Risque et optimisation pour le management d'énergies : application à l'hydraulique
Auteur / Autrice : | Jean-Christophe Alais |
Direction : | Michel De Lara |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 16/12/2013 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - CERMICS - CERMICS |
Jury : | Président / Présidente : Nadia Oudjane |
Examinateurs / Examinatrices : Michel De Lara, Pierre Carpentier, Jitka Dupacova, Laetitia Andrieu | |
Rapporteurs / Rapporteuses : Marianne Akian, René Henrion |
Mots clés
Résumé
L'hydraulique est la principale énergie renouvelable produite en France. Elle apporte une réserve d'énergie et une flexibilité intéressantes dans un contexte d'augmentation de la part des énergies intermittentes dans la production. Sa gestion soulève des problèmes difficiles dus au nombre des barrages, aux incertitudes sur les apports d'eau et sur les prix, ainsi qu'aux usages multiples de l'eau. Cette thèse CIFRE, effectuée en partenariat avec Electricité de France, aborde deux questions de gestion hydraulique formulées comme des problèmes d'optimisation dynamique stochastique. Elles sont traitées dans deux grandes parties.Dans la première partie, nous considérons la gestion de la production hydroélectrique d'un barrage soumise à une contrainte dite de cote touristique. Cette contrainte vise à assurer une hauteur de remplissage du réservoir suffisamment élevée durant l'été avec un niveau de probabilité donné. Nous proposons différentes modélisations originales de ce problème et nous développons les algorithmes de résolution correspondants. Nous présentons des résultats numériques qui éclairent différentes facettes du problème utiles pour les gestionnaires du barrage.Dans la seconde partie, nous nous penchons sur la gestion d'une cascade de barrages. Nous présentons une méthode de résolution approchée par décomposition-coordination, l'algorithme Dual Approximate Dynamic Programming (DADP). Nousmontrons comment décomposer, barrage par barrage, le problème de la cascade en sous-problèmes obtenus en dualisant la contrainte de couplage spatial ``déversé supérieur = apport inférieur''. Sur un cas à trois barrages, nous sommes en mesure de comparer les résultats de DADP à la solution exacte (obtenue par programmation dynamique), obtenant desgains à quelques pourcents de l'optimum avec des temps de calcul intéressants. Les conclusions auxquelles nous sommes parvenu offrent des perspectives encourageantes pour l'optimisation stochastique de systèmes de grande taille