Thèse soutenue

Modélisation de la pénétration du CO2 dans les matériaux cimentaires dans le contexte du stockage du CO2

FR  |  
EN
Auteur / Autrice : Jiyun Shen
Direction : Patrick Dangla
Type : Thèse de doctorat
Discipline(s) : Structures et Matériaux
Date : Soutenance le 12/03/2013
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Navier (Paris-Est)
Jury : Président / Présidente : Karim Ait-Mokhtar
Examinateurs / Examinatrices : Patrick Dangla, Bruno Huet, Mickael Thiery
Rapporteurs / Rapporteuses : Fabrice Brunet, Kwai Kwan Wong

Résumé

FR  |  
EN

Un modèle de transport réactif est proposé pour simuler la réactivité des matériaux à base de ciment en contact avec une saumure saturée en CO2 et/ou le CO2 supercritique (CO2sc) dans les conditions de stockage géologique du CO2. Un code a été développé pour résoudre simultanément le transport et la chimie par une approche globale couplée, compte tenu de l'effet de la température et de la pression. La variabilité des propriétés du CO2sc avec la pression et la température, telles que la solubilité dans l'eau, la densité et la viscosité sont pris en compte. On suppose que tous les processus chimiques sont en équilibre thermodynamique. Les réactions de dissolution et de précipitation de la portlandite (CH) et de calcite (CC) sont décrites par des lois d'action de masse et des seuils de produit d'activité ioniques. Une cinétique de dissolution de CH est introduite pour faciliter la convergence numérique. La définition d'une variable principale permet de capturer la précipitation et la dissolution des phases solides à base de calcium. Une généralisation de la loi d'action de masse est développée et appliquée aux silicates de calcium hydratés (CSH) pour tenir compte de la variation continue (diminution) du rapport Ca/Si au cours de la dissolution des CSH. Les variations de porosité et de la microstructure induites par les réactions de précipitation et de dissolution sont également prises en compte. Le couplage entre le transport et la chimie est modélisé par cinq équations de bilan de masse écrites pour chaque atome (Ca, Si, C, K, Cl), ainsi que par une équation de conservation de la masse totale et celle de la charge électrique. Les lois de Darcy et de Nernst-Planck sont utilisées pour décrire le transport de masse et d'ions. Les propriétés de transport dépendent du degré de saturation et de la porosité. Le modèle est implémenté dans le code de volumes finis, Bil. Les principes de cette méthode et l'approche de modélisation sont discutés et illustrés sur un exemple simple. Ce modèle est en mesure de simuler les processus de carbonatation des matériaux à base de ciment, dans des conditions à la fois saturés et insaturés, dans une large plage de concentration de CO2, de température et de pression. Plusieurs expériences, rapportées dans la littérature, sont simulées en utilisant divers types de conditions aux limites: (i) solutions saturées ou non en CO2 et carbonate de calcium, (ii) gas supercritique de CO2. Les prédictions sont comparées avec les observations expérimentales. Certains phénomènes observés expérimentalement peuvent être également expliqués par le modèle