Thèse soutenue

Optimisation par essaim particulaire : adaptation de tribes à l'optimisation multiobjectif

FR  |  
EN
Auteur / Autrice : Nadia Smairi
Direction : Patrick Siarry
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 06/12/2013
Etablissement(s) : Paris Est en cotutelle avec École Nationale des Sciences de l'Informatique (La Manouba, Tunisie)
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Images, Signaux et Systèmes Intelligents (Créteil)
Jury : Président / Présidente : Henda Ben Ghezala
Examinateurs / Examinatrices : Patrick Siarry, Khaled Ghedira
Rapporteurs / Rapporteuses : Jin Kao Hao, Sawssen Krichen

Résumé

FR  |  
EN

Dans le cadre de l'optimisation multiobjectif, les métaheuristiques sont reconnues pour être des méthodes performantes mais elles ne rencontrent qu'un succès modéré dans le monde de l'industrie. Dans un milieu où seule la performance compte, l'aspect stochastique des métaheuristiques semble encore être un obstacle difficile à franchir pour les décisionnaires. Il est donc important que les chercheurs de la communauté portent un effort tout particulier sur la facilité de prise en main des algorithmes. Plus les algorithmes seront faciles d'accès pour les utilisateurs novices, plus l'utilisation de ceux-ci pourra se répandre. Parmi les améliorations possibles, la réduction du nombre de paramètres des algorithmes apparaît comme un enjeu majeur. En effet, les métaheuristiques sont fortement dépendantes de leur jeu de paramètres. Dans ce cadre se situe l'apport majeur de TRIBES, un algorithme mono-objectif d'Optimisation par Essaim Particulaire (OEP) qui fonctionne automatiquement,sans paramètres. Il a été mis au point par Maurice Clerc. En fait, le fonctionnement de l'OEP nécessite la manipulation de plusieurs paramètres. De ce fait, TRIBES évite l'effort de les régler (taille de l'essaim, vitesse maximale, facteur d'inertie, etc.).Nous proposons dans cette thèse une adaptation de TRIBES à l'optimisation multiobjectif. L'objectif est d'obtenir un algorithme d'optimisation par essaim particulaire multiobjectif sans paramètres de contrôle. Nous reprenons les principaux mécanismes de TRIBES auxquels sont ajoutés de nouveaux mécanismes destinés à traiter des problèmes multiobjectif. Après les expérimentations, nous avons constaté, que TRIBES-Multiobjectif est moins compétitif par rapport aux algorithmes de référence dans la littérature. Ceci peut être expliqué par la stagnation prématurée de l'essaim. Pour remédier à ces problèmes, nous avons proposé l'hybridation entre TRIBES-Multiobjectif et un algorithme de recherche locale, à savoir le recuit simulé et la recherche tabou. L'idée était d'améliorer la capacité d'exploitation deTRIBES-Multiobjectif. Nos algorithmes ont été finalement appliqués sur des problèmes de dimensionnement des transistors dans les circuits analogiques