(a,b) < 106, then h(b,a) =a ;

(4) h is '-equivariant, that is h(ga, gb) = gh(a,b) for all g,a,b e T ;

(5) there exist C > 0 and 0 < p < 1 such that, for all a,a’,b €T,

[1A(b, @) = h(b, )|, < Cpl.
Now let k: I' x I' — R be the function defined by
k(a,b) = h(a,e)(b) for all a,b €T
Let p: T'xI' = O(l,(I" x I')) be the following orthogonal representation :
p(9)(f)(a,b) = f(g 'a,g'b) for all g,a,b €T
and define
ko(a,5) = (p(g) () (@, b)) — h(a,b) = k(g ~"a, 57'b) — h(a, )

for all g,a,beT.
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Theorem 6.3.3. The formula above defines a cocycle k : I' — [,(I' xI'), g — k,
for the representation p. Moreover, this cocycle is proper.

We only recall here why such a cocycle is proper. Indeed, Mineyev construc-
tion ensures that, given g € G, there exists at least d(g,e) — 100J vertices a on
the oriented path ¢[g, €| such that

supp(h(a, g)) N supp(h(a,e)) = 0.

Hence, for such vertices a and b in I'; we have

and, for all p > 1, we have

S (e ) = 3 hla, ) O)P = [Ihfa, )|l = 1.

bel’ bel’

It follows that, for all p > 1, we have

1Elle =D Ikg(a,0)” = d(g,€) — 1000. (+)

acl’ bel’

6.3.2 A proper cocycle on (), for large p

Let I' be a hyperbolic group. We use Yu’s construction from above to give a
proper cocycle on C), for large p. Let v such that the cardinal of every ball of
radius n in G is less than v™. Let p be as in Theorem 6.3.2.

Lemma 6.3.4. Let p > 2 such that pPv < %, and p' its conjugate exponent. We

have that 3 e | Yper [k (a, )P |7 < oo

Proof. By the condition (5) in Theorem 6.3.2, for all @ € I", we have

> k()" = |h(a,g)(b) — h(a, e)(0)”

bel’ bel’

< Cp’pp’(glf:)a
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and then
ST lkgla,n)7 7 <> Crprlele)e
acl  bel acl
< Z Cppp(d(ave)—d(gve))
acl’

<3 op iy
n=0

< QOpp—pd(gve)'
O

Now denote by 7 : I' — U(l5(I")) be the regular representation of I on l5(T").
And let K be the unbounded operator on l5(I") of kernel k, that is

K(f)(a) = k(a,b)f(b) for all a € T and f € Iy(T).

bel’

Let p: G — O(C,) be defined by
plg)s = w(g)on(g™) for z € G,
Proposition 6.3.5. (i) There ezists pg > 1 such that
K, =n(g)Kn(g™) — K €C,

for all g € G and all p > pg.

(11) Let p > py. The map I' — C,, g — K, is a 1-cocycle for the representation
p.

Proof. Let g € I'. The operator K, is a kernel operator with kernel k,-—1. By
Lemma 6.3.4, there exists pg > 1 such that the mixed norm, satisfies

r P
gtllpr = D 1D kg (@, b)[F'[7 < oo
a€l’  bel

for p > po. It follows from Russo’s Theorem 1 in [72] that K, € C, for p > py.
(ii) The fact that g — K, is a cocycle for p is straightforward. O

Theorem 6.3.6. Let I' be a hyperbolic group. Then there exists p > 2 such that
the cocycle K : I' — C,, is proper.

Proof. By Proposition 6.3.5, there exists py such that K takes its values in C,
for all p > pg. Fix a,g € I'. Then, for all n > 1, we have

<K g|*" 00, 60 > = ||| 0l ”
=D < K" 000 > |

bel’
> | < |Ky " 64,00 > 2.
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By induction on n, it follows that
<K 60,00 >> | < |Ky[?00,00 > 2.
On the other hand,

< |Ky|*0a, 00 > =< K04, K 00 >

= k(b a).

bel’

Therefore we obtain

2n71

< |Kg|2n5av5a > 2 |Z LA CL)|2|

bel’

> Iky(ba)[*

bel’

and hence, by inequality (%) of the previous subsection,

> < |Ky|* 04,00 >> d(g, €) — 1006,

ael

Set p = 2" for n such that 2" > pg. Then
Tr(|K,|P) > d(g,e) — 1005

and hence
lim || K|, = +oo0.
g—0o0
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