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Introduction générale

En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles
non-linéaires qui décrivent le mouvement des fluides dans I’approximation des milieux continus. Elles
gouvernent par exemple les mouvements de 'air, de I’atmosphere, les courants océaniques, I’écoulement
de I'eau dans un tuyau, et de nombreux autres phénomeénes d’écoulement de fluides. Ces équations
peuvent étre considérées pour toutes les dimensions d’espace mais elles n’ont un sens physique qu’en
dimension trois. Etant donné un ouvert 2 de R?, nous considérons plus précisément, le probléme

stationnaire suivant :

—vAu+pu-Vu+Vr=f dans Q,
divu=h dans .

(N8)

Le but de cette these est d’étudier I'existence de solutions généralisées et de solutions fortes de
(N8) dans un cadre général non nécessairement hilbertien puis de passer au cas des solutions dites

tres faibles. On considéra aussi bien des conditions aux limites classiques de type Dirichlet :

u=1ug sur 0Q=TI,

que des conditions aux limites non standard portant sur certaines composantes du champ de vitesses,

du tourbillon, voire du champ de pression :
u-n=g et rotuxn=xxn sur T,

ou bien

m=mg et uxn=gxmn sur I.

Ici v représente le coefficient de viscosité, p est la densité du fluide, f sont les forces extérieures,
h est la condition de compressibilité, ug est la valeur du champ de vitesses sur le bord, x et my sont
données et n est la normale au bord de ). Le probléme consiste a trouver le champ de vitesses u du

fluide et le champ de pression 7 qui vérifient (NS).
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Dans le cas ot  est un domaine extérieur ( = R3\ 2’ avec Q' un ouvert borné connexe), auquel
nous nous intéressons ici, ce systeme d’équations aux dérivées partielles permet d’écrire I’écoulement
d’un fluide visqueux autour d’un obstacle. Il faut distinguer deux cas différents, tous les deux
physiquement intéressants, concernant le comportement a I’infini des solutions : ou bien elles
tendent vers zéro, ou bien elles tendent vers un vecteur constant. Dans ce dernier cas, ’écoulement

présente un sillage dans la région située derriere ’obstacle.

Ces équations, relativement simples du point de vue physique, sont pertinentes pour décrire
nombre de situations réelles. Pour le mathématicien, ce modeéle pose de nombreuses questions math-
ématiques qui restent jusqu’a aujourd’hui sans réponse. Il est donc indispensable et naturel de com-
mencer par analyser des problémes linéaires les approchant. De ce fait, on s’intéresse d’abord dans
ce travail aux équations stationnaires de Navier-Stokes linéarisées, il s’agit ici des équations d’Oseen
et des équations de Stokes. Ces systémes linéarisés sont utiles par exemple pour étudier I’écoulement
de lair autour du fuselage et des voilures dans les allures a faible vitesse par rapport a celle du son,
des circulations de fluides dans les corps poreux ou encore pour approcher les modeles comportant des
équations de transport ou de diffusion (dans le cas de la magnétohydrodynamique par exemple). Ces
équations sont posées dans des domaines infinis, comme les domaines extérieurs en dimension trois et

I'espace tout entier R3. Par commodité, I’origine du repere est placée a 'intérieur de I’obstacle.

Les espaces de Sobolev classiques ne sont pas adaptés a 1’étude de ce probléme pour une telle
géométrie. Donc pour une bonne analyse, il est important de considérer des espaces de Sobolev avec
des poids (voir chapitre 1 pour plus de détails concernant ces espaces). Ces espaces sont des extensions
des espaces de Sobolev classiques, munis de poids de type p(x)* = ((1 + ]X|2)1/2)a qui permettent de
contrdler la croissance ou la décroissance des fonctions a I'infini. En faisant varier le parametre o, on
dispose alors d’une grande liberté de choix quant au comportement a 'infini des fonctions considérées.
Plus fondamental encore, les poids sont choisis de sorte que des inégalités de Hardy se substituent a
I'inégalité de Poincaré défaillante dans R3. Nous appliquons ce cadre fonctionnel & la résolution des
équations de Navier-Stokes linéarisées. Plus précisément, nous caractérisons les données qui permet-

tent de trouver une solution dans un espace avec poids donné.

En particulier, dés que I'espace ou 1’on cherche les solutions contient des fonctions polynomi-
ales, 'unicité n’est plus assurée dans cet espace. Si au contraire, on impose des contraintes fortes de
décroissance a la solution, alors leur existence est subordonnée au fait que f, g vérifient des conditions

de compatibilité (par exemple, f est d’intégrale nulle).

Cette these est organisée de la fagon suivante :

Le premier chapitre est naturellement dévolu aux notations, aux définitions et aux propriétés
des espaces de Sobolev avec poids sur lesquels nous nous appuyons. Il s’agit principalement de présen-

ter des résultats de densité et d’injections liés a ces espaces voir par exemple Hanouzet [42], Cantor
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[21] et Kudrjavcev [45]. Nous rappelons aussi les inégalités de Hardy (voir chapitre I Proposition
2.1) qui jouent un role clé dans la résolution des problémes aux limites elliptiques. Notons également
que, pour certaines valeurs critiques de p, I'introduction du poids p(x) est insuffisante pour établir
ces inégalités. Il convient donc de rajouter un facteur logarithmique, défini par In(2 + |x|?) pour lever

partiellement ces restrictions ( ¢f J. Giroire [41]).

Dans le deuxieme chapitre, on considere les équations de Stokes stationnaires dans un do-
maine extérieur Q connexe avec 9 = I' de classe C! et avec des conditions aux limites de type
Dirichlet. Ces équations modélisent en premiere approximation des écoulements stationnaires lents

de fluides visqueux autour d’un obstacle :

—vAu+Vr=f dans
(8) divu=h dans £,
u=g sur O

L’étude de solutions généralisées et de solutions fortes de ce probléme a été faite par un grand nombre
d’auteurs, de différents points de vue; Borchers et Sohr [18], Finn [31], Fujita [32] , Giga et Sohr [37],
Sohr et Varnhorn [50] , Specovius-Neugebauer [51], Girault [38] et [40], Girault, Giroire et Sequeira
[39] et récemment par Alliot et Amrouche [3]. Mais dans certains problemes de la mécanique de fluides,
il est possible de se trouver face a des données qui ne sont pas regulieres, c’est pourquoi nous nous
intéressons ici & la recherche des solutions dites trés faible de type (u, ) € WoP(Q) x W 1P(Q)
avec &« = 0 ou @ = —1, que 'on obtient par des arguments de dualité. Une des difficultés consiste
a donner un sens aux traces de fonctions treés peu régulieres et a obtenir, par le biais de lemmes de
densité, les formules de Green adéquates. D’autre part, lorsque le domaine €2 est borné, la notion de
solutions trés faibles pour le probleme de Stokes (8) a été développé ces dernieres années par Giga
[36] (dans un domaine €2 de classe C°°), Amrouche et Girault [5] (dans un domaine €2 de classe C!)
et plus récemment, par Galdi et al [35], Farwig et Galdi [22] (dans un domaine € de classe C?*1),
Schumacher [49] et en 2011 par Amrouche et Rodriguez-Bellido [13].

Pour trouver les solutions tres faibles nous utilisons ici un argument de dualité avec les solutions
fortes dont on connait l'existence (voir Alliot et Amrouche [3]). La géométrie du domaine impose de
chercher ces dernieres dans les espaces de Sobolev avec poids, introduits dans le premier chapitre. On
renvoie au travail de Amrouche et al [10] qui ont traité le cas du demi-espace avec le méme cadre
fonctionnel, bien qu’un peu plus compliqué a cause de la nature du bord du demi-espace également

non borné contrairement aux domaines extérieurs.

Récemment, une autre méthode a été adaptée par Farwig et al [27] qui consiste & écrire

l'opérateur de Stokes A, comme composé de la projection de Helmholtz P, avec I'opérateur de Laplace.
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Le domaine de A; = —F; A est défini comme suit :
D(A,) = LLQ) N WHi(Q) N W29(Q) avec 1< ¢ < oo, (1)

ou W(l)’q(Q) et W29(Q) sont les espaces de Sobolev classiques tandis que LZ(€2) est le sous espace de
L(Q) a divergence nulle dans €. La démonstration de l’existence de solutions trés faibles passe par
des arguments de dualité ot les propriétés de I'opérateur de Stokes A, sont utilisées pour obtenir des

inégalités de type :
IV ul|pao) < CllAY?ullpaq), 1<q<3, ueDAY?),

et
V2 ullgo(q) < CllAY ullpa), 1<q<3/2, ucD(A,).

De plus, dans ce papier les auteurs ont supposé que 952 est de classe C?! et que les données f = div Fy,

h et g vérifient :

1 1 1
Fo e L'(Q), he L"(Q), g WVPP(T) 3 < p < oo, R

ce qui donne % <r<3.

Dans ce chapitre, nous avons amélioré ce dernier résultat, dans un premier temps en supposant
que 99 est seulement de classe C1! et dans un deuxiéme temps, en prouvant l'existence et I'unicité
de deux types de solutions tres faibles. Le premier type de solution est le méme que celui montré dans
[27] mais avec un choix plus large pour p et donc aussi pour 7. Le second type de solutions consiste a

montrer I'existence de (u,7) dans W22(Q) x W_"P(€) lorsque les données vérifient :
Foe W2 (Q), he WO (Q) et ge W1/PP(T),

avec 5 L1 1
—<p<oo, p#3 et —+-—-=-.
2 3 p r

Notons également que pour p = 3 (valeur critique), l'existence et l'unicité des solutions tres

faibles peuvent étre étudiées en introduisant des poids logarithmiques supplémentaires (voir [6]).

Les résultats de ce chapitre ont fait 'objet d’une publication dans les annales de Ferrara [8] et

d’une conférence internationale avec acte [9].

Dans le troisiéme chapitre, on considére le probléme stationnaire d’Oseen dans un domaine

extérieur (2 ( connexe avec 9 = I de classe C! ) obtenu formellement par la linéarisation du systéme
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(NS) :
—Au+diviveu)+Vr=Ff dans Q
0(Q) divu=h dans €,

u=g¢g sur I,

avec v vecteur donné dans L3(Q) et a divergence nulle, ce qui permet d’écrire formellement 1’égalité
suivante :
diviv®@u) =v-Vu.

En fait, les équations d’Oseen sont typiques pour modéliser un écoulement qui se produit autour d’un
obstacle. Elles décrivent des propriétés physiques d’un systeme constitué par un objet en mouvement
avec une vitesse constante dans un liquide visqueux. Mais, dans un domaine borné, I’approximation
d’Oseen perd sa signification physique, tandis que, du point de vue mathématique, celle-ci ne présente
aucune difficulté et peut étre étudiée comme une variante de la théorie développée pour le systéme de

Stokes. Il convient d’observer, toutefois que lorsque v = ke; avec k > 0, le systéeme O(Q2) s’écrit :

—Au—i—kg;l—i—VW:f et divu=~h dans Q, wu=g sur I. (2)
Faisons a présent un rapide survol de quelques travaux consacrés au probléme (2). A notre connais-
sance, les premieéres études completes sont dues a Faxén [30] qui généralise les méthodes introduites
par Odqvist [47] pour le problémes de Stokes. En utilisant la méthode de Galerkin, Finn [31] établit
I'existence de solutions pour le probléme (2). Lorsque €2 = R?, Babenko [15] utilise le théoréme des
multiplicateurs de Lizorkin pour établir I'existence de solutions de (2). Les résultats de Finn et de
Babenko sont ensuite étendus et généralisés par Galdi dans [33] et plus détaillés dans [34] chapitre
VII. Nous citons également Farwig [22], [23] et [28] qui étudie le probléeme (2) dans les espaces L? avec

poids anisotrope ng‘ définis par :

2 5(0) = {u e L2.(Q), njue *()}.

ou ng(x) = (1 + [x))*(1 +[x] — x1)%. Notons aussi le travail de Kra¢mar et al [43] sur les estimations

des noyaux d’Oseen dans des espaces LP avec divers poids.

Pour notre part, nous nous intéressons a la résolution du probléme d’Oseen O({2), notamment
A Dexistence et D'unicité de solutions généralisées (u,7) € WP(Q) x LP(Q) et de solutions fortes
(u,7) € W2P(Q) x WIP(Q) avec 1 < p < 0o et @ = 0 ou o = 1 puis de passer au cas de solutions
trés faible en adaptant les méme techniques du chapitre II. Notons également que notre travail a été
fait sans passer par la théorie générale de Agmon, Douglis et Nirenberg [1] pour I’étude de systémes

elliptiques.

Le fait que la donnée v appartient seulement a L?’(Q) et a divergence nulle rend 'analyse plus
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difficile. Pour y faire face, nous étudions tout d’abord le probleme d’Oseen dans R? :
O(R3) —Au+diviv@u)+Va=f et divu=h dans R

Ceci nous permet de nous concentrer uniquement sur le comportement a l'infini des solutions. Le
probléeme O(R?) peut étre considéré comme le probléme de base & étudier. Notre analyse est basée sur
I'idée que I’étude de problemes extérieurs linéaires peut se faire en combinant les propriétés connues
dans R? et dans un ouvert borné. Dans [4], les auteurs ont étudié 'existence de solutions généralisées
et de solutions fortes en imposant une condition de petitesse tres forte sur la donnée v : il existe une

constante positive k qui dépend seulement de p telle que
||v||L3(R3) <k. (3)

Notre but dans ce chapitre est d’améliorer, dans un premier temps, le résultat prouvé dans [4], en
éliminant la condition (3) et dans un deuxiéme temps de 'étendre & un domaine extérieur €. Les

résultats de ce chapitre sont soumis au "J. of Math. soc. of japan".

Dans le quatriéme chapitre, on suppose que ) est le complémentaire d’un ouvert borné €’ de
classe C1!, simplement connexe et avec un bord I' = 9 connexe. Et on considére le probleme

stationnaire de Stokes avec deux types de conditions aux limites sur le bord

—Au+Vr=f et divu=yx dans €,
(87)
u-n=g et rotuxn=hxn sur I,

et

—Au+Vra=f et divu=yx dans

(Sw)
T=my, uxXxn=gxn sur [ et /u-nda:O.
r

A mnotre connaissance, ces conditions dites non standard n’ont jamais été considérées pour ce type
de géométrie. Lorsque € est un domaine borné, les problemes (8 ) et (S7) ont été étudiés par
Amrouche et Seloula [20] en théorie LP. Nous nous intéressons dans ce chapitre a lexistence et
I'unicité de solutions généralisées et solutions fortes du probleme (S7) et du probleme (8 ) dans un
cadre hilbertien. Une parmi les difficultés que nous rencontrons dans notre étude, c’est que le lemme
de Lax-Milgram ne s’applique pas toujours pour établir I'existence de solutions bien que nous soyons

dans un cadre hilbertien. Pour y faire face, nous montrons tout d’abord deux conditions Inf-Sup :

Jorotey -rot pdx

inf sup > (4)
peVEr () yev, @) IPlx2, @llelxz o
©7#0 P£0 ’ ’
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et
tv - -rotpd
inf sup Joroty rot pdx > 3. (5)
wev2, v @ gevz @ 1Pllxz  @llelx2, (@
0 P70 ’ ’

Une fois ces conditions satisfaites, nous pouvons utiliser le théoreme de Babuska-Brezzi [16, 19] pour
montrer 'existence et ['unicité de solutions. Les preuves de ces deux conditions sont basées sur deux
types d’inégalités prouvées par V. Girault dans [38]. La premiére concerne les champs de vecteurs

tangents a la frontiere :

N(=k

Hﬂmw)<0|@wﬂwaAwmw%w2472\/¢vwwwﬂ, (6)
j=2

ou {g; };V:(Q_ %) est une base de {q € Ték 0 q(0) = O} PpA =, est I'espace des polynomes harmoniques sur
R3 de degré inférieur ou égale & —k, N(—Fk) est la dimension de P2, et w(q;) vérifie le probleme de

Neumann suivant :
ow(q;)
on

La deuxieme concerne les champs de vecteurs normaux a la frontiére :

Aw(gj) =0 dans Q et =0 sur I. (7)

el iz < € | vl ooy +lIrotll oz + | [ (o dw+z | [t ol |, (®)

ou {qj}j.vz(l_k) est une base de P2,

Ces deux inégalités jouent aussi un réle fondamental pour montrer la coercivité de certaines ap-
plications bilinéaires pour pouvoir appliquer ensuite le lemme de Lax-Milgram. Notons que les espaces
fonctionnels ViT(Q) et V%, ~(£2) sont choisis de sorte que les termes | [(¢ - n)do|, 3 | Jr(e

n)q;do| et 37, ( ") | [r ¢ - Vw(g;)do| qui se trouvent dans (6) et dans (8) soient nuls. Pour com-
mencer notre etude, nous considérons d’abord le probleme de Stokes avec des conditions aux limites
portant sur la composante normale du champ de vitesses et la composante tangentielle du tourbillon.
Les conditions aux limites données dans (S7) permettent en fait d’obtenir la pression 7 directement
comme solution d’un probleme de Neumann. C’est la raison pour laquelle nous sommes naturellement

conduits a étudier le probléme elliptique suivant :

—Az=f e divz=0 dans €,
(E)
z:n=g et rotzxn=hxn sur I

On commence donc par établir existence de solutions faibles pour ce dernier probleme, ce que I'on
fait grace au lemme de Lax-Milgram et a l'inégalité (6). En suivant le méme schéma, nous abordons
ensuite I’étude du probleme de Stokes avec des conditions aux limites portant sur la pression et sur la
composante tangentielle du champ de vitesses. Ici encore, la pression peut étre obtenue directement

comme solution d’un probléme de Dirichlet et ceci nous permet de nous ramener au probléme suivant
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—A&=f et divE=0 dans £,

(En) A
Exn=gxmn sur ' et /(S-n)qdazO,VquPk.
r

Les derniéres conditions dans (E y) sont des conditions essentielles pour assurer 'unicité de la solution.
Pour résoudre le probléme (E ), nous avons utilisé la condition Inf-Sup (5) avec k = 0 et le lemme de
Lax-Milgram si k£ = —1. Enfin, on passe a ’étude de la régularité de la solution et plus précisement
aux solutions fortes du probléeme (8y) et du probléeme (87). Pour cela, on étend les inégalités (6) et
(8), dans un premier temps, au cas ou la trace tangentielle ou la trace normale ne sont pas nulles mais
appartiennent a I'espace de trace HY/2(T") ou H'/?(T"). Dans un deuxiéme temps, nous établissons les

inégalités suivantes :

H‘PHW]?vQ(Q) < C(H‘P“wifl(g) + HrOt‘PHW]%?(Q) + HdiV(PHWkLQ(Q) + - nHH3/2(F)) (9)
ou
el < el oy + IR0t el oy + 4Vl + @  llgoeg).  (10)

La preuve de I'inégalité (9) est basée sur l'existence de solution réguliere du probléme de Neumann

extérieur. Concernant 1’égalité (10), nous sommes amenés a I’étude du probléme auxiliaire suivant :

—Af=rotv et divE=0 dans (,
En=0 e (rot&—v)xn=0 sur T,
[ &9 wla)—qyds =0,

ou (w(q) — q) est une solution du probleme (7). Les résultats de ce chapitre sont soumis a "Integral of

Differential Equations".



Chapter 1

Basic Concepts on Weighted Sobolev spaces

Nous présentons ici les propriétés des espaces de Sobolev avec poids sur lesquels nous nous appuyons
et nous donons des résultats fondamentaux liés a ces espaces. Il s’agit principalement a présenter des
résultats introduites par Hanouzet [42], Cantor [21], Kudrjavcev [45]. Celle-ci est ensuite généralisés

avec 'introduction de poids logarithmique, voir par exemple J. Giroire [41].

1 Weighted Sobolev Spaces

Let x = (21, 29, 23) be a typical point in R and let 7 = |x| = (27 + 23 + 22)'/? denotes its distance to
the origin. In order to control the behaviour at infinity of our functions and distributions we use for
basic weights the quantity p(x) = (1 4 72)'/2 which is equivalent to 7 at infinity, and to one on any
bounded subset of R and the quantity In(2 + r?).

Let € be a bounded connected open set in R? with boundary 92 = T' representing an obstacle
and let Q its complement i.e. Q = R3\ . In all the sequel, Q is supposed of class C"! except in

some cases where we will precise that the boundary can be only Lipschitz-continuous.

We define D(2) to be the linear space of infinite differentiable functions with compact support on
Q. Now, let D'(92) denote the dual space of D(Q), often called the space of distributions on Q. We
denote by < .,. > the duality pairing between D’(Q2) and D(Q2). For each p € R and 1 < p < oo, the

conjugate exponent p’ is given by the relation

1 1
p D

We use the customary multi-index notation

A ESJA D* o
_izl " N O} D2 dxy®

for any nonnegative integers ;.



Chapter I. Basic Concepts on Weighted Sobolev spaces

Then, for any nonnegative integers m and real numbers p > 1 and «, setting

k=k(m,p,a)= s o
m— 2 —a, if 5+a€{1,...,m},

e 3
{—1, if St ¢ {1,...,m},

we define the following space:

WP (Q) = {u € D'(Q);
YAeN?: 0< A<k, p ™ (2 + %)) DM € LP(Q);
VAEN: k+1<|\ <m,p* ™D M e LP(Q)).

It is a reflexive Banach space equipped with its natural norm:

lullwzr ) = ( > e P a2 + ) T DMl g
0<|A|<k

1/p

— Al A

+ Z [[p m+A D UWZp(Q) .
E+1<|A<m

3
We note that the logarithmic weight only appears if — € {1,...,m} and all the local properties of
p

W/™P(Q) coincide with those of the corresponding classical Sobolev spaces W™P(Q). We set WP (1)
as the adherence of D(Q2) for the norm || . [[yymr(q). Then, the dual space of WmP(Q), denoting by

wZ_P /(Q), is a space of distributions with the norm

R ()

R m— e
worr@ T o o Tl

Note that when Q = R?, we have W/?(R3) = WP (R3).
We give now some examples of weighted Sobolev spaces when m € {0, 1, 2}:

For m = 0, we set

WOP(Q) = {u e D'(Q); p*ue LP(Q)}.

