Restauration d'images dégradées par un bruit Poisson-Gauss
Auteur / Autrice : | Anna Maria Jezierska |
Direction : | Jean-Christophe Pesquet |
Type : | Thèse de doctorat |
Discipline(s) : | Signal, Image, Automatique |
Date : | Soutenance le 13/05/2013 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - LIGM |
Jury : | Président / Présidente : Michael Unser |
Examinateurs / Examinatrices : Jean-Christophe Pesquet, Éric Thiébaut, Caroline Chaux, Hugues Talbot | |
Rapporteurs / Rapporteuses : Gabriel Peyré, Gabriele Steidl |
Mots clés
Résumé
Cette thèse porte sur la restauration d'images dégradées à la fois par un flou et par un bruit. Une attention particulière est portée aux images issues de la microscopie confocale et notamment celles de macroscopie. Dans ce contexte, un modèle de bruit Poisson-Gauss apparaît bien adapté car il permet de prendre en compte le faible nombre de photons et le fort bruit enregistrés simultanément par les détecteurs. Cependant, ce type de modèle de bruit a été peu exploité car il pose de nombreuses difficultés tant théoriques que pratiques. Dans ce travail, une approche variationnelle est adoptée pour résoudre le problème de restauration dans le cas où le terme de fidélité exact est considéré. La solution du problème peut aussi être interprétée au sens du Maximum A Posteriori (MAP). L'utilisation d'algorithmes primaux-duaux récemment proposés en optimisation convexe permet d'obtenir de bons résultats comparativement à plusieurs approches existantes qui considèrent des approximations variées du terme de fidélité. En ce qui concerne le terme de régularisation de l'approche MAP, des approximations discrète et continue de la pseudo-norme ℓ₀ sont considérées. Cette mesure, célèbre pour favoriser la parcimonie, est difficile à optimiser car elle est, à la fois, non convexe et non lisse. Dans un premier temps, une méthode basée sur les coupures de graphes est proposée afin de prendre en compte des à priori de type quadratique tronqué. Dans un second temps, un algorithme à mémoire de gradient de type Majoration-Minimisation, dont la convergence est garantie, est considéré afin de prendre en compte des a priori de type norme ℓ₂-ℓ₀. Cet algorithme permet notamment d'obtenir de bons résultats dans des problèmes de déconvolution. Néanmoins, un inconvénient des approches variationnelles est qu'elles nécessitent la détermination d'hyperparamètres. C'est pourquoi, deux méthodes, reposant sur une approche Espérance-Maximisation (EM) sont proposées, dans ce travail, afin d'estimer les paramètres d'un bruit Poisson-Gauss: (1) à partir d'une série temporelle d'images (dans ce cas, des paramètres de « bleaching » peuvent aussi être estimés) et (2) à partir d'une seule image. De manière générale, cette thèse propose et teste de nombreuses méthodologies adaptées à la prise en compte de bruits et de flous difficiles, ce qui devrait se révéler utile pour des applications variées, au-delà même de la microscopie