Thèse soutenue

Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs

FR  |  
EN
Auteur / Autrice : Baptiste Olivier
Direction : Bachir Bekka
Type : Thèse de doctorat
Discipline(s) : Mathématiques et applications
Date : Soutenance le 21/05/2013
Etablissement(s) : Rennes 1 en cotutelle avec Université européenne de Bretagne (2007-2016)
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....)
PRES : Université européenne de Bretagne (2007-2016)

Résumé

FR  |  
EN

Nous étudions des propriétés de rigidité et des propriétés de non-rigidité forte d'actions de groupes sur des espaces Lp non-commutatifs. Récemment, des variantes de la propriété (T) de Kazhdan et de la propriété de point fixe (FH) ont été introduites, appelées respectivement propriété (TB) et propriété (FB), et énoncées en termes de représentations orthogonales sur un espace de Banach B. Nous nous intéressons au cas où B est un espace Lp non-commutatif Lp(M), associé à une algèbre de von Neumann M. Dans un premier temps, nous montrons qu'un groupe possédant la propriété (T) possède la propriété (TLp(M)) pour toute algèbre de von Neumann M. On en déduit que les groupes de rang supérieur ont la propriété (FLp(M)). Nous montrons que pour certaines algèbres, comme par exemple M=B(H), les propriétés (T) et (TLp(M) sont équivalentes. A l'opposé, nous caractérisons les groupes possédant la propriété (Tlp), et montrons que cette classe de groupes est strictement plus grande que celle avec la propriété (T). Dans un second temps, nous introduisons des variantes de la propriété (H) de Haagerup, les propriétés (HLp(M)) et l' a-FLp(M)-menabilité, définies en termes d'actions sur l'espace Lp(M). Nous décrivons les liens entre la propriété (H) et sa variante (HLp(M)) suivant l'algèbre M considérée. Nous montrons que les groupes possédant (H) sont a-FLp(M)-menables pour certaines algèbres M, comme par exemple le facteur II infini hyperfini.