«

Form=1,2 and a = 0:

W,y P(Q) := {v e D'(0): wio € LP(Q), Vv e LP(Q)} ,

with
vy — {p(X) if p#3,
p(x)In(1 + p(x)) if p=3.

10



1.2 Basic concepts and notations

WEP(Q) := {v e D'(Q): wi € LP(Q), % e LP(Q), Vv e LP(Q)} :
1 0

with
oy {p<x>2 it pg {33
PO+ p(x) i pe (3,3}

If Q is a Lipschitz exterior domain, then we have
WLr(Q) = {U eWlP(Q), v=0 on 89},
and if Q is a Cb! exterior domain, we set

Wg,p(g) _ {v c ij’p(ﬂ), v = g:; =0 on 89} ,

ov
where In is the normal derivate of v.
n

For all A € N? where 0 < |A\| < 2m with m = 1 or m = 2, the mapping
ue WmP(Q) — 9*ue wrMe)

is continuous.

2 Basic concepts and notations

The spaces WP () or W2P(Q) sometimes contain some polynomial functions. We have for m = 1 or
m = 2:

P, C WP(Q)  with {j == Gt it 3pradls, (L1)

j=m-—3/p+a)—1 if 3/p+acZ

where [s] denotes the integer part of the real number s and P; is the space of polynomials of degree
less then j.

We now recall a fundamental property of space WP (see [7] and [6]):

Proposition 2.1 (Hardy’s inequalities) Let o € R and let 1 < p < co.

i) Let Q an exterior domain. There exists a constant C' = C(p,«, ) > 0 such that

VueWaP(Q), lullyieg < ClIV ull yor -

11



Chapter I. Basic Concepts on Weighted Sobolev spaces

ii) There exists C = C(p, ) > 0 such that

Voue WAP(RY), {”“”Wé”’w@) < IVellwer sy, i 3/p+a>1,

HUHW&P(H@)/WO < ||V u\|%,p(R3), otherwise,
We recall the following Sobolev embeddings for any real values oo and 1 < p < 3,
1 0,p* 3p
W,P(Q) = W,P*(Q) where px = 3 . (1.2)
- D

and, by duality, we have

WE’S(Q)%W__@LPI(Q) where ¢ = 3p

3+
Moreover, if 1 < p < 3/2 we have
2 0 3p
WiP(Q) — W,4(Q) where ¢ = o (L.3)
— 4p

and, by duality, we have

0, 2y 3p
Wiaq(Q) — Wiap (Q) Where q = m

Note also that if v € Wg’p(Q) with 3/2 <p <3 and Vv € L" () for some r, then Vv € L(Q) for all
g>rifp=3/2and Vo e L"(Q)NL>(Q) if 3/2 < p < 3.

On the other hand, if % +a ¢ {1,...,m}, we have the following continuous embedding:

WmP(Q) — W MP(Q) s s WP (Q). (1.4)

a—1

Finally, let 1 < m < 2 and u € D'(R?) such that
YAEN: AN =m, e LP(R3).

i) If 1 < p < 3, then there exists a polynomial K(u) € P,,—; such that u + K(u) belongs to
Wy P(R?) and

ool Nt K@) g g asy < OV ey

ii) If p > 3, then u € WyP(R3) and we have

dnf [l lgresy < IV ullyzotog),

m—1

In this work, we shall also denote by Br the open ball of radius R > 0 centered at the origin with

boundary Y. In particular, since € is bounded, we can find some Ry such that ' C Bg, and we

12



1.2 Basic concepts and notations

introduce, for any R > Ry, the set
Qr =QN Bpg.

We also introduce the following spaces for k € N*:
A®) = {z R k<|z| <2}, B'RY)={zcR® |z >k},

and
Cr(R3) = {:B € R3; e? < lz| < ek}, DF(R3) = {ZL‘ eR3; |z| > eg}.

Given a Banach space B, with dual space B’ and a closed subspace X of B, we denote by B’ L X the
subspace of B’ orthogonal to X, i.e.

B' L X={feB;< fiuv>=0VveX}=(B/X).

The space B’ L X is also called the polar space of X in B’.
Finally, we use bold type characters to denote vector distributions or spaces of vector distributions
with 3 components and C' > 0 usually denotes a generic constant the value of which may change from

line to line.

13
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Chapter 11

Very Weak Solutions for the Stokes Problem

Nous montrons ici I’existence et 'unicité de deux types de solutions dites tres faible pour le probléme
de Stokes dans un domaine extérieur 2. Notre méthode consiste a utiliser un argument de dualité

avec les solutions fortes du méme probleme.

1 Introduction

Let € be a bounded connected open set in R3 with boundary 02 = T of class C! representing an
obstacle and let € its complement 4.e. = R3\ . We consider the Stokes problem in : for given

vectors fields f and g and a scalar function h, we look for a very weak solution which fulfill:
(8) —Au+Vg=f and divu=h inQ, u=g onl,

where u denote the velocity and ¢ the pressure and both are unknown. This exterior Stokes problem
has been studied by a large number of authors, from different points of view, and it would be too long
to list them all here so we give some examples: Borchers and Sohr [18], Finn [31], Fujita [32], Giga and
Sohr [37], Sohr and Varnhorn [50], Specovius-Neugebauer [51], Girault [38] and [40], Girault, Giroire
and Sequeira [39] and in the last years, Alliot and Amrouche [3].

On the other hand, the notion of very weak solutions (u,q) € LP(Q2) x W~1P(Q) for the Stokes
problem when € is bounded, has been developed in the last years by Giga [36] (in a domain  of class
C*), Amrouche and Girault [5] (in a domain © of class C*!) and more recently by Galdi et al [35],
Farwig and Galdi [22] (in a domain © of class C%!, see also Schumacher [49]) and in 2011 by Amrouche
and Angeles Rodriguez-Bellido [13]. It is well known that it is not possible to extend the result of very
weak solutions to the case of unbounded domains, such as the whole space or the exterior domain in
which we are interested, here the spaces WP () are not adequate. Therefore, a specific functional
framework is necessary which also has to take into account the behaviour of the functions at infinity.
Our approach is to use the weighted Sobolev spaces W2"P(€2) introduced by Hanouzet [42], Cantor
[21], Kudrjavcev [45]. In the half-space, the notion of very weak solution for the Stokes problem is well
studied in this kind of weighted Sobolev spaces, see Amrouche et al [10] for more details. In the last
years, different methods have been developed to study these type of solution in exterior domain. One

idea is well done in 2005 by Farwig et al [27], in which they prove the existence and the uniqueness of

15



Chapter II. Very Weak Solutions for the Stokes Problem

very weak solution (u,q) belonging to LP(Q) x W, '?(Q), with data f = divFy, h and g satisfy

1 1 1
Foe L'(Q), he L'(Q), ge W V/PP(I'), 3 < p < o0, sto=-
p T
yielding % < r < 3. In this article, we investigate two types of very weak solutions for the Stokes
problem. One type is the same as Farwig et al see [27] but with larger range of p, i.e with the following
data:
f=divFo+Vf, heL'(Q) and ge W /PP(D),
with
11 1

r -1, 3
Fo e L"(Q), f1 €W, P(Q), 5 <p <o and §+§:;'

The second one is to prove that (u,q) belongs to W(Pf (Q) x W~ "(Q) when the data satisfying
Foe WYT(Q), fi e WLP(Q) and he W (Q),

with

3 1 1 1
—<p<oo, p#3 and -+ -=-
2 3 p r

To do this, we adapt a method employed in [13] for a bounded domain and in [10] for the half-space,
which consists in the use of an argument of duality via the strong solutions of the Stokes problem
proved in [3].

This chapter is organized as follows: in Section 2 we recall the definition of some spaces and their
respective norms, besides some density results, characterization of dual space and trace theorems.
The main results of this chapter are presented at first in Theorem 3.1 which proves the existence
and uniqueness of very weak solution (u,q) in LP(Q) x W () and secondly in Theorem 4.1 which
proves the second type of very weak solution (u,q) in W™F(€) x W_"*(Q).

2 Preliminary results

In this sequel, we need to introduce the following space:
y s 17 ) S 1p
X1,(Q) = {p e W, () dive e W)}
Thanks to Poincaré-type inequality (see [7]), this space can be equipped with the following norm:

i
lellxe o= | 5 llworgy + I divee [lyp1oq) -
7p () 1<§<3 dx; "W Q) W, P(Q)

Then, we show some density results that are essential for the proofs below. We begin by the following

density:.

Lemma 2.1 Suppose that € is only a Lipschitz open set and suppose that 0 < % — % < % We have

the following properties:

16



I1.2 Preliminary results

i) The space D(Q) is dense in X,1n7p(Q).
it) If in addition p # 3 and r # 3, then the space D(Q) is dense in X{,}’p(Q).

Proof. The proof of point i) and ii) are very similar, so we do only the proof of the first result.
The density of D(Q) in X 71¢7p((2) relies on an adequate truncation procedure and regularization. The
truncation function that we shall use has been defined by:

© € D(R3) such that 0 < o(t) < 1 for any t € R3, and

1 if 0<t|<T,
0 if |t[>2

Now, let v € Xi,p(Q) and v be the extension by 0 of v to R3. Then we have v € X}n’p(RS). We begin
to apply the cut off functions ¢y, defined on R? for any k € N*, by @i (z) = ¢(§). Set vy = ¢v. The
main idea of the proof is to prove that vy — v in X%,p(R?’) when k — oo.

1) Convergence of v in W%’T(R:S):

On one hand we have:

/ \'vk—?;]de:/ \@k—l\T]%]de§2T/ 13| dx.
R3 R3 Bk (R3)

Using dominated convergence theorem, we deduce that this integral converges to zero when k — oo.
On the other hand we have:

L oved) -ovar < o[ FIvaltarixs [ o 111ov el ax)
R3 R3 R3

1+ 2k)" ~ ~
< C (H)/ |v|’”dx+/ 2% v\rdx> ,
koo Jaue) BE(R?)

where C' is independent of k. As above, the two last integrals converge to zero when k — oc.

2) Convergence of div vy, in W,"?(R3):

We begin by proving that prdiveo — div o in Wll’p (R?). On one hand we have

/ lordivo — divolP dx = / |or — 1|P|div v|P dx < 2”/ |div v|P dx,
R3 R3 B (R3)

k (R3

where the last integral converges to zero when k — co. On the other hand we have

/Spp|V(gpkdiv1~;)—V(div1~z)|p < C(/spp|Vgpk|p|div1~;|pdx—|—/3|<pk—1|p|pV(div1~z)|pdx)
R R R

(1 + 2k)P

C( >

/ |div v|P dx + / |pV (div v)|P dx),
Ar(R3) Bk(R?)

where C' is independent of k. As above, the two last integrals converge to zero. To finish the conver-

gence of div v we should prove that v- Vi, — 0 in Wll’p(R3). We start by proving that v- Vi, — 0

17



Chapter II. Very Weak Solutions for the Stokes Problem

in LP(R3). Indeed,
1
v-V pdxéC—/ P dx 1.1
[p-vara<og [ (1)

r—pP

and using Holder inequality we have
< / = dx)
Ar(R3)

/ BPdx < (/ bl dx>
A(®?) A (R?)
p

< ok (/ ]?}|”dx> . (11.2)
A (R3)

By combining (II.1) and (II.2) and using that 0 < ;1) -
gence theorem that v - Vi, tends to 0 when k — oo.

38

% < %, we deduce thanks to dominated conver-

Now, we prove that pV (v - V) — 0 in LP(R3):

LoV Verdx = [ FIVe- T+ Vo dx

o / PIVT - Vil dx + 27 / P[5V P dx
R3 R3

1 1
< C —/ Vol d +—1+2/~cp/ v|Pdx |,
< (k [ v gme2ky [ )

where C' is independent of k. As above the first term in the left-hand side tends to zero because

IN

D
/ PV P dx < Ck™ " (/ \pvm’"dx> .
A (®9) A4 (E9)

and using (I1.2), we prove that the second term tends also to zero. Thus we obtain that

v — U in X71¢7P(R3) when k — oo.

Finally , we start the regularization of our sequence vy. In a first step we consider that ' is strictly
star-shaped with respect to one of its points which is taken to the origin. Under this assumption, we
set vy g(z) = vi(0z) for any real number § > 1 and x € R3. Then vy g € Xivp(]R‘g) and supp vy is

compact in 2 when 6 is close to 1. Moreover
lim vy 9 = v;, in X1 (R?)
0—1 7 P ’

Consequently, for any real number ¢ > 0 small enough, the restriction of p. * vy 9 to € belongs to
D(2) and

o . 1 /3
lim lim lim pe * v = v in Xr,p(R ),
e—=00—1k—o0

where p, is a mollifier. Consequently, D(Q2) is dense in Xip(Q). In the case where Q' is only a
Lipschitz open set in R?, we have to recover €2’ by a finite number of star open sets and partitions of

unity. Clearly, it suffices to apply the above argument to each of these sets to derive the desired result
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I1.2 Preliminary results

on the entire domain. O

Now, for p # 3 and r = 3, we have the following result:

Lemma 2.2 Suppose that Q is only a Lipschitz open set. Forr =3 and 3/2 < p < 3 the space D()
is dense in Xgm(Q) and for all q € Wo_l’p,(Q) and ¢ € Xgp(Q), we have

(V& @)ixg @y xxq @ = &A@y 1w g g - (IL.3)

Proof. The main idea of the proof is relied on adequate truncation procedure. The truncation
function that we shall use has been introduced by Bolley-Camus [17]. First, let ¢ € C°°([0, 00[) be
such that

o(t)y=0, Vte|0,1], 0<o(t) <1, Vte[l,2], ot)=1, Vt>2.

Next, for k£ € N we define ¢, by

) {(b(m’l;), vz e R®: Ja| > 1,

1, otherwise.

Then we see that for all x € R3:

o 1 if |z < et
0<¢p(z) <1, if |z]€ez,e"] and ¢i(z) =
0 if |z|>ek

so that multiplication by ¢, is indeed a truncation process. Note that this truncation process is
adapted to the logarithmic weights. Now, let v € ngp(Q) and ¥ be the extension by 0 of v to R3,
then we have v € ngp(R?’). Set v, = ¢ 0.

We start by proving that vy — v in X%p(R?’) when k — oo.

1) Convergence of vy, in W (R3):

On one hand we have:

Vp— U 3 _/ 3 v 3 / v 3
_ Uk TY 3gx = 1P — 2 Pax< ¥ PBax,
/11@3 ’pln(2+r2)| 7 s 19 =11 ’pln(2+r2)| xs© DFk(R3) |pln(2+r2)| x

where C' is independent of k. Using dominated convergence theorem, we deduce that this integral

converges to zero when k — co. On the other hand we have:

[ IV@o) - Valtax < [ Vol [ lec- 171V dx
R3 R3 R3

<C/ 3In3(2 4 12)|V 3#3_1_/ AR
<Ck(R3)p Il( 7‘)| ¢k| |ph’l(2+7“2)| Dk(R3)| |

where C' is independent of k. It follows from Lemma 7.1 of [6] that

Cy

<t
|v¢)k‘ X pln(2—|—’r2)’

(I1.4)
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where (1 is a constant independent of k. Using (I1.4) and dominated convergence theorem, we deduce
that

=\ U3 dx < v 3 / ~13
/RS IV (68) — V| dx\C</Ck(R3)]pln(2+T2)| dxi [ 19 dx> ~0,

when k£ — oo.

2) Convergence of div vy, in W, (R3):
We begin by proving that ¢rdiv e — div o in WP (R3).
divv divv

Pax < |
DFE(R3)

ordiv o — diva
P

[ Pax= [ 1o =17 [ dx.

where C' is independent of k. Using dominated convergence theorem, we deduce that this integral

converges to zero when k — co. Moreover,
L, IVondive) - Vidvo)rax < [ [(Tondivarax+ [ o - 1P|V (div)P dx
R R R

< 0 ([ 1T e
Cr(R3) P

where C' is independent of k. Using (I1.4), we prove

|V (div )P dx) ,
DF(R3)

~ ~ 1 divw -
/ IV (ddiv B) — V(div 8)[P dx < C / 2 g 4 IV (div )P dx | |
RS Cr(r3) kP p DH(R3)
and then we use the dominated convergence theorem to prove that the right hand side converge to

zero when k — oo.

Now, we shall prove that v- V¢ — 0 in I/VO1 P(R3). On one hand, using Holder inequality, (since
p < 3), we have

. )
[ pax = [t Pn@ + )PV dx

3—p

( ‘pln(2 +12) & dx>g (/Rs(ln@ +72)| V) dX) © . (L5

Using (II.4) and polar coordinates, we have

N

3—p 3p 32
(Loweermona) = o[, (rtere) ")
RS Cr(®) \ (1 + [x[?)1/2
1\ =
< C(/k () r? r)
e2 T
< C( 3(3-3%5) _ h ‘sgpp))?. (IL.6)
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Since p > 3/2, this last term is equivalent to e263-2) when k — oo. Tt follows from (IL5) and (IL.6)
that - Voj, — 0 in W>P(R3). On the other hand we have

/RB V(v V)P dx = /Rs VU -V + v - V2 |P dx

v

P p p V2 p. P P
C ([, IvarIvedaxr [ )|Vl e dx).

IN

It follows from Lemma 7.1 of [6], that

)

2
< - =
IV onl < p*In(2 +r2)’

(IL.7)

where Cy is a constant independent of k. As above, using (I1.4), (IL.7) and Hoélder inequality, we
deduce that

P

3—p P
/ V(v -Vop)Pdx < C (’;( —a%5) _ M ‘33’17)) ’ (/ Iv%|3dx)3
R3 R3

1
kp
el ) (] )
rR3  pln(2 + r2)

Since p > 3/2, we deduce that these two terms converge to zero when k — oco. Then we obtain that
v, — vin X gp(]RS) when k — oo. For the rest of the proof, we adapt the same method employed in
the proof of Lemma 2.1. Finally (II.3) holds. O

Remark 2.1

In this chapter, we are not interested in the density of D(£2) in Xglyp,(Q) when p’ =7 =3 orp =3 and
r’ # 3, but with the same method employed in the proof of Lemma 2.2 and using Holder inequality, we
can prove this result. In the case when p’ = 3 and ' # 3, we shall suppose in addition that ' > 3/2.

As a consequence of Lemma 2.1 and Lemma 2.2 ; we have the following Green’s formulas:

Corollary 2.1 Suppose that 0 < % —1 , then

Sl
OJ\H

i) Forallq e W_[""(Q) and ¢ € X}‘,yp,(Q), we have

(Vg, (‘0>[X1/7p/(9)]'XX,1«/7p/(9) — (g, div ‘P> L@ x W (@) (IL.8)
it) If in addition p' # 3, then for all g € Wy "P(Q) and ¢ € X(T)/p/(Q), we have

Vo, 0)ixo, @, o) = =A@y g) i ) (IL9)

In the following lemma, we will characterize the dual space of Xfiyp(Q). This result and its proof

are classical.
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Chapter II. Very Weak Solutions for the Stokes Problem

Lemma 2.3 Let f€ (Xfi’p(Q))/ with £ =1 or £ = 0. Then there exist
Fo = (fij)1<ij<s € WO (Q) and f € WP (Q) such that:

F=divFo+ V. (I1.10)

Moreover,

1 £ o= {1 Fis Dot 1 < 805 < 301 lyoa |-
Conversely, if f satisfies (11.10), then f¢€ (Xf,p(ﬂ)),.

Proof.
Let E = W%’T(Q) X Wel’p (Q) which is equipped by the following norm:

Vh=(Ho,h1) €E, | hlle= > [l llyorqy + 11 llyieg)

1<i,j<3

being Hy = (hij)1<ij<3. The mapping T : ¢ € Xf,’p(Q) — (Vep,divey) € E is an isometry from
ijp(Q) into E. Suppose G = T(Xf,vp(Q)) with the E-topology. Let S =T7!: G Xfyp(Q). Thus,

we can define the following mapping:
he G (f,Sh)xe yxxt @ forfe (X7 ,(Q)]

which is a linear continuous form on . Thanks to Hahn-Banach’s Theorem, such form can be extended

to a linear continuous form on E, denoted by II such that [[II||g> = |[f[|x¢ (o). From the Riesz’s
P

Representation Lemma, there exist Fo = (fij)1<i,j<3 such that Fy € W(l’z (Q) and f1 € W_}l’p (Q)

such that for any h = (Hy, h;) € E,

(IL h) g = <F0’H0>W‘};’(g)x wore) T (s hl)w_*;vp’(n)xv‘iﬂvp(a)

4

3
Z: f’L]) 2] WOT (Q)XWE)’T(Q) + <fl7 hl)W:Zl’p/(Q)XWE’p(Q) 9

with || IT ||g= max{” fij HWE”( Q) 1<id,7 <3, frlly, -1/ (Q)}. In particular, if h = Ty € G,
where ¢ € D(Q2), we have:

<f, >[XZ )]’XXf;p(Q) = <—diV IF() — Vfl, (,0> .
To finish it is easy to verify that the reciprocal holds. O

Giving a meaning to the trace of a very weak solution of the Stokes problem is not trivial: remember
that we are not in the classical variational framework. In this way, we need to introduce some spaces.

First, we consider the space:

Yy () = { € WP'(Q), ¢l =0, diveplr =0} .
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The following lemma gives another characterization to the space Y,y ¢(€) very useful in the Green’s

formula defined in Corolllary 2.2 (see below).

Lemma 2.4 We have the identity

Yyre() = { € W27 ().l = 0.5 - nlr = 0] (1)

and the range space of the normal derivative 1 : Yy ¢(2) — wi/pr' (T) s

Zy (1) = {z€ W/PP(I); z-n=0}.

Proof. Let u € W?’p,(ﬂ) such that v = 0 on I'. Then divu = g:, -n on I' and the identity (II.11)
holds. Moreover, it is clear that Im(y;) C Z,/(I'). Conversely, let p € Z,(I"). As Q' is bounded, we
can fix once for all a ball Bg,, centered at the origin and with radius Ro, such that / C Bg,. Thus
we have the existence of u € Wz’p/(QRO) such that u =0 on I'UJBg,, g—z =ponl and Z—Z =0on
0BpR,, note that Qp, = Q2N Bg,. The function u can be extended by zero outside Bgr, and owing to
its boundary conditions on 0Bp,, the extended function, still denoted by u, belongs to W?’p I(Q), for
any ¢ since its support is bounded. Since p-n =0 on I', we have u € Yy o(Q) and pp € Im(vy1). O

Secondly, we shall use the space:
T,(2) = {ve WH(Q); Ave X)L, @)},

equipped with the norm:

ol = Ivlworg) + 140 i, oy -

We also introduce the following space:
pe(div, ) = {v e WP, (Q);dive € W, ()}

This space is equipped with the graph norm. The following lemma is essential to ensure the proof
of Lemma 2.6 (see below).

Before starting, let define:

M(R) = {u e WHRY); Vue WI(RY)].

1
Lemma 2.5 Suppose that 0 <

% < 3, then D(R3) is dense in M(R3).

1
g 3
— 00, where @y, is a cut off functions.

Proof. Let u € M(R?), as in Lemma 2.1, since 0 < & — we prove thanks to dominated

1
P
convergence theorem that oyu converges to u in M (R?) when k
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In other words, the set of functions of M(R?) with bounded support is dense in M (R?) and we
may assume that u has a bounded support. The result is then proved by regularization. Indeed, for
any real number € > 0 small enough, we have that p. * u belongs to D(R?). Since u € WE’{’ (R3) and
has a compact support we deduce that u € LP(R?). Using that % € L>®(RR?), we prove that p.*u — u
in WP(R3) when e —s 0 and by the same way that p, * Vu — Vu in W7 (R3) when e — 0 .
Then we have p. * u — u in M(R3?). Hence u is the limit in M (R3). O

Now, we prove that the tangential trace of functions v € Tf’p(Q) belongs to the dual space of
Z,y(I"), which is
(Zy (1) ={pwe W V/Pr();p-n =0} (IL.12)

Observe that we can decompose v into its tangential and normal parts, that is:
v=v,+ (v-n)n.

The proof of the following lemma is similar to the case of bounded domain (see [13]).

Lemma 2.6 Suppose that % <p< oo and % + % = % Then
i) For £ =0, the space D(Q) is dense in TB’p(Q).

ii) For { =1 and p # 3, the space D(Q) is dense in Tr{p(Q).

Proof. Let x € (T£7T(Q))’, with ¢ = 0 or £ = 1, such that for any v € D(Q2), we have (x, v) = 0. We
want to prove that x = 0. There exists (f, g) € Wg’p,(Q) X Xf,yp,(Q) such that: for any v € TfM(Q),

<X71,>:/Qf.vdx+<Av,g>[X§,7p,(g)}fxxﬁ/7p,(Q).

Since we have (x,v) = 0 for any v € D(2) then we have also (x,v) = 0 for any v € D(), thus
f+Ag=0in D'(Q). Observe that we can easily extend by zero the functions f and g, in such a way
that

fe w)P(R%) and ge XL, (RY).

Now we take ¢ € D(R?). Then we have by assumption that:
/ f-sodx+/ §-Asodxz/f'</>dx+/ 9 -Ap=(x,p) =0,
R3 R3 Q Q

and we deduce that f + Ag =0 in D'(R3) and Ag € W?’pl (R3).

i) At first, observe that since 3 < p < oo and % + % = 1 and using (1.2), we deduce that ngp' (R3) —
W(l)’rl (R3). It follows from [6] Theorem 6.6 that there exists A € Wg? / (R3?) such that AX = Ag.
Thus the harmonic function A — g belongs to Wé’r/ (R3). Note that if p’ < %, we would have ' < 3
and thus A =g € Wg’p / (R3) and if p’ > %, we would have ' > 3 and thus there exists a polynomial
K ¢ W(l)’rl (R3) satisfying g = A + K. Using (I.1) and the fact that % + % = 1 we deduce that

r

K ePy s C W%’pl(R?’). Hence since g € Wg’p/(Q), we deduce that g € Vng’p (Q). As D(Q) is
p/
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o 2.p /
dense in Wo’p (€2), there exists a sequence g, € D(Q) such that g, — g in Wg’p (Q2), when k£ — oc.
Then div g;, — div g in Wol’p/(Q). In particular, g, — g in X,/ »(2). Now, we consider v € Tg,r(Q)
and we want to prove that (x,v) = 0. Observe that:

(x;v) =— /Q Ag-vdx + (Av. g)ix () %X, ()

= lim (—/QAg;.c'vdXJr (A, gr)ix,, (@) xX,0 ()

k—o0

= lim (—/ Agk-'vdx+/ v-Ag,dx) = 0.
Q Q

k—o0

ii) At first, observe that since 3 < p < 0o and %—I—% = 1 and using (1.2), we deduce that W?’p/ (R3) —
W%’T/ (R3). In addition, we have g € W%’TI (R%) and Ag = —f € W(l)’p/ (R3). Then for any ¢ € D(R?)
we have:

<A§, (P) W?’p/ (R3)>< W(i“l’(R3) = — <V§, V (P) W?’Tl (R3)>< W%;(Rﬂ . (1113)

Using Lemma 2.5, the equality (I1.13) is still valid for ¢ € M(R3)2. We can deduce by (II.13) that
Ag € W(l)’p/(R?’) L Pj_sy. Since p # 3, we conclude that there exists 6 € W%p/(R?’) such that
p

A6 = Ag (see [2] Proposition 2.2). Thus the harmonic function 8 — g belongs to W%’TI (R3) and thus
we deduce that 0 = g € W>? (R3). Since g € W>¥ (Q), we deduce that g € W?’p (Q). The rest of

the proof is unchanged.

0

As a consequence of this lemma, we have the following result:

Corollary 2.2 Let % <p< oo and ]lj + % = % Then the mapping v, : v — v-|r on the space D(Q)

can be extended by continuity to a linear and continuous mapping, still denoted by ., from Tf,p(Q)
into W_l/p’p(F) for £ =0 and if p # 3 for £ =1 and we have the Green formula: for any v € Tr{p(Q)
and P € Yp’,@(Q);

9

(Ao )i, @rxxt, @ = /Q v- Avpdz — <'v7, n (IL.14)

> W /Pp(T) x wl/p.p’ (1)

The following lemma gives a precise sense to the normal trace of functions v € H, ,(div, Q).

Lemma 2.7 Let Q be a Lipschitz open set in R3. Suppose that 0 < %
Then

i) The space D(Q) is dense in Hy, ,(div, Q).

%g%andﬁzoorﬂzl.

it) The mapping v, : v —> v - n|p on the space D(Q) can be extended by continuity to a linear and
continuous mapping, still denoted by 7y, from Hy, ,(div,Q) into WP, If in addition 1= %—i— 3
and % < p < 00, we have the following Green formula: for any v € H,, ,(div,Q) and ¢ € Wll’_pé (Q),

/Q'v- Vodx+ /Q pdivvde = (v-n, @)W_l/pﬁp(r)xwl/p,p/(r) : (I1.15)
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Proof. i) The proof is very similar to that of Lemma 2.5. Let v € H}, ,(div,2), we have to prove
that v is a limit in HJ, ,(div,Q) of vector functions of D(£2). We first approximate v by functions of
H ]’;yg(div ,Q) with compact support in Q. Let ¢, be a cut off functions introduced in Lemma 2.1. We
prove that ppv € H), ,(div, ) and since 0 < 1 % < %, we prove thanks to dominated convergence
theorem that ¢pv converges to v in this space as k — oo. In other words, the set of functions of

po(div, Q) with bounded support is dense in H, ,(div, ) and we may assume that v has a bounded
support. Then the lemma follows from the fact that in a bounded Lipschitz-continuous domain O, the

space D(0) is dense in H,,(div, ) see Lemma 13 of [13]. In this case, H,,(div, ) is defined by
H,, (div,0) = {v e LP(0);divv € L"(0)}.

ii) Let ¢ € D(Q) and v € D(Q). Then (I1.15) holds. As D(Q) is dense in Wll’_pé(Q), (IL.15) is still
valid for ¢ € Wll_’é(ﬂ) and v € D(Q). Let u € WYPP(I'). As @ is bounded, we can fix once for all a
ball Bg,, centered at the origin and with radius Ry, such that &/ C Bg,. Thus we have the existence
of o € W' (Qp,) such that ¢ = g on T and ¢ = 0 on dBp,. The function ¢ can be extended by
zero outside Bp, and owing to its boundary conditions on 0Bp,, the extended function, still denoted
by ¢ belongs to I/Vk1 > (), for any weight k since its support is bounded, then in particular belongs to
Wllflj(Q) And thus, we have

” 4 "WELPZ(Q)S C H K ”Wl/p,p’(r) : (1116)
Therefore, for any v € D(Q) we have:

(e | = (oo m)p | <O gyl @ g a2

<Cllp ||W1/p,p’(r)|| v HH;Z(div,Q) :

Thus, using (I1.16), we obtain

vl -1 < Cll v llH7 @00 -

Therefore, the linear mapping 7, : v — v - n|p defined on D(Q) is continuous for the norm of
7.o(div, Q). Since D(Q) is dense in Hj ,(div,Q),y, can be extended by continuity to a mapping
still called ~,, € £( ;yg(div,Q);Wfl/p’p(F)). As 1 - % =1 and 3 < p < oo, we note that Wll_pé(Q)

is embedded in Wlo_ré(Q) for £ =1 or £ =0 and thus (II.15) holds. O

Before stating the theorem of the existense and the uniqueness of the very weak solution for Stokes

problem, we need to introduce the following null spaces for « € {—1,0,1} and k € {0,1,2}:

NEP(Q) = {(u,7) € WEP(Q) x WETMP(Q); T(u,7) = (0,0) in @ and u|r =0},
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with
T(u,m) =(—Au+ Vm, divu).

The following lemma proves the identity between some null spaces.

Lemma 2.8 Assume that Q is of class C%' and let p # 3, then

No?(92) = N(9).

Proof. Let (u,7) € W2(Q) x W "P(Q) such that

—Au+Vr=0 and divu=0 inf, =0 onl.

Note that if u € W%’(Q) and —Au+ V7 =0 in Q with 7 € W:ll’p(Q), then the tangential
1
component u, of u belongs to W~ #"(I') and if divu = 0 in Q, then u-n € W ~Y/PP(T'). That means

that © = 0 on I makes sense.

Now, let A and x be two nonnegative functions in C°°(R?) that satisfy
Vz € Br,, Az)=1, suppAC Bryy1, Y z€R3  Ax)+p(z)=1.

Let Qg +1 denote the intersection Q N Br,+1 and let Cgr, denote the exterior (i.e. the complement)
of Br,. Then, we can write

u=Au+pu, T=AT+ uT.

It follows from Corollary 1.3 of [3] that there exists z € W ?(Q) such that divz = m. Let us extend
(u,z) by zero in . Owing to the boundary conditions imposed, the extended function, that we
denote by (i@, 2) belongs to WYP(R3) x WYP(R3). Set # = div z. It suffices to prove that (A u, A7)
belongs to WP(Qpg,11) X LP(Qg,11) and that (@, u7) belongs to WP (R3) x LP(R3).

After an easy calculation, we obtain that the pair (u @,y 7) satisfies the following equations in R3:
~A(pa)+V(ur)=f, and div(u@)=e; in R3

with
fi=—(Apwa+ (V)i —2Vu-Va and e, =Vp-a in R
Thus, we are led to study the regularity of a Stokes problem in R3. Since the right-hand sides f;
and e; have indeed a bounded supports, it is easy to check that (f;,e1) € Wal’p(R?’) x LP(R3). We

would like to show that:

VX € T[lfﬁ}’ <f17 X> Wal’p(R:”)X W(l)’p/(]R3) =0. (1117)
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Let ¢ € D(R?). Then we have:

<_A(M ﬁ’)? (P> W:?’p(R?’)X W?’p/(RS) = <V(:u il’)? VLP> W:i'p(R?’)X W?Pl (R3) ) (1118)

and

<v (M 7~T)’ ‘P> W:%P(RS)X W?,Pl (R3) - = <M ﬁ—? div LP> W:%’p(R?’)X W%P’ (R3) (IIlg)

Since D(R?) is dense in W?’p/ (R3), then (I1.18) and (I1.19) are still valid for ¢ belongs to W%’p/ (R3).
Puoz) C W%’p , (R3), we deduce (I1.17). Thus it follows from Theorem 3.3 of [2] that there exists
p/

(w,q) € Wé’p(R:”)/?[l_g/p] x LP(R3) such that
~Aw+Vg=f, and divw=e in R’
Let v=pu — wand § = u7 — ¢, then
~Av+V0=0 and dive=0 in R3

with 6 € W_["P(R3) and v € WY(R3). As Af =0 in R3, then # = 0 and thus v is harmonic and

belongs to (]3[1751. Note that pu = wif p <3 and pu=w+k € W(l)’p(ﬂ) with k € R3, if p > 3.
P

Consequently, (u @, pu7) belongs to Wé’p(RB’) x LP(R3). As above, we obtain that (A u, A7) satisfies

the following equations in Qg,41:
—AQAu) + V(A7) =fy, div(Au)=e2 and (Au)lr =0, (Au)lopg,., =0,

with
fo=—(ANu+ (VAT —2VA-Vu and ea=VA-u.

Note that the right-hand sides f, and ez have indeed their supports in 2,41, then f5 belongs to
w—bp (Qp,+1) and ez belongs to LP(Qp,+1). Then the regularity results for the Stokes problem in a
bounded domain of class Cb! (cf. [13] Theorem 10) and using the same argument as above, we show
that (A, A7) belongs to W'P(Qr, 1) x LP(Qr,+1)- Let us extend (A, A7) by zero outside Qg 11
Owing to the boundary conditions imposed and the compact support, the extended function, that we
still denote by (A u, A7) belongs to WP (R3) x LP(R3). Then (u,7) belongs to W* () x LP() and
thus N*?(Q) c N(l)’p(Q). For the other inclusion, because p # 3, it suffices to use (1.4). O

Remark 2.2

With the same method employed in Lemma 2.8, It is easy to prove that if p # 3/2,

NTP(Q) = Ny (Q).
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3 Very weak solutions in L”(Q) x W "*(Q)

In this section, we prove the existence and the uniqueness of very weak solutions to the Stokes problem
via an argument of duality. We begin by precising the meaning of very weak variational formulation.
Let:

0 ! r —1/p,
Fe[X% (], heL'(Q) and g€ W H/PP(D), (I1.20)
with
3 1 1 1
i S+ == A
2<p<oo, and p+3 o (A1)

yielding 1 < r < 3.

Definition 3.1 (Very weak solution for the Stokes problem) Suppose that (A1) is satisfied and
let f, h and g verifying (I1.20). We say that (u,q) € LP(Q) x ng’p(Q) is a very weak solution of (S)
if the following equalities hold: For any ¢ € Y,y o(Q2) and 7 € Wol’p/(Q),

. _ Op
—/Qu- Apdz — (g, div <P>%1,p(mmé,pf(m = (fiedg — <gﬂ an>p (I1.21)

/Q'u- Vrde=— /Q hrdz+ (g- n, 7T>W_1/p7p(r)xwl/p,p/(r) (I1.22)

where the dualities on € and I are defined by:
(0=, '>[@,’p,(ﬂ)}'xXﬂ/7p,(Q) Aodr =11 W—1/p(T)x W/PP () *
Under (A;), we have:
WoP' () <= L7(Q) and Y, 0(Q) = X%, (),

which means that all the brackets and integrals have a sense.

Proposition 3.1 Under the assumptions of Definition 3.1, the following two statements are equiva-
lent:

i) (u,q) € LP(Q) x Wal’p(Q) is a very weak solution of (5).

it) (u,q) € LP(Q) x %l’p(Q) satisfies the system (S) in the sense of distributions.

Proof. i)=ii) Let (u,q) € LP(Q) x W, "?(€) a very weak solution of (.5), then if we take ¢ € D(Q)
and m € D(Q) we can deduce by (I1.21)-(I1.22) that

—Au+Vg=f and divu=~h in
and that u € Tgvp(Q). Now let p € Y,y ¢(2) C XE/m/(Q), then we have

(—Au,p)q = (-Va+f,0)q-
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As (A;) is satisfied, it follows from Corollary 2.2 that

_ O
(—Au, ) = — /Q u - Apdx + <uT, 8n>p

and since + — 1 =1 it follows from (IL9) that
p
<VQ7 ‘P)Q = - <Q7 div LP>W(;1’IJ(Q)><W01’p,(Q) .
Thus we have

op\ .
- /Q ’LI,AL‘OdX + <uT7 8’n>1“ - <Q7 le SO>W(;1’7’(Q)><W01’I’/(Q) + <f7 S0>Q )

and we can deduce that for any ¢ € Y,y ¢(Q)

(1 e = )
uT’Gn F_ gT’@n F.

Now let € WP (T), then we have (u, — 9., W) = (Ur — g,, it )p. It is clear that

3}
w, € Zy(I'), thus it can follows from Lemma 2.4 that there exists ¢ € Y,y o(€2) such that % =pu,

on I', then from this we can deduce that u, = g_ in W_l/p’p(F). From the equation divu = h, we
deduce that u € H},(div, ), then it follows from Lemma 2.7 ii), that for any 7 € Wol’p,(Q),

<’U,- n77T>I‘ = <g n77r>F'
Consequently u-n = g-nin W ~Y/PP(I') and finally w = g on T.

ii)=1) We suppose that (u,q) € LP(2) x %l’p(Q) satisfies the system (S) in the sense of distri-
butions. Then for any ¢ € Y,y o(Q) — X?/vp/(Q) we have

<—AU, SO>Q = <f - vq7 <P>Q7

Using corollary 2.2 and (I1.9) we prove (I1.21). Now from the equation divu = h, we can deduce that

for any m € Wol’pl(Q)
mdivudx = / hrdx,
s :

this integral has a sense because we have VVO1 P I(Q) < L' (). Using Lemma 2.7 ii) we deduce (I1.22).
O

Theorem 3.1 Let Q be an exterior domain with CY' boundary and let p and r satisfy (A1) and let
f, h and g satisfying (I11.20). Then the Stokes problem (S) has exactly one solution w € LP(Q2) and
q€ Wal’p(Q) if and only if for any (v,n) € Ng’p/(Q):

<f7 ’U> - <hvn> + <ga (77] - V’U) : n>I‘ =0.
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Moreover, there exists a constant C > 0 depending only on p, r and €2 such that:

lullzr@) + 1 allyreo< CUl Flixe, @ T 110 Ir@) + [T 91w r)- (I1.23)
Proof. It remains to consider the equivalent problem: Find (u,q) € LP(2) x W 12(Q)) such that for
any w € Yy o(Q2) and 7 € Wol’p/((l) it holds:

/Q u - (—Aw + V7)dx — (g, divw) Wy P (Q)x T;V(l)’p/(Q) -

ow

<f7w>Q - <g’ra 8'I'L>1" + <g "N, 7T>W*1/Pvp( ><W1/PP / hmdx.
Let T be a linear form defined by:
T: LY(Q) x W7 Q) — R

ow
(F, ) — (f, w>Q — (9 on . +(g- "a7T>W—1/p,p(r)><wl/p,p’(r) - /Q hmdx,
with (w, ) € Wg’p/(Q) X WOLP/(Q) is a solution of the following Stokes problem:
—Aw+Vra=F and divw=¢ inf), w=0 onl,
and satisfying the following estimate: (see [3] Theorem 3.1)

i ! ! < / / . .
o (ol Il ) < CUF gy + el (1120

Then we have for any pair (F, @) € L (Q) x Wol’p/(Q) and for any (v,7) € Nﬁ’pl(ﬂ)

ow
|<fﬂw>Q_<g‘raa’nl>F g 'n7T /hﬂ'dx‘

o(w + v)

[(fow+ v~ (g0

> +{(g-n,m+n)p /h (m+n)dx| <
r

€ (15 N, o1 + 119 Iw-1imagay + 1 v ) (11 0+ 0 Iz gy + 117 o ) -

Using (I1.24) , we prove that

ow
_ - n, <
| <-f7 u’)Q <g7'7 8 >F g 7T / hwdx |

€ (Ifllxs, , o+ llalhw=1r(c) + el ) (1o + ellyao o)

from this we can deduce that the linear form 7" is continuous on L (£2) x I/VO1 4 (©2) and we deduce that
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there exists a unique (u,q) € LP(2) x W, "?(Q) solution of (S) satisfying the appropriate estimate. [J

4 Very weak solutions in W"?(Q) x W_"?(Q)
Here, we are interested in the case of the following assumptions:
felXh (), he W (Q) and ge W Y/PP(D), (11.25)
with
1 1
—<p<oo, p#3 and E—i—g:f, (Ag)
yielding 1 < r < 3.

Definition 4.1 (Very weak solution for the Stokes problem) Suppose that (A3) is satisfied and
let f, h and g satisfying (11.25). We say that (u,q) € W(i’l’(Q) X W:%’p(Q) is a very weak solution of
(S) if the following equalities hold: For any ¢ € Yy 1(Q2) and m € Wi’p/(Q),

. Op
- [ Ao = (@.dive) g g = Fela (955 ) (I1.26)

/Qu- Vrde = — /Q hrdxz+ (g- n, 7T>W_1/p7p(r)xwl/p,p/(r) (I1.27)

where the dualities on Q and I' are defined by:

<-7 >Q = <'7 '>[X’}“/,p/(Q)]IXX3”/,p/(Q) y <'7 ‘>F = <'7 > W—l/p,p(p)x Wl/p,p’(p) .

Note that if% < p < oo and % + % = %, we have:
WEP(Q) = WPT(Q), and  Yp(Q) < XL, (),

which means that all the brackets and integrals have a sense. As previously we prove under the
assumption (Ay), that if f, h and g satisfying (IL25), then (u,q) € WY2(Q) x W_1?(Q) is a very
weak solution of (S) if and only if (u, ¢) satisfy the system (S) in the sense of distributions.

Theorem 4.1 Let Q be an exterior domain with C** boundary and let p and r satisfy (As) and let f,
h and g satisfying (11.25). Then the Stokes problem (S) has a solution u € W%If(Q) and q € W:ll’p(Q)
if and only if for any (v,n) € Nf’p/(Q) :

<f? 1)> - <ha 77> + <97 (77[ - V,U) : n)F =0.

In W%]f((l) X W:ll’p(Q), each solution is unique up to an element ofN(l’f(Q) and there exists a constant
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C > 0 depending only on p, r and ) such that:

(v,n)eirﬁifg’p(Q)(Hu—i_ ,U||W(l*71’(Q) + ||q + 77||W:11’p(§2)) < C(H.m[xinpl(g)]’ + HhHWE’{(Q) + ||g‘|w—1/p,p(p))-

Proof. It remains to consider the equivalent problem: Find (u,q) € W2(Q) x W_"*(Q) such that
for any w € Y,y () and 7 € I/Vl1 P ,(Q) the following equality holds:

/Q - (—Aw + Vm)dx — (q, dlvw>W_ P () =

ow

(fiw)g — <977 3n>r +{g-n,m)p— Qh7mlx.

Let T be a linear form defined from (W(l)’p/ (Q) x Wll’p/(Q)) 1 N(l)’p(Q)> onto R by:

T(F.0) = (fow)o— (9., 5 ) +g-mry — [ hdx
with (w, ) € W27 (Q) x W' (Q) is a solution of the following Stokes problem:

—Aw+V7r=F and divw=¢ in), w=0 onl,
and satisfying the following estimate: (see [3] Theorem 3.1)

inf (||lw + |

/ F 11.28
. I+ allyrar ) < CUF ooy + lellya ) (128)

W@
Then for any pair (F, @) € (W3*(2) x W] () LN;”(2) and for any (v,7) € N}*'(Q)

<f7w>Q<gTa?;::> (g9-m,m)r /hT['dX|

O(w + v)

[(fow+ v~ (g0 0

> +{(g-n,m+n)p /h (m+n)dx|
r

<0 (115 et o+ 119 lw-simogay + 12 lwogiay ) (1900 gz + 17+ 7 oy )

Using (I1.28), we prove that

ow
| <f7w>Q - <g7'7 an>r g n, 7T / h’ﬂ-dX’

<0 (11 gy + 11 l-vmogey + 1 Tgogcay ) (NF Higot gy + 19 lhynry) -

From this we can deduce that the linear form 7' is continuous on the following space
WO () x WP (Q) L NP (€2) and we deduce that there exists (u, q) € (W2(Q)x W~ "?(€)) solution
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of (S), unique up to an element of N(l)’p (), satisfying the appropriate estimate. O

Remark 4.1

i)Theorem 4.1 can be extended to other behaviors at infinity of the very weak solutions i.e, (u,q) €
Wg0 P(Q) x W[l’p (Q) for £ ¢ {—1,0}. Indeed, on the first hand, all the preliminary results established
in section 3 except Lemma 3.8 and Lemma 3.11 are still valid for any integer values £. On the other
hand, we use Theorem 3.1 of [3] where the existence of the velocity and the pressure is proved in the

space WZ&(Q) X Wgﬁ(Q) for any integer ¢ satisfying
3/jp+L¢Z and 3/p —L¢& 7.

But, we should take into account some conditions for the integer values ¢. In Lemma 3.8, when we
have Ag € W?’p, (R3), it is not always true that there exists A € W?’p/(RE}) such that AX = Ag.
It depends on whether or not the isomorphisms for the laplace operator in weighted Sobolev spaces
holds, for more details see [6]. In Lemma 3.11, we should respect the condition that 3/p + ¢ ¢ {1,2}
(see (I.4)). Finally, it is possible to study the case of real values ¢, but it is more difficult.

i7) The uniqueness of very weak solution (u, q) € Wé) P(Q) x W[l’p (Q) of the Stokes problem depends
on the characterization of the kernel N%p (€2) (see section 3 for the definition). It follows from Theorem
2.7 of [3] that:

NEP(Q) = {((N) = An(N) =), (A ) € Nig-apy)}

where (v(X),7(A) denotes the unique solution in W(l)’z(Q) x L?(€) of the equations
—-Av+Vn=0 and divv=0 in Q wv=AX on T
and for any integer k
Ny ={( A\ pn) € Pr x P_q; divAd=0, —AX+Vn=0}.

In particular, recall that Ny = {(0,0)} whenever k£ < 0 and that Ny = Py x {0}. Finally, the existence
of very weak solution is linked to compatibility condition which we can obtained directly via Green

formula.
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Chapter 111

Uniqueness and Regularity for the Exterior

Oseen Problem

Nous montrons ici 'existence et I'unicité de solutions généralisées et de solutions fortes du probléme
d’Oseen, dans un premier temps, lorsque le probléme est posé dans R? et dans un deuxiéme temps

lorsqu’il est posé dans un domaine extérieur puis passer au cas de solutions tres faible.

1 Introduction

Let € be a bounded connected open set in R with boundary 02 = T of class C! representing an
obstacle and let 2 be the exterior region occupied by the fluid, i.e. © = R3\ . We consider here
the Oseen equations in 2 obtained formally by linearising of the Navier-Stokes equations: For a given
vector field f, a function h and a boundary value g we are looking for a velocity field u of the fluid

and a pressure m which fulfil:
—Au+diviveu)+Vr=f and divu=h in Q wu=g on I, (IT1.1)

where, v is a given velocity field belonging to L?(2) with divergence free. In fact, the Oseen approxi-
mation is typical for a flow occurring in an exterior region because it describs the physical properties
of a system constituted by an object moving with a small, constant velocity in a viscous liquid, at least
at large distances from the object where the viscous effects become less important. But, in bounded
region, the Oseen approximation loses its physical meaning, while, from the mathematical point of
view, it presents no difficulties and can be handled as a corollary to the theory developed for the
Stokes system. It should be observed, however, that the Oseen problem has different structures, one

of them is given by the following equations:
ou . .
—Au+ka—+V7r:f and divu=h in ©Q wu=g on T, (I11.2)
z1

with £ > 0. Problem (III.2) has been studied by many authors, from different points of view and it
would be too long to list them all here so we give some examples. One of the first complete work
on (II1.2) is due to Faxén [30] who generalized the method introduced by Odqvist [47] for the Stokes

problem. More recently, Finn [31] used Galerkin’s method to establish existence of solutions of (III.2)
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including weighted estimates. For the Q2 = R3, Babenko [15] used the Lizorkin’s Multiplier Theorem
in the investigation of (II1.2). The results proved by Finn and Babenko were generalized and improved
by Galdi in [33] and very expanded and detail version see Chapter VII of his book [34]. Galdi approach
is based in the functional framework, homogeneous Sobolev spaces,which is one of possible tools, how
to describe the behaviour of solution in the large distance. In [22], Farwig used anisotropic weighted
L? spaces for the investigation of the exterior problem. Spaces with the weight function 1§ are also
used in [23] and [28], but the weighted estimates are only obtained for the derivatives of second order
of functions. We also mention [43] or [48] where the convolution with the fundamental solution of
the Oseen problem is studied in L? space with the anisotropic weight function 73. Also see work of
Kra¢mar, Penel for generalized Oseen problem [44]. Recently, problem (III.2), has been studied by
Amrouche and Razafison [12] and more recently by Amrouche and Nguyen [11]. Note that, in [12]
and in [11], problem (II1.2) was setted in weighted Sobolev spaces in order to provide an explicit
description of the behavior of the functions and all its derivatives at infinity.

When € is a bounded domain, the existence, uniqueness and regularity properties of the solutions
for the Oseen problem (III.1) and (IIL.2) are well known in the classical Sobolev spaces W™P(Q),
see [13] for example for the problem (III.1). It is well known that it is not possible to extend this
result to the case of unbounded domains, for example the whole space R3 or the exterior domain, here
the classical Sobolev spaces WP () are not adequate. Therefore, a specific functional framework is
necessary which also has to take into account the behaviour of the functions at infinity. Our approach
is similar to that [12] and [11], which is the use of the weighted Sobolev spaces W,"P(Q2) introduced
by Hanouzet [42], Cantor [21], Kudrjavcev [45] (see Section 2 for the notations and details).

In the last years, problem (III.1) has been studied when 2 = R? i.e without boundary condition,

the idea is to suppose in addition that the norm of v in L3(R?) is controled by a positive constant:
ol] g3 sy <k, (IIL.3)

for more details, we can see [4]. Observe that this condition of smallness is very strong. The basic idea
of our method consists, on the first hand, to improve the work done by Amrouche and Consiglieri ’[4]
by dropping the condition (III.3) and on the second hand to extend this work to the exterior domain
Q). Moreover we are interested also in the very weak solutions. The concept of very weak solutions
for Stokes or Navier—Stokes equations was introduced by Giga in 1981, see [37], by Amrouche and
Girault in 1994 in a domain class Cb!, see [5]. More recently this concept was extended by Amrouche,
Rodriguez - Bellido, see [13], Galdi, Simader, Farwig, Kozono and Sohr, see [24], [25], [26], [27], [29]

to a setting in classical L9-spaces.

This chapter is organized as follows. In Section 2, we recall the definition of some spaces and some
density results. In section 3, we start our study of the Oseen problem in the whole space R? by the
existence of generalized solutions which is the pivot of this work and in the same section we prove the
uniqueness of this solutions and finally we prove the existence and the uniqueness of strong solutions
and some regularity results. The main results of this chapter are presented in section 4, in which we

study the existence and the uniqueness of weak, strong and very weak solutions of the Oseen problem
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in exterior domain ).

2 Preliminary results

We begin this sequel with the introducing of the following spaces:
D,(Q2) = {v e D), dive =0}, L (Q) = {v € LP(Q); divw = 0},
and
V,(Q) ={ve W,'(Q); V v =0}

Note that all these definitions will also be used with €2 replaced by R?. We define also the following
space
H3(Q) = {v e L3(Q); (v-n, 1)y ysarywi/seeey = 0}

We prove a density result which is proved in [2] when Q = R3 and p # 3 / 2.
Lemma 2.1 Let ' be a Lipschitz-continuous set of R3. Then the space Dy () is dense in V().

Proof.

First case: If p ¢ {3/2,3}. The idea follows from Theorem 2.6 of [38]. Let v € V,(2) and let
us extend v by 0 in € such that the extended function, still denoting it by v belongs to V,(R?).
It follows from Proposition 2.9 of [2] that there exists ¥ € Wg’p (R3) such that v = curley. The
proof consists in approximating ¢ by a sequence of functions with bounded support. To this end, we

introduce the following truncation function: ¢ € D(R3) such that 0 < ¢(¢) < 1 for any ¢t € R? and

1 if |t]<1,
o(t) =
0 if |t|>2

We begin by applying the cut off functions ¢y, defined on R? for any k € N*, by ¢y(x) = ¢(§). Set
P, = pr. We will prove that:

lim ¢, =1 in WoP(R?). (IIL.4)
k—o0
On one hand we have

[P s [ a1 Gpaxc<y [ Spax
r3 PP R3 p KR3) P

Using the dominated convergence theorem, we deduce that this integral converges to zero when k — oo.
On the other hand, we have

/Rg\wlpdx < (/ IV oil?| ¥ |pdx+/ ™ _1’p| |pd>

p
2p/2
< C (14_4k)/ | P dx + |7|pdx 7
kP An(®) P2 BY®P) P

37



Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

where C' is independent of k. As above, the two last integrals converge to zero when k — co. Finally,

we have

LVo = v2ur < [ 9l + [ Vel Verax [ fec— 1PVl

R3
(1 + 4k2)P (1 + 4k2)P/? / ‘ﬂ
Ap(R3) P

L
P d
k2p /Ak(RS) |/02 IPdx + kP

< o
o v ax),
Bk(R3)

P dx

where C' is independent of k. As above, this last integrals converge to zero when k — co. We consider
the divergence free function vy = curl(e),,), which coincides with v in a neighbourhood of T' for k
large enough. Therefore, v, belongs to V,(2), has a bounded support and
klg{.lo v = kh_}rgo curl(y,) = curlyp =v in W(l)’p(Q).

In other words, the set of functions of V() with bounded support is dense in V,(£2). The assertion
of the theorem follows from the fact that in a bounded Lipschitz-continuous domain O, the space
D,(0) is dense in V,(0O) (for any weight, as the weight is not significant in a bounded domain).
Indeed, let u € V,(Q2) with a compact support, then it follows from the density result in bounded
domain that there exists u; € D, () such that supp u and supp uy, are included in a fixed compact
and we have

Tim [|u = ufl sy = 0.

Using the support’s property, we obtain that
kli)ngo ||up — u||W(1),p(Q) =0.

Second case: When p = 3 or p = 3/2. The proof is very similar to the case 7). Here, we shall use the
truncation function that has been introduced by Bolley-Camus [17], that after we shall use Lemma
7.1 of [6]. First, let ¢ € C°°([0, c0[) be such that

¢(t)=0, Vtel0,1], 0<¢(t) <1, Vte[l,2], ¢(t)=1 Vi=2.

Next, for k£ € N we define ¢, by

1, otherwise.

{¢(ln’€x|), Vo e R3: |z| > 1,
The rest of the proof is same.

The second density result is given by the following lemma:

Lemma 2.2 The space D, (Q) is dense in LE(Q).

38



II1.2 Preliminary results

Proof. It follows from the work of Miyakawa see [46], that when Q = R? we have D, (R?) is dense in
LP(R3). In the case when (2 is an exterior domain, we adapt the same proof done in [13] when (2 is a
bounded set. Let £ be a linear and continuous form in L2 (£2) such that (£, v) = 0 for any v € D,(Q).
We want to prove that £ = 0. Since L2(Q) is subspace of LP(£2), we can extend £ to x € L” (Q), then
we have x vanishes on D, (Q), thus on D,(Q). By De Rham’s Lemma, there exists 7 € D’(£2) unique
up to an additive constant such that x = V7. We extend x by zero out of {2 and we denote the ex-

tension by X, it is clear that x € L” (R3). Then for any ¢ € D(R?) such that div e = 0 in R? we have:

/ )z'godX:/VW-cpdx:O.
R3 Q

From that, we deduce again, thanks to De Rham’s Lemma, that there exists h € D’(R?) such that
X = Vh. In fact we have h € Wllo’f:’/ (R3) (see [5] proposition 2.10).

First case : if p’ < 3, we deduce from Proposition 4.3 of [6] that there exists a unique constant k
(depending on h) such that h 4+ k € Wol > (R?), in particular it belongs to WO1 P /(Q) Moreover, since
X = Vh then Vh = 0 in €. It implies that there exists a constant Cy such that h = Cy in Q' (' is
connected). As h is unique to an additive constant, we can choose this constant in such a way that
h = —k in . Furthermore, Vh = V7 in Q so that V(h + k) = V7 in Q and then there exists a

constant Cy such that h+k = 7+Cs in Q (€ is connected), from that we deduce that 7+Cy € Wol’pl(Q).

We know that for every ¢ € D(Q) and u € LP(Q) we have

/ Ve -udx=—(p,divu) . 1 (IIL.5)
Q

Wl (Q)x Wyt P(Q)

As D(Q) is dense in VVO1 4 (€2), this equality is still valid for ¢ € WO1 P I(Q) In consequence, for every
v e LP(Q), we have:

(E,v>:/V7r-'vdx = /V(?T+CQ)-UdX
Q Q

= - <(7T + C2)> div ’U> Wé’p/(Q)x Wal,p(Q) =0

Second case : if p’ > 3 there are a slight change, we keep that h € Wllo’ﬁl (©) and we have from
Proposition 4.3 of [6] that h € VVO1 P I(Q) and then we can deduce from the first case that there exists
a constant Cs such that =+ Cs € Wi* ().

Thus we conclude from the two cases that £ =0 in [LP(Q)]'. O
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3 Oseen problem in R?

We consider here the Oseen problem in the whole space:
~Au+diviv@u)+Vr=Ff and divu=h in R3 (I11.6)

3.1 Generalized solutions in Wy”(R?)

We are interested in the existence and the uniqueness of generalized solutions
(u,m) € W P(R?) x LP(R3), with 1 < p < oo, to the Problem (IIL6). We will consider the following
data:

fe Wy "R, veL3(R%® and he LP(R%).

On the one hand if w € WP (R3), then we have u € LiJ/CQ(IR{?’) and thus v ® u belongs to L .(R?)
. It means that div(v ® u) is well defined as a distribution in R®. On the other hand, if p > 3/2,
we deduce that the term v -V u is well defined and we can write div(v ® u) = v - V u. Moreover, if

(u,m) € W(l)’p(]R3) x LP(R?) with p < 3 is a solution to (IIL.6), we have for any ¢ € D(R?):
/R3 ((V'U, +vR U) : VLP - ﬂ-le(P) = <f7 (P>WO_1’I)(R3)><W(}’I)/(R3) . (III7)

Observe that in this case, u € LP*(R?) with ]% = 119 — 1,50 v®u € LP(R?). Because D(R?) is dense

in W(l]’p / (R3), this last relation holds for any ¢ € W(l)’p l (R3). As this last space contains the constant
vectors when p’ > 3, the force f must satisfies the following compatibility condition:
=0 foranyi=1,2,3 if p<3/2. (IIL.8)

<fia 1>W0_1’p(]R3)><W01’p/ (Rs)

If p > 3, (I11.6) is equivalent to the following variational problem:

[ (Vus Vo= ndive +0- V- ) = ' @)y oy ey (IIL9)

Remark 3.1

To simplify the study of problem (IIL.6), we can suppose at first that A = 0. Indeed, if h in LP(R?),
there exists x € VVO2 P(R3) such that Ay = h (see [2]) and satisfying

IV X1l g2 sy < ClIRI o) (II1.10)
Set wy, = Vx € Wy”(R?) and z = u — wy,. Then problem (II1.6) becomes:
—Az+diviv®z)+Vr=f+Aw, —diviv®@wy) and divz=0 in R3
If 1 < p < 3, we have w;, € LP*(R?) and v ® wy, belongs to LP(R3). Consequently div(v® wy,) belongs

to W()_l’p(R3). However when p > 3, div(v ® wy,) = v+ V wy, belongs to L"(R?), with 2 = 1 + % and
L"(R3) < Wy 'P(R3). This means that F := f+ Awj, — div(v ® wy,) belongs to W "P(R?). In
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addition, we have for any i = 1,2,3 and p < % the equivalence

(fi, 1>W61,p(R3)XWé,pl(R3) =0 << (F, 1>W0’1”’(R3)xwol”’/(R3) =0. (TI1.11)
This means that to solve (IIL.6), it is sufficient to solve the following problem:
~Au+diviveu)+Vr=Ff and divu=0 in R (I11.12)

In the following theorem, we establishes the existence of generalized solutions to Problem (III.6)

in the case 1 < p < 2. The uniqueness of the solutions will be studied later.

Theorem 3.1 Let 1 < p < 2. Assume that f € Wo_l’p(R3) satisfies the compatibility condition (I11.8)
and let v € L3(R3). Then the Oseen problem (I11.12) has a solution
(u, ) € WyP(R?) x LP(R3) such that

[l gy + el Loqgs) < O+ o] a1l gt gy (ITL13)
Proof. First, the case p = 2 is an immediate consequence of the following property
1,2 /3
Vw e Wy (R?), /(U-V)w'w:O
R3

and Lax-Milgram Lemma. So we can suppose that 1 < p < 2.

The main idea of the proof is to observe that v € L:;’(R?’) can be approximated by a smooth function
P € D, (R3). Given ¢, there is 1, € D,(R3) such that

H”_weHLi”(RS) <é, (I11.14)

where € > 0 is a constant which will be fixed as below. By (III.8) and [6], we have f = divF with
F € LP(R?). Let p € D(R?), be a smooth > function with compact support in B(0, 1), such that
p >0, [gsp(x)dx =1. For t € (0,1), let p; denote the function z — (t%)p(%) Let ¢ € D(R3) such
that 0 < ¢(x) < 1 for any x € R?, and

1 i 0<|z <L,
(x) = ,
0 if |z|>2

We begin by applying the cut off functions ¢y, defined on R? for any k € N*, as ¢ (x) = @(%). Set
Fi = piF. Thus we obtain

Gipr=p*Fre DR} and lim lim G, =F in LP(R?). (IT1.15)
’ t—0 k—o0 ’

Now, observe that using Young inequality, we have

ot * Frll g2 msy < ||t zoes) | Frllzr@s) (IIL.16)
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2
with ¢ = 371?2 Observe that ¢ > 1 is equivalent to p < 2. After an easy calculation, we obtain that
D —

4 =3
e+ Fpll 2 may < gt 7 [[Fxl | o). (IIL.17)

We choose t = k™% with a > 0 which will be precise later. Set now f, = div Gy for any £ € N*.

Then we have
fro—f i WyP(R?).

It is clear that f, satisfies the condition (III.8).

Step 1. We suppose that v € D,(R3). Thanks to Lemma 4.1 see [4], there exists a unique solution
up € WP (R N Wi2(R?), m € L2(R®) N LP(R?)

satisfying
~Au+diviv@ u) + Vg =Ffp divup =0 in R (IT1.18)

Set B. = supp ), then from the Stokes theory (see [2] Theorem 3.3), we obtain

Hukuwéap(n@) + HWRHLP(R?*) <Gy (ka”walvP(RB) +v® ukHL”(R3)) ) (I11.19)

where C doesn’t depend on k, f, and v. Using Hélder inequality, we have

v @ wpllrrs)y < [[(v— 1) @ upllpr(ws) + [P @ wpl|Lr(rs)
< o= | s syl wel o= g3y + [¥ell g3 5 1wkl 2o (5.)-
(II1.20)

Using the Sobolev inequality, we obtain
k]| o 3y < Col k]| v gs). (IT1.21)

By the assumption (II1.14), and from (III.19), (III1.20) and (II1.21) it follows that

(1= C1Coe) il sy + 1kl ey < OISl vy + Wl ol ey). (IT122)

Taking 0 < £ < 1/2CC3, we obtain

1wkl i sy + 1Tkl Lr@s) < 2C1(IF el p sy + 1ell o a.) llwnl o 5.))-
(111.23)

From (II1.23), we prove that there exists C' > 0 not depending of k£ and v such that for any k£ € N*

we have
lukllz=(5.) < ClIFkll =10 gs)- (I11.24)
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Indeed, assuming, per absurdum, the invalidity of (II1.24). Then for any m € N* there exists
b €N, f, € Wy P(R3) N W, "(R?) and v, € Dy(R?) such that, if
(ug, ,m,) € (WP(R¥) N Wi?(R3)) x (LP(R*) N L2(R3)) denotes the corresponding solution to the

following problem:
—Awy, +div(vy, @ up,) + Vg, =f, . divug,, =0 in R (I11.25)

the inequality
’|u£m”LP*(BE) > m||f€m”W51’p(R3)7 (11126)

would hold. Note that
ffm = diV(pt * Fgm) with Fy = ¢, F.

Setting
meL, gm:m* and Rm:%.
l|we, | e+ (B.) ||we,, || 2o+ (B e, || 27+ (B.)
Then for any m € N* we have
—Awy, +div(v, @ wy) + Vo, =R, and divw, =0 in R (I11.27)

Now, using (II1.27) and the fact that div(v,, ® wy,) = Vs, - V Wy, we obtain for any m € N* and ¢ > 0

1
/ |Vwm|2dx:——/ pexFy oV wy,dx.
R3 ||Wm||Lp*(BE) R3

Using (II1.26) and Cauchy Schwartz inequality, we have

1
<
mH.fE,,LHWJLP(RS)

1Y meLQ(R?’) [z FémHL2(R3)- (111.28)

1 /
Using (I11.17) and choosing t = — with 0 < a < £, we deduce that
m

47
IV | p2psy € ——= 1F e, || zr R3) - (IIL.29)

m- Hfém | WP (R3)

Because the semi-norm |[V - || f2(gs) is equivalent to the full norm |- ||W(1),2 (R?) and the right hand side

of the last inequality tends to zero when m goes to oo, we deduce that
. 1,2 /3
wy, — 0in Wy*(R?). (I11.30)

Then, w,, — 0 in  L%(R3) and in particular in LP*(B.). On the other hand, we have
||wm || gr(B.) = 1, leading to a contradiction. Inequality (II1.24) is therefore established. From (I11.23)
, (II1.24) and (II1.14) we obtain for any k € N*

ol gy + 17y < 200 (14 ol gy IIf el Ly 19 g (ITL31)
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Thus we can extract a subsequences of uy and 7y, still denoted by uy and 7, such that
wy—u in WJP[R®) and 71, —7 in LP(R%),
where (u, ) € Wé’p(RS) x LP(R3) verifies (I11.12) and the following estimate
HUHWé,p(Rg) + 7l o w3y < 2C1(1 + Cl|v|[ g3 sy [IF]] WP (®3): (I11.32)
Step 2. We suppose that v belongs only to L3 (R?). Let vy € D,(R?) such that
vy — v in L}(R?). (I11.33)
Using the first step, there exists (uy, ) € Wé’p(R:g) x LP(R3) satisfying
—Awuy +div(vy@u)\)+Vry=f and divuy=0 in R3 (I11.34)
and satisfying the estimate
[l WP (R3) + HWAHLP(RB) <201(1+ CH”AHL%RS))HJcHng,p(Rg). (I11.35)

We can finally extract a subsequence which converges to (u,m) € W(l)’p (R3) x LP(R3) which is a
solution of the Oseen problem (II1.12) and verifying the estimate (II1.13) when 1 < p < 2. For p =2,
estimate (II1.13) was proved in Theorem 3.4 of [4]. O

Remark 3.2

1) If h belongs to LP(R3) with 1 < p < 2 i.e we are in the case of problem (IIL.6), the estimate
(IT1.13) becomes:

o gy sy 1l oy < OO [0 sy (IF L gy gy + (L [0l sy B L zoasy) - (T11.36)

The proof of (II1.36) when 1 < p < 2 is a simple consequence of Remark 3.1. Note that the
proof of (II11.36) when p = 2 is done in Theorem 3.3 of [4].

2) For p =2 and h = 0, the velocity u of the Oseen problem (III.12) satisfies the estimate

||U’||Wé’2(]R3) < CHfH ng,Q(Rg),

and the energy equality

/11@3 |V ul?dx = (f, u) W2 (®3)x Wh2(R3) -

In addition, the pressure 7 of the Oseen problem (II1.12) satisfies the following estimate:

17l 2(rs) < CLA+ [l g3 gy [1Fl 12 s
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See Theorem 3.3 of [4] for more details.

We will prove now some regularity results, when the external forces belong to the intersection of

negative weighted Sobolev spaces. The first result is given by the following theorem.

Theorem 3.2 Let 1 < p < 2. Let f belonging to Wo_l’p(R?’) N WO_I’Q(R3) satisfying the compatibility
condition (II1.8) and let v € L3(R3). Then the Oseen problem (IT1.12) has a unique solution (u,T) €
(WP (R3) N W52(R3)) x (LP(R3) N L2(R3)) such that

ol gy + 11 gt sy + 1oy + 17l 22y < €1+ 1ol gasy) (1l -2y + 1l gy )
(I11.37)

Proof. Step 1. We suppose that v € D, (R3). Let f belongs to W, "P(R3) N W, "*(R?)
satisfying the compatibility condition (III.8). Then f can be written as f = divF with
F ¢ IP(R%) N L*(R3).
Take the same sequence f},, as in the previous theorem, which converges to f in
W, Lp R3) N W, 1’2(R3). Proceeding as in the first step of the previous theorem, we deduce that

there exists a unique solution
up € WP(R?) N Wi2(R%), m, € LP(R®) N L2(R?)

satisfying
~Aup +diviv@uy) + Vrp =F, divupg=0 in R? (I11.38)

and with the following estimate
|l gyte sy + 17l Lo@s) < OO+ {10l g3 o)) Fell w 1o gy (1I1.39)

where C doesn’t depend on k. On the other hand, multiplying by wuy, we have also the following

estimate

Hukuwév2(R3) + HﬂkHL?(R?’) < CkaHWO*W(RS)- (111-40)

Finally, (ug,7) is bounded in (W{P(R3) N W2 (R?)) x (LP(R3) N L2(R?)) and we can extract a

subsequence denoted again by (uy, ;) and satisfying

up—u in WiPR)N W*R?) and 7, — 7 in LP(R®) N L*(R%). (IIL.41)
We then verify that (u,7) is solution of (II1.12) and we have the estimate (II1.37).

Step 2. We suppose that v belongs only to Lg(]R?’). The proof is the same as in the previous
theorem. Let vy € D, (R?) such that

vy — v in L3(R3). (I11.42)
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

Using the first step, there exists (wux, 7)) € (WP (R3) N W2 (R3)) x (LP(R3) N L2(R?)) solution of
—Awuy +div(vy @uy)+Vry=f, divuy=0 in R (I11.43)
and satisfying the estimate

lurllyrp sy + lluall iz gs) + 17l @s) + lImall2s) <

C(1+ 1[0l g2 (1] 12 gy + 1L gy m ) (ITL44)

The sequence (uy,y) is bounded in (W P (R?) N W§?(R3)) x (LP(R3) N L2(R?)), and we can finally
extract a subsequence which converges to (u, 7) € (WP (R3) N W?(R3)) x (LP(R¥) N L2(R?)) , which
is a solution of the Oseen problem (III.12) and verifies the estimate (II1.37). To finish, observe that
the uniqueness is immediate because (u,7) € W(l)’Q(]R3) x L2(R3) . O

In Theorem 3.1, we have studied the existence of weak solution of the Oseen problem when 1 <
p < 2. Now the question that will be discussed: if, the solution given by is Theorem 3.1 unique? If it

is unique, is it for all 1 < p < 27 The first answer is given in the following proposition:

Proposition 3.1 Let 6/5 < p < 2. Let f€ Wal’p(Rg) satisfying the compatibility condition (II1.8)
and v € L3(R3). Then the solution (u, ) € W(l)’p(R3) x LP(R3) given by Theorem 3.1 is unique.

Proof. Suppose that there exist two solutions (w1, 1) and (w2, m2) belong to W(l]’p(R3) x LP(R3)

and verifying Problem (II1.12). Set u = u; — ug and m = 7 — w2 then we have
~Au+diviv®@u)+Vr=0 and divu=0 in R (II1.45)

Our aim is to prove that (u,7) = (0,0). Observe that for any ¢ > 0, v can be decomposed as:
v = v + vy with
v; € L3(R?), lv1]l g3 (msy < € and vy € D, (R?). (II1.46)

The parameter € will be fixed at the end of the proof.

Note that vy € L'(R3) N L®(R?). Now, since u € Wé’p(R?’) < LP*(R3) we prove that vo ® u
belongs to LP*(R3) N LY(R?). As 6/5 < p, then px > 2 and thus div(vs ® u) = vy - V u belongs
to W, PR3 N W, L2(R3) and satisfies the compatibilty condition (IIL.8). Then it follows from
Theorem 3.2 that there exists a unique z € W(l)’p(]R3) N Wé’2 (R3) and 6 € LP(R?*)N L*(R3) such that

~Az+div(v; ®2) +VO=—vy-Vu and divz=0 in R> (IT1.47)
Because of (II1.45) and (I11.47), the functions w = z — v and ¢ = 0 — 7 satisfy:

~Aw+div(v; ®@w) +Vg=0 and divw=0 in R (I11.48)
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From the Stokes theory see ([2]) and Sobolev imbeddings, we obtain

||w]|W(1),p(R3) SOl @ wllpes) < Cllvillgs s l|wl] e @s)
< CC*||v1HL3(R3)Hw||W(l]vp(RS)
<

CC*e||w|| W (RS-

Taking 0 < & < 1/(CC*), we conclude that w = 0 and so ¢ = 0. Thus (u, ) belongs to Wy *(R?) x
L*(R3) and we can write that div(v ® u) = v -V u. Using (I11.45), we deduce that

<—A ut+v-Vu+ V?T, U> W071'2(R3)>< W(l)’z(R3) = 07

and so

IV || 2 (gs) —&-/Rgv-Vu-udX:O.

1
Since [psv-Vu-udx = 5fR3 v -V |u?|dx = 0, we prove that ||V u|[f2gsy = 0 and thus u = 0 and
so m = 0. Finally, we have proved that (u,7) = (0,0) for any 6/5 < p < 2. O

The second regularity result is announced in the following theorem.

Theorem 3.3 Let 1 < p < r < 2. Suppose that f belongs to Wo_l’p(Rg) N WO_LT(RS) satisfying the
compatibility condition (II1.8) with respect to p and r and let v € L3(R3). Then the Oseen problem
(II1.12) has a solution (u,7) € (WyP(R?) N Wy" (R3)) x (LP(R3) N L"(R?)) such that

ol sy + 12l pr gy + el 2oy + Il ey < €L+ 101l gagasy Ay gy + 1Al g1 )
(11.49)

Proof.

Let f belongs to W LP(R3) N Wy L7(R3) and satisfying the compatibility condition (IIL.8) with
respect to p and with . Then f can be written as f = divF with F € LP(R?)NL"(R?). Take the same
sequence f}, as in the proof of Theorem 3.1, which now converges to f in W&l’p(R3) N W(;l’r(]R?’).

Step 1. We suppose that v € D, (R?). Proceeding as in the first step of Theorem 3.1, there exists

a unique solution
up € WiP(R3 N Wi2(R?), m € LP(R) N L3 (R?)

such that
—Aup+diviv®@ u) + Vrp=f, divup=0 in R3 (I11.50)

and satisfying the estimate

] grtr sy + 1kl Loy < o1+ 1191 s Il gy gy (I1L51)
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

where C}, doesn’t depend on k. On the other hand, using an interpolation argument, we have also

ug € W(l)’r(R?’), because p < r < 2. Now proceeding as in Theorem 3.1, we prove that

ot s gy + Il gy < G0+ [l sy IFel Lyt sy (ITL.52)

where C). doesn’t depend on k.
Finally, (ug, 7x) is bounded in (Wé’p(R3) N W(l)’r(R‘g)) x (LP(R?) N L"(R?)) and we can extract a
subsequence denoted again by (uy, ;) and satisfying
up —u in WHPR)N W (R®) and mp — 7 in LP(R®) N L7 (R?). (I11.53)
We then verify that (w,7) is a solution of (II1.12) and we have the estimate (II1.59).

Step 2. We suppose that v belongs only to Li(R?)). The proof is exactly the same as in Theorem

3.2 where we take the exponent r instead of the exponent 2. U
Now, we study the uniqueness of generalized solution when 1 < p < 6/5:

Proposition 3.2 Let 1 < p < 6/5. Let f€ Wo_l’p(]R3) satisfying the compatibility condition (111.8)
and v € L3 (R3). Then the solution (u,7) € Wé’p(R?’) x LP(R3) given by Theorem 3.1 is unique.

Proof. We proceed as in Proposition 3.1. Let (u, ) belongs to W(l)’p(R?’) x LP(R3) and satisfying
(II1.45). We know that v ® u belongs to LP*(R3) N LP(R3), with 3/2 < px < 2 and thus div(vy ® u)
belongs to W, L (R3)N W, LP(R3). Moreover div(vs®wu) satisfies the compatibility condition (IIL8).
Using Theorem 3.3, we deduce that there exists (£, ¢) € (WyP*(R3) N WP (R3)) x (LP*(R3) N LP(R3))
such that

—AE+diviv, ®€) + Ve =—div(vo®u) and divé =0 in R3 (IT1.54)
Set A =€ — u and ¢ = ¢ — w, we have
~AX+div(v; @A) +VeY =0 and divA=0 in R

As in Proposition 3.1, we prove that (A,¢) = (0,0). Then we deduce that (u,7) belongs to
W(IJJ?* (R3) x LP*(R?). Using again Proposition 3.1, we prove that (u,m) = (0,0). O

We can now summarize our existence, uniqueness and regularity results as below.

Theorem 3.4 Assume that v € L3 (R3).

i) Let 1 <p <2, heLP(R3 and fe Wo_l’p(R?’) satisfying the compatibility condition (II1.8). Then
the Oseen problem (II1.6) has a unique solution (u, ) € W(l)’p(]R3) x LP(R3) such that

ol gon gy + 1l oceey < OO+ llollgagasy) (1l e ogany + (1 + [0l gagasy I Bllocesy) - (TIL55)
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it) Let 1 < p < r < 2. Suppose that f belongs to W()_l’p(R3) N Wo_l’T(R3) and satisfying the compati-
bility condition (II1.8) with respect to p and r. Then the Oseen problem (111.12) has a unique solution
(u,7) € (WyP(R3) N Wy (R3)) x (LP(R3) N L"(R3)) such that

el gy + Il g gy + 1L 2oy + [l 2 gty < OO+ 1ol gagas) U sy + 1Lyt )

(I11.56)

Finally the following existence result can be stated via a dual argument.

Theorem 3.5 Forp > 2, let fe W(]_l’p(R3), h € LP(R®) and v € L3(R3). Then, the Oseen problem
(IT1.6) has a unique solution (u,m) € W(l)’p(R3) x LP(R3) if p < 3 and if p > 3, u is unique up to an

additive constant vector. In addition, we have
Vel sy, + llzogee) < OO+ lollgages))? (11l tgasy + o) - (1L57)

Proof. On one hand, Green formula yields, for all w € W(l)’p, (R3) and (u,7) € Wé’p(R?)) x LP(R3)

<—A U+ v- Vu + \Y T, w> ng’p(Rg)X Wé!P/ (RS) -

(w, =B w = V(v ® W) yap i) gyt sy — (2 AV W) Lo sy 1o/ () -

Taking into account that if p > 2, we have w € Wé’p, (R3) — L*/P=3)(R3) and since v € L3 (R?) we
can conclude that v ® w € L” (R?) and consequently div(v @ w) € W&l’pl (R3). On the other hand,
for all n € LY (R?),

(V1) gy sy w10 sy = (Y 1) Loy 1 ) -

Then problem (III1.6) has the following equivalent variational formulation:
Find (u,7) € WHP(R3) x LP(R3) such that for all (w,n) € WP (R3) x LP (R3),

(u,—Aw—div(v® w) + Vn) WP (RS x W (RE) T (m, div w>LP(R3)><LP'(R3) =

<f7 w> Wofl’p(IR3)>< Wé,p’ (R3) - <h7 n)Lp(R3)XLp’ (R3) * (111.58)

According to Theorem 3.4, for each (f/,h') € W P "(R3) x LP (R3) satisfying
/ o f /< 3
Ui Dy gopno@sy =0 1 PS5

there exists a unique solution (w,n) € W(l)’p l (R3) x L' (R3) such that

~Aw-—divivew)+Vny=f, divw=h" in R3
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with the estimate
1l g1 sy + 113y < OO+ 1101153 (15 sy + 1+ ol gy I o).
Observe that the mapping

T (.f/, h/) = <-f7 w> WO—LP(RB)X W(l)yp’(R;a) - <h, 77>LP(]R3)><LP’ (R3)

is linear and continuous with

TS < Sl v sy [0l g7 oy + 1PlLo sy 191 o sy

€1+ lolen)® (1111 + I1llan) (1071 gy + I sy )

IN

Note that f’ belongs to W(;l’p/ (R?) and f/LR3 if p > 3. Thus there exists of unique (u,7) €
Wé’p(R3) x LP(R3) if 2 < p < 3, and a unique (u, ) € (Wé’p(RE})/T[l,;g/p]) X LP(]R?’)) if p > 3, such
that

T(f/7 h ) < f > 1 P(R3)x W, 1,p’ (R3) <7I', h,>L1’(R3)><LPI(R3) ’
with
el win gy, + 1Tl Legs) < CO+[]0]]gags))® <|\f||W0—1m(R3) + {2l oes)) -

By definition of T', it follows that

<fa ’U)> Wo_l’p(R3)X Wé,p’ (R3) - <h> T]>LP(R3)><LP’(]R3) = <u,f’> Wé’p(R?’)X WO—I,p’ (R3) - <7Ta h/>LP(R3)><LP/(]R3) )

which is the variational formulation (III.58). O

Remark 3.3

Suppose in the assumption of Theorem 3.5 that h = 0 and proceeding as in the proof of Theorem 3.5.
Then problem (II1.6) has the following equivalent variational formulation: Find (u,w) € W(l)’p (R3) x
LP(R3) such that for all w € V,/(R3) and 5 € LV (R?),

<’LL, —Aw— diV(’U ® ’l.U) +V 77) Wé’p(R?’)X Wo_l’pl(]R?’) = <-f7 ’UJ> W()_l’p(R3)X W(l),p/(Rg)

According to Theorem 3.4, for each f' € W Ly (R?) satisfying
3
=0 if ! < 57
if p<y

<fz71> —117 (R3) le P(R3)

there exists a unique solution (w,n) € W(l)’pl(]R3) x LV (R3) satisfies the problem (IIL.6) with the

estimate

1l 1 gy + 111 a3y < CCO+ 10l ) I8 s
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Observe that the mapping
. !
T . .f = <f7 'LU> Wo_l’p(R?’)X Wé’p, (R3)

is linear and continuous with

TGN < W1l rogasy 0l g oy < OO ol ) a1
Thus there exists a unique velocity u in W(l)’p (R3)/ P1_3/p) of problem (IIL.6) satisfies the estimate:
||u||Wé’P(R3)/g>[173/p] < C(l + Hv’|L3(R3))||f||Wo—l’P(R3)-
In addition, we have —A u + div(v ® u) — f belongs to Wal’p(RS) and satisfies

<—A u + diV(’U (=) u) - f) w) WELP(R?,)X W(l]«P/ (R3) = 0

for all w in V,,(R3). Thus we use Theorem 1 of [3] to deduce the existence of a unique pressure 7 in

LP(R3) of problem (IIL6).

Now, we prove an other regularity result when 2 < p,r < oco:

Lemma 3.1 Supposing that f€ Wy "P(R3) N Wy " (R?), h € LP(R¥) N L™ (R3) and v € L3(R3), with
2 <r < p<oo. The Oseen problem (I11.6) has a unique solution
(u,7) € (WyP(R3) N W5 (R3)) x (LP(R3) N L"(R3)) such that

[l gy sy + 12l gyt oy =+ [l o) + 17l [y < C(L+[]0]] paggs))* X

(Al sy + It sy + 1Bl o) + 1Al ey ) (I1L59)

Proof. Step 1. We suppose that v € D,(R?). Let f € W, "P(R3) and h € LP(R?), from
Theorem 3.5 there exists a unique solution (u,7) € W(l)’p (R?)/Pp—3/p X LP(R?) to the Oseen problem
(IT1.6) such that

IV ull gy + 17| Losy < COL+ 0]l gaes)) (1F gy -t sy + llLoes))- (IT1.60)

Note that P[;_3/, is equal to zero if p < 3. Since v € D,(R3), we prove that v - V u belongs to
L'(R3) N LP(R?) and using the fact that 7 < p, we prove that v -V u belongs to L"(R?) and has a
compact support. Then v-Vu € W, 1’T(R3) and according to Theorem 3.3 of [2], there exists a
unique solution (u/,7’) € W(l)’r(R?’)/iP[l_;;/T] x L"(R3) such that

AU 4+Vr =f-v-Vu and dive'=h in R3 (I11.61)
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taking into account that f belongs also to W 1’T(IR{?’) and h belongs to L"(IR?).

Set z=wu — v and § = m — 7/, we obtain
~Az+VH=0 and divz=0 in R3 (I11.62)

The uniqueness argument implies first that the harmonic function 6 belonging to LP(R3) 4+ L"(R3) is
necessarily equal to zero and with similar argument, we obtain also Vu = Vu' € LF(R?) N L"(R3).
Note that
W =uif2<r<p<3andu=1u +ke WyP(R®) with k € R3, if 2 < r < 3 < p. Then problem
(IT1.61) becomes

AU +Vr =f-v-Va' and dive' =0 in R (I11.63)

According to Theorem 3.5, we have
IV W/l (o) + 17 1 ey < O+ 11l] go ) *(1F 1 g1 sy + 1l roy)- (II1.64)

Replacing V ' with V u and 7’ with 7 in (II1.64) and using (II1.60), we deduce (II1.59).
Step 2. We suppose v € L3(R3). Let vy € D, (R?) such that

vy — v in L3(R?). (I11.65)

Using the first step, there exists (uy, 7)) € (WgP(R?) N W' (R3)) x (LP(R?) N L™ (R3)) solution of
the Oseen problem (II1.6) and satisfying the estimate

eaal L gy + 163l gy + sl o) + lmalze ey

< OO+ lloallgsgeay)? (I1Fll w1 gs) + 1F]l 1o sy + 1l zoes) + 1Bl es) ) - (I11.66)

The sequence (uy, 7y) being bounded in (Wé’p(R3) N Wé’T(RS’)) x (LP(R3) N L"(R?)), we can finally
extract a subsequence which converges to

(u,m) € (W(l)’p(R?’)ﬁ W(IJ’T(R?’)) x (LP(R3)NL" (R?)) solution of the Oseen problem (IIL.6) and verifying
the estimate (II1.59). O

Remark 3.4

Reasoning as in Lemma 3.1, we prove that if f € W LP(R3) N W, 7(R3) satisfies the compatibility
condition (IT1.8) if r < 3/2 and h € LP(R3) N L"(R3) with 1 < 7 < 2 < p and v € L3(R3), then there
exists a unique solution (w,7) € (Wé’p(R3) N W(l)’r(]R?’)) x (LP(R3) N L™(R3)) to the Oseen problem
(IIL6).

3.2 Strong solutions in Wi”(R?) and in W3?(R?)

We begin by proving the existence of a unique strong solution in WiP(Q) x WP () for 1 < p < 3 :

52



II1.3 Oseen problem in R?

Theorem 3.6 For 1 < p < 3, let f€ LP(R3), h € Wy (R3) and v € L3(R3). Then problem (IIL6)
has a unique solution (u,7) € Wg’p(R?’)/T[Q_g/p] X Wol’p(R3) such that

Vel oy o+ IE oy < COUH ollpss)® () + hlyaogs) - (L67)

Proof. The proof is similar to that of Theorem 5.1 of [4]. Note that in Theorem 3.6 we don’t need
to suppose that v satisfies (II1.3). Observe first that if 1 < p < 3 we have

Lp(R3) N W0_173p/(3_p) (RS)’

' / 3 1 1 1
because Wy (R3) < L¥ (R?) with t = 371) and — = 73

—-p p
Since h € L*/G-P)(R3) and f € W0—1,3p/(3—p) (R3), Theorem 3.4 and Theorem 3.5 guarantees the ex-
istence of a solution (u,7) € W(l)’gp/(g’*p) (R?) x L3P/B=P)(R3) to the Oseen problem (III.6). Moreover,
we have

2
lall 501 g,y Il smrs-mnesy < € (1419l gses))” (15 o) + llyzogey) - (IL68)

/?[2*3/17

Note that the compatibility condition (II1.8) is not required because we have 3p/(3 —p) > 3/2. Using
the fact that div(v ® u) = v - V u belongs to LP(R?), we can apply the Stokes regularity theory, see
Theorem 3.8 of [2], to deduce the existence of (z,7) € Wg’p (R3) x I/VO1 P(R?) unique up to an element
of Ppa_3/y x {0} verifying:

—~Az+Vnp=f—v-Vu and divz=~h inR>.

Moreover, we have

inf
)\63’1[273/,,] [z + Al WP (R3) + ”UHW(}P(RS)

< O (IFllzr@s) + 1ol eIV 2l gosan sy + 1l toes))

2
<C (H.fHLp(R?’) + Cil|vll 3 rsy (1 + HUHL3(R3)) (||fHLP(R3) + HhHWOLP(Rs)> + HhHWOM(Rs)> , (IIL.69)

with C' denoting a constant only dependent on p. Set w = z — w and § = 1 — 7w, then we have
~Aw+VH=0 and divw=0 in R>

Since V z € L*/G7P)(R3), there exists a constant k € R3, depending on z (k = 0 if p > 3/2), such that
z+ke WP/ O P (R3) and thus w+ k € Wi/ C P (R3). As A0 = 0 in R3 and 0 € L3/G-P)(R3),
then 6 = 0 and so w is a harmonic function belonging to

Wg’p(RS) + W(l)’3p/(3_p)(R3). Then if p < 3/2, we would have 3p/(3 — p) < 3 and thus u = z €
Wg’p(R?’). If p > 3/2, there exists a polynomial A € Ppy_3/, C W%’p(R:”) such that u = z + A
Consequently, u € Wi*(R3) and m € W, ?(R3) and we obtain (II1.67). O
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Remark 3.5

1) Under the assumptions of Theorem 3.6 and supposing that 1 < p < 2, the solution (u, 7) satisfies
the estimate:

HuHWg!P(R3)/g>[2_3/p] + HWHWOLP(RS) <

Ot + [[0llgsgen)? (1L ogas) + (14 g3 o) o gy ) -
2) If we suppose in the assumption of Theorem 3.6 that h = 0, we prove that the solution (u,)
satisfies the estimate:
lull wer @)y py_y,; T 17 lwir@sy < €1+ 0[] g3 )1 f | oo o) (IIL.70)

Estimate (II1.70) is an easy consequence of estimate (II1.37) and Remark (3.3).

3) For p > 3, the hypothesis of f € LP(R3), h € Wol’p(R?’) and v € L3 (R?) is not sufficient to ensure
the existence of strong solutions for problem (IIL.6) in Wg’p (R3) x WO1 P(R3). Indeed, suppose
that under this assumptions it would be possible to find u € Wg?(R3) and 7 € W, ?(R3) such
that

v-Vu=Au—Vr+fecL\(R?).

This is a contradiction, since v € L3(R3) and Vu ¢ L*/G7P)(R3). Thus, it is necessary to
suppose in addition that f € LI(R3), h € Wol’q(]Rg) and v € L3PY/9G+P)=3(R3) for some 3p/(3 +
p) < g < 3. Under this assumptions, we deduce that the solution (u,7) € Wg’q (R3) x I/VO1 9(R3)
given by Theorem 3.6 belongs also to W57(R3) x W, P (R3) and it satisfies

il gy + I7llyogasy < CCL+ 1ol gagas)* (1F]l ey + [Blyto e

Finally, we take f in weighted LP(R3), more precisely f € W(l)’p (R?), and the data h in the
corresponding weighted Sobolev space T/Vl1 P(R3).

Theorem 3.7 Suppose that 1 < p < 3 and p # 3/2. Let h € W, P(R3) and f € WP(R3) such that
/Sf(a:) dz—=0 if p<3/2 (ITL.71)
R

and let v € L3(R?). Then the Oseen problem (II1.6) has a unique solution
(u,7) € WPP(R3) x W'P(R3) satisfying the following estimate:

ol g2 gy + 17l gy < CCL+ [l g2 U o sy + 1Bl gsy)- (I1L72)

Proof.  First, note that we have WJP(R3) — LY(R?®) if p < 3/2 and thus Jrs f(x) dx is well
defined. On the other hand, observe that h € W} ?(R3) — LP(R3) and for p # 3/2, we have
f e WPP(R?) < W, "P(R3). Then thanks to Theorem 3.4 and Theorem 3.5, there exists a unique
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solution
ue WP(R?), e LP(R)

satisfying
—Au+Vr=f—v-Vu and divu=h in R3

and we have
2
ol ey + oy < € (14 lollgas))” (I l-tngay + bl - (TL73)

Step 1. We suppose that v € D, (R?). Observe that v-V u belongs to W?’p(R?’) and reasoning as
in Theorem 3.6 we deduce that (u,7) € W2P(R?) x W,?(R?). After an easy calculation, we obtain
that the pair (pu,p7) € Wg’p (R3) x Wol P(R3) satisfies the following equations in R3:

—A(pu)+v-V(pu)+V(pr):=x, and div(pu):=¢, in R3,
with
X,=pf—=2Vp-Vu—(Apu+ (Vp)r+(v-Vpu and § =ph+Vp-u. (II1.74)

Remember that here p is the weight defined by p(x) = (1 4 |x|?)'/2. It is clear that
(X &p) belongs to LP(R?) x Wol’p(R?’), so using Theorem 3.6 we obtain

N

||u”wi»P(R3) + ”7T||W117P(R3) = CHPUHngP(]}@) + ||P7THW01’P(R3)

O+ [ollprgas))® (I lzrge) + 1€pllynges) - (IL75)

IN

Using (I11.73), and that WP (R?) — LP*(R?) we deduce that

||XpHLp(R3) + ||£P||W01’p(R3) <

< C (Il o s, + Wolyrogs) + 1l oo gs) + 17l o@s) + 1101 as) lul o es) )

< C (Il worgs) + I1tllyogs) + 1l wiegs) + 17l os) + o]l @l wiogs))

< O (Il woges) + Nrllyogs) + 0+ 1ol gs@a) (el oo gs) + 17l nes)))

< O (Il wogs) + Illyrogs) + (1 + 0llps @) *UF] - roggs) + Il oes)) - (TILT6)

From (IIL.75) and (II1.76) and using the fact that
WP(R3) < LP(R3) and WIP(R3) < W&l’p(Rg) for p # 3/2, we deduce that

Hu”Wz’P(RQ + HW||W11»P(R3) <
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115 oy + [l (14 1ol ) (14 (1 ol gages)?)

Then (u, ) € WTP(R?) x WP (R3) satisfies the estimate (II1.72).
Step 2. We suppose that v belongs only to L3(R?). Let vy € D, (R?) such that

vy —> U in L*(R?).
Using the first step, there exists (wy, my) € WP (R3) x W P(R3) satisfying
—Auy+vy-Vu,+Vm=f and divuy=h in R>
and satisfying the estimate
loa o gy + 1mal logs) < O+ ol g sy UL oy + el
Thus we can extract subsequences of u) and 7y, still denoted by ) and 7y, such that
uy—u in WIPR? and m —7x in WP(R?),

where (u,7) € W2P(R3) x W, (R3) verifies the Oseen problem (IIL.6) and the estimate (IT1.72).
To finish, observe that the uniqueness of the solution (u,7) € WP(R3) x W P(R3) is immediate

because WP (R3) x WP(R3) ¢ W P(R?) x LP(R?) and that (u,7) is unique in W4 (R3) x LP(R3).
O
Remark 3.6

1) For p = 3/2, the existence result of Theorem 3.7 holds if we suppose in addition that
0,3/2 ~1,3/2
fe W@ 0w R,

2) Under the assumptions of Theorem 3.6 and supposing that 1 < p < 2, the solution (u, 7) satisfies

the estimate:
el ey + Il oy < 1+ 1ol s)® (1o ey + (0 ollgagas) 1ellynes, ) -

3) If we suppose in the assumption of Theorem 3.7 that h = 0, we prove that the solution (u,7)

satisfies the estimate:
el g gy + iy < GO [0l 11 o (1L77)
4) For p > 3, the hypothesis of f € WYP(R?), h € W;P(R?) and v € L3(R?) is not sufficient

to study the existence of strong solutions for problem (II1.6) in W%p (R3) x I/Vl1 P(R3). Indeed,
suppose that under this assumptions it would be possible to find u € W3?(R3) and 7 € W, ?(R?)
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such that
v-Vu=Au—Vr+fe WIPR?).

This is a contradiction, since v € L3(R?) and V u ¢ WP (R3).

4 Oseen problem in an exterior domain

We will recall in this section the existence and the uniqueness of weak, strong and very weak solutions

of the Oseen problem in an exterior domain 2. We are interested at first in the following data:
FeWy(Q), helP(Q), ve H3(Q) and ge WYPP(D).

4.1 Generalized solutions in W,?*(Q)

We start by proving the existence and the uniqueness of solution in the Hilbert space case i.e in
W2 (Q) x L2(Q).

Theorem 4.1 Let
fe wy?(Q), hel?*Q), veLl(Q) and ge WY2(I).

Then, Problem (II1.1) has a unique solution (u,m) € W(IJ’Q(Q) x L?(Q2). Moreover, there exist some
constants C1 > 0 and Cy > 0 such that:

Il gtz < Colll Fllgragy + 0+ 1ol b @ + 1l 8 lganage)),  (ILT8)

|7 2 < Ca( || fHWO*M(Q) + A+ vl U 2@ + 1 g HW1/2,2(F))) (I11.79)
where Cy = C(Q) and Cy = C, (1+ | v ||L3(Q)).

Proof. In order to prove the existence of solution, first using Lemma 3.3 of [40] for instance, we lift
the boundary and the divergence data. Then, there exists ug € W(l)’2(Q) such that divug = h in §,
ug = g on I and:

I 0 Ity < O B ey + 11 8 lrvaage): (111.80)

Therefore, it remains to find (z,7) = (u — ug, 7) € Wé2(Q) x L*(Q) such that:
—Az—v-Vz—&—Vﬂ:f and divz=0 in ©, z=0 on TI.

being f = f + Aug + v - Vug. Observe that v- Vug = div(v ® ug) and ug € W(l)’2(Q) — L5(Q) then
we have f € W, L2(Q). Using the density of Dy(€) in V5(€2), we see that the previous problem is
equivalent to: Find z € V(2) such that:

/ Vz - Vedx—bv,zp) = <f, <p> s V e Vy(Q), (IT1.81)
Q w

;X Wt (@)
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where b = (div(v ® z), ¢) 2, is a trilinear antisymmetric form with respect to the last

w2 @) x Wyt (Q)
two variables, well-defined for v € L*(Q), z, ¢ € W(l)2(Q) By Lax-Milgram theorem we can deduce
the existence of unique z € Wé72(Q) verifying:

| 2 ||Wéa2(g) < C(f HWO—L?(Q) + || Aug HWO_LQ(Q) + || div (v ® up) ||W0_1’2(Q))

< CUF w2 + 10 iz + 1 0@ o llp2)
< O F w120y + (14 10 lps)) 10 o) )
< O F w120y + (14 10 lsy) (17 2oy + 1 9 llwarzagr) -

which added to estimate (II1.80) makes (II1.78). Now, —Az—v-Vz—f € WO_I’Q(Q) and:

Ve Vy(), <—Az—v-Vz—f,<p>

Wi 2 (@Q)x Wy (9)

As a consequence to Corollary 3.2 in [40], there exists a unique 7 € L?(§2) such that:

—Az—v-Vz+Vr=f in Q

with || 7 [[L2@< C || V7 | w-12(q) Finally, estimate (II1.79) follows from the previous equation and
0

estimate for z. O

4.2 Generalized solutions in W”(Q)

Throughout the rest of this work, if we do not say otherwise, we assume that v € H23(Q) (see section
1 for definition). Firstly, we recall the definition of the kernel 8F(€2) of the Stokes operator for any

real value o and 1 < p < oc:

S2(Q) = {(u,m) € WEP(Q) x WIP(Q); ~Au+ Vr=0and divu=0inQ, u=0onT}.

8P (§2) is characterized, see [3] for more details. Now, we want to characterize the kernel N (Q2) of the

Oseen operator with Dirichlet boundary conditions:

NP(Q) = {(u,m) € WyP(Q) x LP(Q); —Au+div(v®u) + V7 =0
and dive =0in Q, u=0on I'},

where v € H2 (). We will start by p > 2 and we shall see at the end of this section the characterization
of the kernel N} (§2) when p < 2. We introduce the space of polynomials for each integer k:

Ny ={(Apn) €PpxPr_1,divi=0, —~AX+div(v®@A) +V u=0}.
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III.4 Oseen problem in an exterior domain

In particular, recall that Ny = {(0,0)} whenever k£ < 0 and that Ny = Py x {0}.
Theorem 4.2 Suppose that p > 2.
i) If p < 3, then NE(Q2) = {(0,0)}.

ii) If p > 3, then

NB(©Q) = {(2A) = A n(A) =), (A1) € Nig sy} (TI1.82)
where (2(X),n(X)) denotes the unique solution in () Wé’T(Q) x L"(§2) of the following equa-
3/2<r<p
tions
—Az+v-Vz4+Vn=0 and divz=0inQ, z=X on TI. (I11.83)

Proof. The proof follows the idea of [7]. Let (u,7) an element of N (Q2) and let extend w and m
by zero in €. The extended functions, denoted by @ and 7 respectively belongs to Wé’p (R?) and

LP(R?). Now, we extend v in R? in the following way: We solve the following Neumann problem in

Q'
AO0=0 in Q and @:v-n on I.
on

Owing to the boundary condition, this problem has a solution 6§ € W3(Q). Let us take
w=VeH in & and w=wv in Q.
Then w belongs to L3(R?). Let ¢ € D(R?) then we have

< divw, ¢ >pIRIHxDR3) = s w-Vpdx

_ —/v-V«de—/ V0.V pdx
Q Q

= <v'n >—<% >r=20
- yP 2T 877,’80 r==uY,

where < .,. >p=<.,. > P —1/3.3(T) W 1/3:3/2(T) - Then divw = 0 in R3 and thus w belongs to Li(R?’).
Set
~Au+w-Vu+V7:=F and divi:=e in R (IT1.84)

Then (F,e) belongs to W, LP(R3) x LP(R?) and obviously they have a compact support. Since p > 2,
we deduce that (F,e) belongs to W(;l’Q(]Rg) x L?(R?). Tt follows from Remark 3.4 that there exists
a solution (z,7) in W™ (R3) x (L"(R3) for any r €]3/2, p] such that

“Au—-2z)+w-V@a—2)+VFE-n)=0 and div(e—2z)=0 in R

If p < 3, we deduce from the argument of uniqueness in Theorem 3.5 that (u — z,7 —7n) = (0,0) and
thus w and 7 belongs respectively to Wé’T(RB’) and L"(R3) for any 3/2 < r < p, which implies that
(u, ) belongs to N2(2) and so (u,7) = {(0,0)}. If p > 3, using again Theorem 3.5, we necessarily
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

have (u — 2,7 — 1) = (A, u) € Njj_3/,) and since u = 0 on I, the restriction of (2,7) to € is nothing
else but (z(A),n(\)) which verifies (IT1.83). Observe that in this case, A is a vector constant of R3
and p = 0. O

Remark 4.1

Of course, we have seen at the beginning of this section that N2(Q2) = {(0,0)}.

The next lemma solves Problem (III.1) with homogeneous boundary conditions and a right-hand side

f and h with bounded support.

Lemma 4.1 Assume thatp >2 and g=0 onI'. Let fe Wo_l’p(Q) and h € LP(Q) such that f and h
have a compact support. Then, the Oseen Problem (I111.1) has a unique solution u € W01’2(Q)ﬂ Wg’p(Q)
and ™ € L*(Q) N LP(Q).

Proof. By virtue of Lemma 2.1 of [7], the right-hand side f belongs also to W(fl’z(Q). Since p > 2
and support of h is compact, we have h € L?(£2). Due to Theorem 4.1, Problem (IIL.1) has exactly
one solution (u,7) € WOl () x L2(€). The remainder of the proof is devoted to establish that
(u,m) € W&’p(Q) x LP(§2). Take Ry sufficiently large so that both the supports of (f,h) are contained
in Bg, and ' C Bg,. Let A and u be two scalar, nonnegative functions in C*°(R3) that satisfy

VY 2 € Br,, Ax)=1, supp\C Bprys1, YV x€R® A(x)+ux) =1

Let Qp,+1 denotes the intersection Q2 N Bg,+1 and let C'r, denote the exterior (i.e. the complement)
of Br,. Then, we can write

Uu=A\u+pu, T=AT+pT.

As v is very smooth and vanishes on Bp,, then pf = 0 and ph = 0. Let us extend (u,7) by zero
in . Then, the extended distributions denoted by (u,7) belongs to W(} 2(R3) x L2(R3) and let
w € L3(R3) such as in Theorem 4.2.

After an easy calculation, we obtain that the pair (uu, u7) satisfies the following equations in R3:

~A(pw)+w-V(pw)+V(pr):=f and div(uw):=e; in R3,
with
fi=ANu—(VAN)T+2VA-Vu—(w-VNu and e;=-VA-u.

Moreover, owing to the supports of p and A, (f;,e1) belongs to L*(R?) x H'(R?). In addition,
if O is a Lipschitzian bounded domain, we have L*(Q) — W ~14(0) and H'(O) < LI(0O) for any
2 < ¢ < 6. Hence, we shall assume for the time being that 2 < p < 6 and afterward, we shall use a
bootstrap argument. Then (f;, e1) belongs to Wo_l’p(R?’) N Wo_l’2(]R3) x LP(R3) N L?(R3). It follows
from Remark 3.4 that there exists (z,0) € W(l)’p(R?’) N W(l)’Q(R?’) x LP(R3) N L?(R3) such that

~Az+w-Vz+VO=f and divz=e in R3
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III.4 Oseen problem in an exterior domain

and thus,
“Apu—2z)+w-V(pa—2)+V(ur—0) =0 and div(ua—2z)=0 in R3
with (u7 —6) € L?(R3) and (pu — 2) € Wé’Q(Rg). Then

(=i = 2) + w0 V(i — 2) + V(uF — 0), (1~ 2) o125 12y = 0

and so
IV (8 — )l 2z, = 0
Thus pu — z =0 and so u7 — 6 = 0. Consequently, (uu, ;) belongs to Wé’p(R:‘) x LP(R3).
In particular, we have pu = w and u7 = 7 outside Bpry41, so the restriction of u to 0BR,+1
belongs to Wl/p/’p(aBROH). Therefore, (u, ) satisfies:

—Au+v-Vu+Vr=f and divu=~h in Qpg 41, uaBRO+1:ﬁ and wu|p =0. (II1.85)

Observe that for any ¢ € W12(Qg, 1) we have

/ u-chdx:—/ cpdivudx+/ pu - ndx.
QRg+1 QRg+1 OQRy+1

In particular, for ¢ = 1, we have

/ h(x) dx = / u-ndx = / u-ndx (II1.86)
Qrg+1 0QRy+1 0 Bry+1

and thus, according to Theorem 15 see [13], this problem has a unique (uw,7) € W'P(Qr 1) x
LP(QR,+1). This implies that (u,7) € Wé’p(Q) x LP(Q) if 2 < p < 6. Now, suppose that p > 6. The
above argument shows that (u,7) belongs to W(l]’G(Q) x L5(£) and we can repeat the same argument
with p = 6 instead of p = 2 using the fact that if O is a Lipschitzian bounded domain, we have
L°(0) — W ~1(0) for any real number ¢ and we have L?(0)N L>®(O) < LP(O). This establishes the
existence of solution (u, ) in W(l)’p (Q) x LP(2) of Problem (III.1) when p > 2. Uniqueness follows
from the fact that W(l)’z(Q) does not contain the vector constant functions.

O

The next lemma solves Problem (III.1) with non homogeneous boundary conditions and a right-
hand side f and h with bounded support.

Lemma 4.2 Under the assumptions of Lemma 4.1, for each g € Wl/p,’p(l“), Problem (II1.1) has a
unique solution (u, ) € W(l)“v(Q) N W(l]’Z(Q) x LP(2) N L(9).

Proof. Let g € Wl/p,’p(f‘) and take R sufficiently large so that Q' C Bg. Set Qr = QN By, then
there exists z € W'P(Qg) solution of the problem —Az = 0in Qp, z=gon I and z = 0 on dBg.
We extend z by zero out of Bg. The extended function denoted by z has a compact support in €’ and
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belongs to W(l)’p (Q) and once we set u' = u — z. Then Problem (II1.1) is equivalent to the following
problem: Find (w', ) such that

{ —Au' +v-Vu' +Vr=Ff+v - Vz+ Az, (111.87)

div o' = h +div z in Q, u/|gq = 0,
where data belonging to the space W Lp () x LP(Q) with the compact support in Q. Then we will
apply Lemma 4.1 . ]
Corollary 4.1 Assume that p > 2 and let g € WYP'P(9Q). Then there exists (u,7) € Wé’p(Q) N
W32 (Q) x LP(Q) N L2(Q) such that
—Au+v-Vu+Vr=0, divu=0 in Q, ulp=g

Proof. Let Ry > 0 such that Q' C Bg,. Take 1 € D(R?) with support in g, and such that

1/1(x)dx+/mg -nds = 0.

Qg

According to Theorem 12 [13], there exists (z,7) € WP(Qgr,) x LP(Qg,) such that
—Az+4+v-Vz+Vn=0, divz =1 in Qp,, z|33RO =0,zr =g

If we denote the extension by (0,0) of (z,n) outside Br, by (2,7) then (2,7) € W(l]’p(Q) x LP(Q)

and

—Az+v-Vz+Vy = § in €,
divz = ¢ in
z =g on I.

Observe that € belongs to W, Lp () with compact support in . From Theorem 4.1 we have a
solution (w,7) € (W§P(Q) N W2(Q) x L2(Q) N L%(Q)) to the problem

—Aw+v-Vw+ V7 =—€, divw= -9 in Q, w|pr = 0.
Then the pair (u,7) = (2 + w, ) + 7) has the required properties. O
Theorem 4.3 Assume that p > 2. Let f€ Wo_l’p(Q), he LP(Q) and g W Y?'P(T'). Then Problem
(IT11.1) has a solution (u,7) € W(l)’p(Q) x LP(Q) unique up to an element of NH(Q).
Proof.
i) First case: g = 0.

We would like to extend data (f,h) € W LP(Q) x LP(Q) to the whole space. According to Corollary
1.3 see [3] there exists a second-tensor F € LP(Q) such that div F = f. Then we extend F' (resp. h)
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by zero into the whole space and we denote this extension by F (resp. h). Set f = div F. It is clear
that (f,h) € W LP(R3) x LP(R3). Now, we consider the following equation:

—Az+w-Vz+Vi=f and divz=~h in R?

with w € L2 (R?) introduced in the proof of Theorem 4.2. Applying the theory of Oseen problem in
R?, we deduce that this problem has a unique solution (Z,7) € W(l)’p (R3) x LP(R?) if p < 3 and if

p > 3, z is unique up to a constant vector. In addition, we have:
12l oy oy + 1lloges) < C (1w 1o ges + 1Bllires)) (II1.88)

Denoting the restriction to Q by (z,7) and by vz € Wl/p/’p(F) the trace of z on I'. According to
Corollary 4.1 , we have the existence of (£,v) € (WyP(Q) N W§2() x LP(Q) N L2(Q)) such that

“AE+v-VE+Vr =0, div€=0in Q€| = —72.

Hence, the pair (u,7) = (z + &, 1+ v) belongs to WP (€2) x LP(Q) and satisfies Problem (IIL1)
with g = 0.

ii) Second case: Nonhomogeneous boundary data. Each g € WYP?(I') has a lifting x €
Wé’p(Q) such that

x|l wlP(Q) <Ol wl/v P (90)"
Setting u’ = u — x, then Problem (III.1) is equivalent to the following problem: Find (', ) such that
—Au +v-Vu'+Vr = f+Ax—v-Vx in Q,
divu' = h-—divy in Q,

u = 0 on TI.

Set fr = f+Ax—v-Vxand by = h—divx. Asp>2, v-Vx e L'(Q), with £ = § + L and
L"(Q) — W, 12(Q)). Hence, f belongs to W L2(Q)). From previous step we know that this problem
has a solution in VOV(I)’p(Q) x LP(£2). Uniqueness follows from the definition of the kernel N (Q). O

In particular, it follows from Theorem 4.3 that, for any p > 2, the Oseen operator
0 WP (Q) x LP(Q)/NE(Q) — Wi "P(Q) x LP(Q)

defined by : O(u,7) = (— Au+ v-Vu+ Vr,divu) is obviously continuous and since both spaces
are Banach spaces, it is an isomorphism. Thus there exists a constant C(v) depending on v € L2(Q),
Q and p such that

inf
P

o1 N Ml + 17+ plioge) < CONlwmy + bllme). (1189
) 0

The following existence result can be stated via a dual argument.
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Theorem 4.4 Suppose that 1 < p < 2 and g=0. Let (f,h) € Wo_l’p(Q) x LP(Q) such that for any
(A p) € Ng/(Q), we have

(A W, @< Wyt (@) {hs 1) o) L (@) = 0- (I1.90)

Then the Oseen problem (111.1) has a unique solution (u,7) € W(l)’p(Q) x LP(2).

Proof. On one hand, Green formula yields, for all w € W(l)’p (Q) and (u,7) € TjV(l)’p(Q) x LP(Q)

(AU AV U TV W) o ) =

(u, —Aw—div(v ® w)) WP @y w o (@) (7, div w) o) 1o/ (@) -

Taking into account that p’ > 2, we have div(v ® w) = v-Vw € L"(Q) with % = % + I% and
L'(Q) = W, "’ (Q). On the other hand, for all 5 € L¥ (),

(u, V)

W@ wy (@)~ AV L) )

Then problem (III.1) with g = 0 has the following equivalent variational formulation: find (u,7) €
W (92) x LP(Q) such that for all (w,n) € Wg" () x L¥ (),

(u, —Aw—div(v®@ w) + Vn) WA @ x W (@) (m,div w>LP(Q)><LP’(Q) =

= (f, w) WP () Wé’p/(ﬂ) — (h, n)Lp(Q)XLp’(Q) : (IIL.91)

According to Theorem 4.3, for each (f,n') € W Lp ,(Q) x LV (Q) there exists a unique solution
(w,n) € (W7 (Q) x LP (2))/NE' () such that

—Aw—divlvew)+Vn=f, divw=h" in Q@ and w=0 on T,
with the following estimate

inf - AJw+ Al g + 10+ #ll @) < COF gy 10 gy + 1] 1 () (I11.92)
(Am)eNy (@) Wo" (@) L' () Wi (@) L7()

Let T be a linear form defined from Wo_l’p/(ﬂ) x LY () onto R by:
. Y
T: (f 1) = (f, w) WP ()% W(l)’p/(Q) — (h, 77>LP(Q)><LP’(Q) :
Observe that for any pair (f/,h') € Wo_l’p/ (Q) x LP (Q) and for any (X, 1) € Ngl(Q) we have
T(F 00 = [(fw+X)

Wit @t @)~ T @ @)

< Afllwgre@llw+ Al o) + 1Pl @lln + pll o)
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Using (I11.92), we prove that
(", 1)1 < CO) 1l 1) + Wl (1] gy -1 g + X1l )

Thus the linear form T is continuous on the following space W 1P /(Q) x LP' () and we deduce that
there exists a unique (u, ) € Wé’p(Q) x LP(€2) such that

T W) = (u f') vy w1 @)~ W ooy ir o)
with

1wl v o) + ITlle@) < C@O)(IF 1y 1) + 12lLr@)- (IT1.93)
By definition of T, it follows

(fsw) W< Wt (@) (o) oy o) = (68 i g 0 W @) (™) Loyxr (@)

which is the variational formulation (III1.91).

Now, let prove the appropriate estimate for the Oseen problem (III.1) and we start by the case
1<p<2:

Theorem 4.5 Suppose that 1 < p < 2 and let (u,m) € Io}[/'(l)’p(Q) x LP(Q) be the unique solution of the
Oseen problem (I11.1) given by Theorem 4.4 with the following data:

fe Wy'P(Q), helP(Q), and g=0
and for any (A, ) € Ng(Q), we have
(LA W, P (Q)x Wé’pl(fl) — (h, N)Lp(g)pr’(Q) = 0.
Then (u, ) satisfies the following estimate :
10 gy + 1elLoc@) < OO+ [0l (1 Ly + (L 1oll s lBllioy)-  (1TL94)

Proof. Since f € Wo_l’p(Q), then it follows from Corollary 1.3 of [3] that f = divF with F € LP(Q)
and || F||grq) < O f ||W81,p(m . Let extend F and h by zero in €'. The extended functions, denoted

by F and & belong to LP(R3) and set f = div F belongs to W()_l’p(R3). Let ¢ be a truncation function:
¢ € D(R3) such that 0 < ¢(t) < 1 for any t € R and

1 if | t]<,
o(t) =
0 if [t|>2
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

Let A be a cut off function, defined on R3 by \(x) = qb(%) for any R sufficiently large so that € C Bg.
Set 1 =1 — . Let Qi denote the intersection 2 N Bar. Now, let (u, ) € I/OV(I)’p(Q) x LP(Q2) be the

unique solution of the Oseen problem (III.1) given by Theorem 4.4 and let us extend (u, ) by zero
in €. Then, the extended distributions denoted by (@,7) belongs to Wy?(R3) x LP(R?) and let
w € L3(R3) such as in Theorem 4.2. Then

HuHWé’p(Q) + HWHLP(Q) = |[pu+ )‘unévP(Q) + [lp T+ )‘WHLI’(Q)
< 0l sy + 1Al ooy + 1 Fllzoes) + [0, A1195)

After an easy calculation, we obtain that the pair (uu, u7) satisfies the following equations in R?:
~A(pw) +diviw® (pa))+V (u7) :=f; and div(pu):=e in R3

with
fi=uf+(ANa— (VNF+2VA-Va— (w-VA& and ey =ph—VA-@

From Theorem 3.4, we have

168l gy + 17|y <
1+ 0]l g2qasy) (Il gy + (L [0l gagsy el ncesy ) <

C(1+ 1ol ay) (112l 1 gesy + (1 + 0l a)llenl o)) - (11.96)

Now, let ¢ € WP "(R3), then using Holder we have

| <(A )\)’T‘L7(10> WEI,P(Rg)XW(I),p/(Rg) | - |/ (p A)\)a dX‘
< c/ Rng (A )| dx
~ 1/p
(1 +4R2) / u
C——FF— —Pd
ol N L) R PP

and
(VN7 @) yormgopewir s | < /) - (V)7 dx

1/p
(1+4R2)1/2 B
e a0 NS I P

IN
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III.4 Oseen problem in an exterior domain

in addition, we prove that

_ 1 _
QYN V0 st | S 2 [, L IeV o Valdx
1/p
(1 +4R2)!/2 ,
< O (o V)1l
next, we have
_ 1 _
|<(w V)‘)U7LP> ng’p(Rg’)XW(l)’p/(R?’)‘ —= ~/AR(R3) E‘P(w VQZ))U" dx
1/p
1 —|—4R2 1/2 B
< U wearax] el g,

finally, we prove that

(pF ‘P>W51*P(R3>xWé'P’<R3> |

IN AN

IN

Now, let ¢ € LV (R?), then using Holder we have

[ k=
]R3

(14 4R2)12

¢ R

Pl ol ol 1 () +

(1+4R?

¢ R

1Pl r ) +

(l

R

r(R3)

| <div F, M<P>W !

o (RS < W (89)
|| PV ax

ClEl gl 1l gy g
OlIf 1l -1y |1V (112 | o g

o] 13 P [ .

u)pdx| <

12 dx|
R3) P

<

1/p
</AR( ) HSOHLp’(Rs)

1/2 i 1/p
) ( Lo ¥ dxr) el ey
R

Then, we deduce from the previous inequalities that

<

Hf1||W0—Lp(R3) +(1+ Hv’|L3(Q))H€1HL1’(R3)
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1/p 2 ~ 1/p
(14 4R?) o (1+4R?) u,
S L el VAL B O Ve

2\1/2 1/p 1/p
+(1+4R){</ |7~r|pdx> +</ |w®a|de>
R AR(R?) AR(R3)

~ 1/p
(1+4R2)1/? / u
+ (1+ : - —|Pd +||h . II1.97
( Hv|’L3(Q)) { R AR(]R3)|P‘ X I HLP(Q) ( )

Similarly, the pair (A w, A7) satisfies the following equations in Qpg:

—AAu)+div(v® (Au)) + V(A7) :=f, and div(Au):=ex in Qp,
(Au)|oB,, =0 and (Au)|r =0,

with
fo=Af+Apu— (Vu)r+2Vu-Vu—(v-Vy)u and ea=Ah—-Vyu-u.
Using Theorem 15 of [13], we prove that

A wll ey + AT LR <

C(1+l0llgs0)? (I1F2llw 120 + (14 [[0llgsa)llezllon) ) - (I1.98)

As in the beginning of the proof, we show that

/p
1 (1+ 4R?)1/2 u '
IFallw-1o0 < C |+ Dllwroe + gatm [ (4pax

P

1 1/p 1/p 1/p
4 (/ P dx|> + (/ |Vu|pdx> + (/ v ® u|de>
R AR(R3) AR(R3) AR(R3)

(I11.99)

and that

ezl vy < C

1/p
(14 4R%)Y/? / w,
- —|Pd + [|h . 111.100
= AR(R3)‘P’ X 1P| e () ( )

Using (I11.95)-(II1.100) and tending R to oo, we prove thanks to dominated convergence theorem the
estimate (I11.94). O

Remark 4.2
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III.4 Oseen problem in an exterior domain

Under the assumptions of Theorem 4.5 and supposing that 6/5 < p < 2, the solution (u, ) satisfies

the estimate :
el ) + lImllie@) < CO+ ([0l gs@) (LF Ty re ) + (1 + ([0l g0 1Al )
Indeed, we shall use in the proof of Theorem 4.5 the following estimate
A wll gy + AT Lr@g) < C(L+ (|0 3(q)) (Hf2HW*1*P(QR) + 1+ HUHL3(Q))H€2HLP(QR)> :

instead of (II1.98), see Proposition 3 of [13].

Now, we study the nonhomogeneous boundary data i.e g # 0 on I'.

Corollary 4.2 Suppose that 1 < p < 2. Let f € Wo_l’p(ﬂ), h € LP(Q) and g € Wl/p/’p(aQ) such
that for any (A, p) € NSI(Q), we have

<.f7 A> WO—1,p(Q)>< Wé’p,(Q) - <h7 /~L>LP(Q)><LP’(Q) + <g7 (:U’I -V >‘) ) n>l" =0. (IH.lOl)
Then the Oseen problem (111.1) has a unique solution (u,T) € Wol’p(Q) x LP(Q2) such that

Hu‘|W(1]*p(Q) + HWHLP(Q) <

2
O+ I1oll50)” (1l + U+ 10l ) (Bllooy + 1181 ganrogony)) - (TL102)

Proof. Let g € WYP'?(9Q), then there exists x € W(l)’p(Q) such that x = g on I' and

HXH W(l)’p(Q) < CHgH wl/e P oQ) (HI.lO?))

Setting u' = u —x, then Problem (III.1) is equivalent to the following problem: Find (w/, ¢) such that

—Adu +diviveu)+Vr = f+ Ax —div(v® x) in 9,
dive' = h—divy in  Q,
’u,/|aQ = 0.

Set fy, = f+Ax —div(v®@x) and hy = h—divx. As1<p <2 then x € L"*(Q) and v®x € LP(Q).
Thus div(v ® x) € W, "(Q). Hence, f belongs to W, "P(Q). Tt is clear that (f> hx) satisfies the
compatibility condition (II1.90). Then from Theorem 4.4 we know that this problem has a solution in
I/OV(I)’p(Q) x LP(Q). In addition, using Theorem 4.5 we deduce that

2
||,u’/HW(1)’p(Q) + 17l o) < CA A+ vl g3(g)) (foHWO*l’p(Q) + (14 Mol o) x| @)-

It follows from (II1.103) that

1l ey + (1 [0l o)) [1Pxl 2o (@) <
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

C (HfHW(;l'p(Q) + (1 + o]l g3y (2l o) + N9 Wl/p',p(ag))) : (I11.104)

Then (II1.105) is a trivial consequence of the previous inequality. O

Remark 4.3

We suppose now that p > 2. As in Theorem 3.5, using a dual argument with the estimate (I11.94) of
Theorem 4.5, we prove that if g = 0,

. 3
2 18 Al + 17+ laoiey < CO+101Le) (1 ooy + 1P o)

As in Corollary 4.2, when g € Wl/p/’p(aﬂ), we prove that

i 3

(Hf HWO*LP(Q) + HhHLP(Q) + (1 + H v HL3(Q))|| g le/p/,p(ag)))'

The next theorem summarizes the results of the existence and uniqueness of generalized solutions
of Problem (III.1) when 1 < p < oo:

Theorem 4.6 Let ) be an exterior domain with C*' boundary. If p > 2, for any f € Wo_l’p(Q), h €
LP(Q) and g € W YP'P(T), Problem (I11.1) has a unique solution (u,7) € Wol’p(Q) x LP(Q)/NE(Q)

and there exists a constant C, independent of w, q, f, h, g and v, such that

. 3
(A,u)lélﬁffg(ﬂ) [|lu+ Al whe) T 7+ oy < C(1+ || U"IP’(Q))
<1 £l oy + TR llzo@) + A+ 10l ga) 1 91l g oay)- (I1.105)

If 1 <p <2, for any f € Wo_l’p(Q), h e LP(Q) and g € WYP'P(0Q) that satisfy the necessary
compatibility condition (I111.101), Problem (II1.1) has a unique solution (u,m) € W(l)’p(Q) x LP(Q) and

there exists a constant C, independent of u, q, f, h, g and v, such that

el .y + 7l oy <

2
CL+ vl g0) (I Fllwrp @) + A+ ollms@) (Il + 1 91lg1mpaq))-  (IT1.106)

4.3 Strong solutions in W¢*(Q2) and in W37(Q)

We begin by proving the existence and uniqueness of strong solution in Wg’p (Q) for 1 < p < 3 in the

following sense.
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III.4 Oseen problem in an exterior domain

Theorem 4.7 For 1 < p < 3, let f € IP(Q), h € Wy*(Q) and g € W? V/PP(T'). Then the Oseen
problem (II1.1) has a unique solution (u,7) € Woz’p(Q) X Wol’p(Q)/Ng* (Q) such that

i <
(/\,u)le%wfé'*(a) lut Miwzr ) + 7+ pllwg o o) <

4
C+110llp@)" (Il + 1hlyiog + 1o llgs@)lglye-vong ) - [IL107)

Proof. For all 1 < p < 3, Sobolev embedding holds i.e LP(2) < Wal’p*(Q). Observe that
he WyP(Q) < LP*(Q), g € W2 V/PP(D) s WIVPSP (D) and f € W, 'P*(Q). Using Theorem 4.6

(there is no compatibility condition since px > 3/2 i.e (px)’ < 3), we prove that there exists a solution
(u,7) € WP (Q) x LP*(Q)
for the Oseen problem (III.1) with the following estimate

3
HuHWé’p*(Q) + 7l o) < C(L+ v HL3(Q)) X

((Hf HW(;LP*(Q) + H h HLP*(Q)) + (1 + H v HL3(Q))H g lefl/z)*m*(ag))) . (111‘108)

Since (v - V)u € LP(2), we can apply the Stokes regularity theory see [3] to deduce the existence of
(z,m) € WiP(Q) x W, P(Q) verifying:

—Az+Vn=f—ov-Vu and divz=h in Q, z=g onl.
Moreover, the estimate holds

||ZH W2P(Q) + ”UHWOLP(Q) <

0 (Ifllz @) + ol 2y 19 wllzoe () + elly gy + 9l o-simnry) (ITL.109)

with C' denoting a constant only dependent on p. Let w = z — w and 6 = n — 7, then we have (w, )
belongs to 85%(Q2). Therefore, if 1 < p < 3/2 i.e 3/2 < p*x < 3, we deduce from [3] that 85 = (0,0)
and thus (u, ) belongs to WP (Q) x W,?(€) and we deduce from (I11.108) and (IIL.109) that:

[l W27 (Q) + ”71-||W§77‘(Q) <

4
C+ 1l (1@ + hllyng + 1+ 2@ gl we-1msy) - ([11L110)

If p > 3/2 i.e px > 3, we deduce from the Stokes regularity theory see [3], that (w, ) belongs to
WIP(Q) x WP (Q) € WEP(Q) x Wy P(€2) and thus (u, 7) belongs to WP (Q) x W, ?(€2). Now, using

71



Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

the following embeddings WP (Q) < WP (Q) and Wy () — LP*(€2) and using (I11.108), (I11.109)
and (II1.110), we deduce that

el g1y + 1000 <

4
C(L+ vl (Hf”L”(Q) + ||hHW01»P(Q) + (1 + v ||L3(Q))||g||Wz—l/p,p(p)) :

Observe that in the finite dimensional case, all norms are equivalent so we have

HwHngP(Q) + HOHW&J’(Q)) <

4
C(L+ vl (Hf”LP(Q) +lAllyrr g + A +1lv HL3(Q))H9”W2—1/P»P(F))

and thus we obtain (II1.110). The uniqueness of the solution (u, ) follows from WaP(€2) x WP (€) —
WP (Q) x LP*(Q) and also in WP (Q) x LP*(2) the solution is unique up to an element of N*(€2).
U

Theorem 4.8 Suppose that 1 < p < 3 and p # 3/2. Let f€ WP(Q), h € W P(Q), ge W2 1/P2(T)
that satisfy the compatibility condition (I11.101) if p < 2. Then the Oseen problem (II1.1) has a unique
solution (u, ) € W2P(Q) x Wi P(Q)/NP(Q) such that

. 6
f + , + |7 + , <Cl+||lv
(&n)le%vﬁ(a) [l £|‘Wf”(ﬂ) ] nHWf P(Q) ( l HLS(Q))

< (Il Fll oy + 1+ 1ol gs@) (1 ) + 191l ismngony)) - (IIL.111)

Proof. i) Regularity:

Since the following embeddings hold W[ (Q) < LP(Q), W2~ Y/PP(T') < W/P'P(T) resp. for p # 3/2
we have Wl0 P(Q)— W, Lp (), according to Theorem 4.6 it follows the existence of a unique solution
(u,m) € Wol’p(Q) x LP(€) to the Oseen problem (III.1) if p < 2 and if p > 2 it is unique up to an

element of N} (). Moreover the following estimate is satisfied

) 3
(s,n)len?gé’(ﬂ) l|u+ €| wiri) + 7 +nllze@) < CL+ [ v]lg30)
(1 1w ooy + Tl rog) + A+ 0 lls@) 19 Tw2-1/000)) (IL.112)

The rest of the proof is similar to that of Lemma 4.1, we introduce the same partition of unity as in

Lemma 4.1. With the same notation, we can write
u=Au+pu, T=AT+ uT.

Let us extend (p u, p ) by zero in €. Then, the extended distributions denoted by (uu, 7) belongs
to Wol’p(]R?’) x LP(R3) and let w € L3(R?) such as in Theorem 4.2. A quick computation in D’(R3),
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III.4 Oseen problem in an exterior domain

shows that the pair (pu, u7) satisfies the following equations:

—A(pw)+w-V(puw)+V(e7w):=f, and div(zw):=e; in R

with

Fi=puf+ANa— (VAF+2VA-Va—(w-VNa and e;=ph—VA .
Moreover, owing to the supports of  and A, (f, e1) belongs to W(l)’p(R?’) X Wll’p(R3). It is clear that f;
satisfies (IIL.71) and thus it follows from 3.7, that there exists a unique (z,60) € WTP(R?) x W ?(R3)

such that
—Az4+w-Vz+Vl=f and divz=e; in R3.

and thus,
“Alpu—2z)+w-V(pu—2)+V(umr—0)=0 and div(pu—2)=0 in R3,

with (u7m—60) € LP(R?) and (pu—z) € Wé’p (R?). Then, using the argument of uniqueness in section 4,
we deduce that 7 — 2z = 0 and 7w —6 = 0. Consequently, (2w, 27) belongs to WP (R?) x WP (R3).
In particular, we have pu = w and 7 = 7w outside Bg,+1, so the restriction of w to Bg,+1 belongs
to W2~YPP(9 Bg,.1). Therefore, (u, ) satisfies:

—Au+v-Vu+Vr=Ff and divu=h in Qg 41, uaBR()H:f[ﬂ and wu|p =g. (II1.113)

Observe that for any ¢ € W' (Qp, 1) we have

/ u~V<pdx:—/ pdivudx + pu - ndx.
Qpry+1

QRg+1 OQRy+1

In particular, for ¢ = 1, we have

/ h(x)dX:/ u-ndx:/ u-ndx+/g-ndx. (I11.114)
QRg+1 9QRy+1 0 BRry+1 r

and thus, according to Theorem 14 and Corollary 7 of [13], this problem has a unique (u,7) €
W2P(Qp,41) X WH2(Qp 11). This implies that (u,7) € WTP(Q) x W (). The uniqueness of the
solution (u,7) follows from this inclusion W2P(Q) x W *P(Q) ¢ WEP(€) x LP(€) which holds for
p#3/2.

ii) Apriori Estimate:

First observe that each solution (&,7) € W(l)’p (©2) x LP(Q2) to the Oseen problem (III.1) with null data
obviously belongs to W%’p (Q) x I/Vl1 P(Q). In fact the proof is very similar to that of Lemma 3.11 of
[8]. Conversly, we have W3P(Q) x W"*(Q) ¢ WyP(Q) x LP(Q). Now, considering the first step of

regularity, it follows that the continuous operator

0" WHP(@) x WIP(Q)/NH(Q) — WP () x WP(@) x Wro(r)
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

defined by : O'(u,m) = (— Au+v-Vu+ Vr,dive,ulr) is an isomorphism. Thus there exists a
constant C(v) depending on v € L3(2), Q and p such that

(A,u)iélﬁffg(ﬂ) [+ Al W2P(Q) +||m + /’L”Wll’p(ﬂ) < C(”)(H.f”wloap(g) + ”huwllap(g) + HQHW?*l/p,p(r))'
(II1.115)

Proceeding then as in Theorem 4.5 and Corollary 4.2, we can characterize the constant C(v) and we

obtain (II1.111).

O

Remark 4.4

As in the case of the Oseen problem in R3, for p > 3 and o = 0 or a = 1, the hypothesis of
fe WO (Q), he Wr(Q), ge W*V/PP() and v € H2(Q) is not sufficient to ensure the existence
of strong solutions for problem (IIL.1) in W2P(Q) x WlP(Q).

4.4 Very weak solutions in L”(Q) and in W?(Q)

In this section, we are interested in the existence and the uniqueness of very weak solutions for the
Oseen problem (II1.1). We recall some density results and Green formulas proved in chapter II:

T ( ) = { Y E Wl (Q); d U E Y P
Y ( )

According to Poincaré-type inequality (see [7]), this space can be equipped with the following norm:

i
H » HXZ Q) § : H HWO»T Q + || dive HWLP Q) -
'ryp( ) 1§Z7]§3 8:5] YA ( ) Y/ ( )

Note that if f € (X?p(Q))/ with ¢ =1 or ¢ = 0 then there exist Fo = (fi;)i<i j<3 € W%Z,(Q) and
fi € WP (Q) such that:
f=divFy+ Vfi. (T11.116)

Moreover, we can define

| f ||[X§’p(g)]/: max {H fij HWE’ZI(Q)’ 1<i4,5<3,[ f1 ||W__Z1,p/(9)} :
The first result is given by the following lemma:
Lemma 4.3 Suppose that 0 < % — =< %, then

i) For all g e W_}"*(Q) and ¢ € X} ,(Q), we have

<VQ7 ‘P>[Xi,7p,(Q)]/><Xi,7p,(Q) = <q7 div LP>W:117P(Q)XW1LP’(Q) : (111117)
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III.4 Oseen problem in an exterior domain

i) If in addition p' # 3, then for all g € Wy "(Q) and ¢ € Xg/p,(Q), we have
Vo edxe, rxxe, @ = ~{GAVR)ng g ) - (II1.118)

Giving a meaning to the trace of a very weak solution of the Oseen problem is not trivial task. We

need to introduce appropriate spaces. First, we consider the space:
2,0/ .
Yy @) = {¢ € Wi¥(Q), ¢l =0, diveplp =0},

that can also be described (see [8]) as:

Yya@) = {w e Wi (@9l = 0,52 -l o} (IT1.119)

Note that if ¢ € Y (), then diveyy € W;’p /(Q) and the range space of the normal derivative
Y1 - Yp/7g(Q) — Wl/p’p/(F) is

Zy(T) ={ze W'/PP(); z.n=0}.
Secondly, we shall use the space:
Ti,(Q) = {ve W(Q); Ave XL, ()]},
equipped with the norm:

0z o= @ sy + 11 A0 lxe, -

We also introduce the following space:
po(div, @) = {v € W7, (Q):dive e W ()}

This space is equipped with the graph norm. Moreover, we have the following result (see [8] for the
proof):

Lemma 4.4 Let % < p<ooand % + % = % Then the mapping v, : v — v-|r on the space D(Q)

can be extended by continuity to a linear and continuous mapping, still denoted by ~,, from Tfip(Q)
into WYPP(T) for £ =0 and if p # 3 for £ =1 and we have the Green formula: for any v € Tﬁp(ﬂ)
and ’l,b S Yp/j(Q),

9

<A”7¢>[Xﬁ/7p,(ﬂ)]’xxﬁ,yp,(9) - /Q v- Atpdz — <'Ura n (111.120)

> W—1/PP(T)x WL/P:P'(I) .
Finally, we have

Lemma 4.5 Let Q be a Lipschitz open set in R3. Suppose that 0 < %

Then
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

i) The space D(Q) is dense in Hy, ,(div, Q).

ii) The mapping v, : v — v - n|p on the space D(Q) can be extended by continuity to a linear and
continuous mapping, still denoted by vy, from Hy, ,(div,Q) into W_l/p’p(F). If in addition % = %—i— %
and 3 < p < 0o, we have the following Green formula: for any v € Hj, ,(div,Q) and ¢ € Wllfe (Q),

/Qv- Veodz+ /Q pdivede = (v n, ¢>W,1/p,p(r)xw1/p7p/(r) ) (I11.121)

4.4.1 Very weak solutions in L”(Q).

To begin with we introduce the definition of very weak solution.

Let
0 ! r —1/p,
fe[X2, (], heL"(Q), and ge W/PP(D), (111.122)
with 5 L1 )
§<p<OO and E+§:;, (A]_)

yielding 1 < r < 3.

Definition 4.1 (Very weak solution for the Oseen problem) We suppose that r and p satisfy
(A1) and let f, h and g satisfy (IT1.122) and let v € L3(Q). We say that (u,7) € LP(Q) x Wal’p(Q)
is a very weak solution of problem (II1.1) if the following equalities hold: For any ¢ € Y, o(Q2) and
0 WyP' (9),

. B op
[ (A= divwe ) do= (1T 0) g i = Pl (gm0 ) (IL123)

/Qu- V0 dz — —/Qhﬁdm—l— (9" 10 0) 1 () ot/ (1) (ITT.124)
where the dualities on 2 and I are defined by:
<'v >Q = <'v '>[Xg,’p,(ﬂ)}'><X2/7p,(Q) s <'a ->F = <'> > W—L/Pp (D) x Wl/p,p/(p) .

Note that if (A1) is satisfied, we have:
WoP' () < L7 (Q) and Y,y 0(Q) = X%, (),
and / u- (v-V)dx is well defined , which means that all the brackets and integrals have a sense.
Q

Proposition 4.1 Let p and r satisfy (A1) and let f € [X2/7p/(ﬂ)]/7 h e L7Q), v e L3N and

ge W YPP(T). Then the following two statements are equivalent:
i) (u,m) e LP(Q) x Wo_l’p(Q) is a very weak solution of (II1.1)

it) (w,m) satisfies (II1.1) in the sense of distributions.
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III.4 Oseen problem in an exterior domain

Proof. i) = ii) Let (u,7) € LP(Q) x W, ?() be a very weak solution of (IIL1), then if we take
p € D(Q) and 0 € D(Q) we can deduce by (I111.123) and (I11.124) that

—Au+v-Vu+Var=fin Q and V-u=~hin Q,

Since v € L3 () and % + % = 1 we can deduce by Hélder that v ® w € L"(Q). Moreover, we have

—Au=—div(v@u) -V +f€[X) () and u € T),.(Q). Now, let ¢ € Yy o(Q) C XU ,(Q), it
follows
(Au, @) = (=Vr—div(v@u) + f,¢)q -

Lemma 4.4 implies that
oy
(—Au,p)q = /Q u - Apdx — <uT, 8n>p

and from (II1.118) that
(Vm plg=—(m V- ‘P>wgl"°(mxv°v§”"(m ‘

On the other hand, we have V¢ € L" (Q) and div(v ® ¢) = v- V¢ € LP (Q). Then we obtain

(div(v@ u),p)g = (div(v®@u), @) Wl @) Wh (@)
= —{v@u V)@

= —/ u - div(v ® ) dx.
Q

Thus we have
/uA dx—<u a('O> = (m, V- ) +(f, @) +/u div(v ® ¢) dx
o ®p T on - = 5 ® ng,p(ﬂ)xﬁ,(l),p’(g) ,PIQ o 02 )

and we can deduce that for any ¢ € Y,y ¢(Q)

dp\ Oy
<’LL7-, a'n>1" - <g7'7 a'n>1" .

Now let u € WYP# (), then we have (u, — g,, pt)p = (u, — g,, p,)p-It is clear that p, € Z,y(82)
0
and it implies that there exists ¢ € Yy o(2) such that 8i = p, on I'. We can deduce that u, = g,
n

in Wfl/p’p(I‘). From the equation V - u = h, we deduce that w € H,(div,2), then it follows from
(ITL.121), that for any 6 € W2¥ (),

(u-n,0)p=(g-n,0)p.

Consequently u-n = g-n in W~/P?(I") and finally u = g on I,
i7) = 1)] The converse is a simple consequence of (II1.121), (III.118) and Lemma 4.4.
O

Theorem 4.9 Let Q be an exterior domain with C“' boundary and let p and r satisfy (A1) and
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Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

let f, h, and g satisfy (111.122), v € H3(Q). Then the Oseen problem (II1.1) has a unique solution
ue LP(Q) and w € Wal’p(Q) if and only if for any (A, pu) € N(()p/)*(Q):

(FiX) = (hp) + (g, (Wl =V A) - ) = 0.

Moreover, there exists a constant C > 0 depending only on p, r and ) such that:

4
Il + 1 g o< CO+ 0l (1 Pl + 1B @ + 119 ly-vmnge
(I11.125)

Proof. It remains to consider the equivalent problem: Find (u,7) € LP(Q2) x W, YP(Q) such that
for any w € Y,y () and 6 € Wol’p/ () it holds:

/Qu- (—Aw+v-Vw+ VO)dx — <7T>divw>wglﬂ’(sz)x M)’p/(ﬂ) -

ow
<f>w>Q - <grv 8’I7,>F + <g "N, ‘9>W—1/p 2(T) ><W1/pp / h 6 dx.

Let T be a linear form defined by:

T: LPQ)x W70 — R
ow
(F,p) — <-f7w>Q — (9 an . +(g- n7‘9>W—1/p,p(p)xw1/p,p’(p) - /Qhﬁdx,
with (w,0) € W27 (Q) x Wl¥(Q) is a solution of the following Oseen problem:
—Aw+v-Vw+VO=F and divw=¢ inQ, w=0 onl,
and satisfying the following estimate: (see Theorem 4.7)

inf lw 4+ Al

F0 + pll 1pr oy <
AN (@) Wo (@

w27 (Q) ) =

4
CL+ v ) (||FHL,, + Il Q)> (111.126)

Then we have for any pair (F, ¢) € L (Q) x Wol’p/(ﬂ) and for any (A, pu) € Nép/)*(Q)

ow
’<f7w>ﬂ_<g’r78n>r g ne /hedX’
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III.4 Oseen problem in an exterior domain

0 A
| (fyw 4+ X)g — <gT,(w”> + <g-n76’+u>r—/ h(0+ p)dx| <
on T Q
€ (15 et o+ 119 g-vmgay + 1 ey ) (1104 Xz gy + 10+ 1 lyar )

Using (II1.126), we prove that

| {(fLw)g — <gﬂg:>r+ (g-n,0)p —/Qthx |<

4
C+ 11wl (IFlor) + 19l gy ) (1F1xe, oy + sl + 1Bl ) -

It implies that the linear form T is continuous on LP (Q) x Wy " ’ (©2) and moreover there exists a unique
solution(u, w) € LP(2) x ng’p(Q) solution of the Oseen problem (III.1) satisfying estimate (II11.125).
]

4.4.2 Very weak solutions in W(i’ll)(ﬂ)

Here, we are interested in the case of the following assumptions:
felXh, (), he W (Q) and ge W 1/PP(D), (I11.127)
with
1 1
—<p<oo, p#3 and ];4—3:*, (Asg)

yielding 1 < r < 3.

Definition 4.2 (Very weak solution for the Oseen problem) Suppose that (Ag) is satisfied and
let f, h and g satisfying (IIL127) and let v € L3(Q). We say that (u,7) € WYP(Q) x W_1P(Q) is a
very weak solution of (IIL.1) if the following equalities hold: For any ¢ € Y 1(2) and 0 € Wi’p/(Q),

. . - Op
/Qu. (—Ap —div(v® ¢)) de— (7,div <p>VICi"’(Q)XI5V1’p,(Q) ={f)g — <gT, an>F (TI1.128)

/Qu- Vode=— /Q hodz+ (g- n, 9>W,1/p7p(r)xw1/p7p/(r) (I11.129)

where the dualities on  and I' are defined by:

{oa =1 '>[Xi,’p,(ﬂ)}’><Xi,7p,(Q) odr=1(,2) W—1/pP () W/PP (1) *
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Note that if 2 5 <p<oo and 1 >+ 3 =, we have:
WEP(Q) = WPT(Q), and  Yp(Q) = XL, (),

and / u - div(v ® ) dx is well defined which means that all the brackets and integrals have a sense.
Q

As previously we prove under the assumption (Aj), that if f, h, g satisfy (II1.127) and v € L3(9),
then (u,7) € W2(Q) x W_"P(Q) is a very weak solution of (III.1) if and only if (u,7) satisfy (IIL1)

in the sense of distributions.

Theorem 4.10 Let Q be an exterior domain with CY' boundary. Suppose that (As) is satisfied and let
£, h, g satisfy (I11.127) and let v € H3(Q). Then the Oseen problem (I1L1) has a solution u € W P(Q)
and © € W_"P(Q) if and only if for any (A, p) € Ng/(ﬂ):

(FEA) = (hop) + (g, (n] = VA) - n)p = 0.

In WY2(Q) x W "P(Q), each solution is unique up to an element of N9(Q) and there exists a constant

C > 0 depending only on p, r and ) such that:

2 o 1 Al oy 17+ sy -2

7
C -+l (A, iy + 1l + 1181 -1/ (I11.130)
r',p —

Proof. It remains to consider the equivalent problem: Find (u,n) € W2(Q) x W~ ["*(Q) such that
for any w € Y,y () and 6 € Wll’p/(Q) the following equality holds:

/Q (—Aw +v-Vw+ VO)dx — (r,div w>W:1 PP (@) =

ow
(w90 G ) +g-n0)p— [ noix.

Let T be a linear form defined from (W%p/(ﬂ) < WP (Q)) L Ng(Q)) onto R by:

T(F,¢) = (f,w)g — <gm (‘3w> (g-n,m) / h6dx,
on T
with (w,0) € W?’p/ (Q) x Wll’pl(Q) is a solution of the following Stokes problem:

—Aw+v-Vw+VO=F and divw=¢ inQ, w=0 onTl,

80
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and satisfying the following estimate: (see Theorem 4.8)

inf ([|lw+ A

+ 110 + p| L )< C
(Am)eNt (@) Wit @

w2 (Q)

6
1+ 119 llz3@) (Il gy + (12 @)l ) - (IIL131)

/

Then for any pair (F,¢) € (W?’p/(Q) X Vifll’p/(Q))J_ N5P(€) and for any (X, p) € NP (Q)
ow
[ wla = (gr G ) +lg-mb) — [ hodx| =

0 A
Fowt+ N~ (9. 55 g4 — [ 00+ wix| <

C (15 ey, o0 + 119 Iw-1imogay + 1 oy ) (104 X llzorgy + 185 1 lgrorey )

Using (II1.131), we prove that

ow
— g <
| (f,w)q <gT, o >F (g-n,0)r / h wdx|

6
C+19l500)° (Il o gy + 1+ 110 i)l o
< (1 iy + 119 hagsvmmay + 1 B lyogiey )

From this we can deduce that the linear form 7' is continuous on the following space
WP () x WP (Q) L NP(€2) and we deduce that there exists (u,7) € (W2(Q) x W "?(€)) solution
of the Oseen problem (III.1), which is unique up to an element of N5(Q), satisfying the estimate
(II1.130). O

Remark 4.5

Observe that each solution (X, 1) € W>2(Q) x W_[?(Q) to the Oseen problem (II1.1) with null data
obviously belongs to N§(£2), in fact the proof is very similar to that of Lemma 3.11 of [8]. Moreover,
if p # 3, we have NB(Q) ¢ W2(Q) x W "P(Q).

81



Chapter III. Uniqueness and Regularity for the Exterior Oseen Problem

82



Chapter IV

Exterior Stokes Problem with Different

Boundary Conditions

Nous montrons ici I'existence et 'unicité de solutions généralisées et de solutions fortes du probléme
de Stokes dans un domaine extérieur avec différentes conditions aux limites sur le bord. Nous nous

intéressons, dans ce chapitre, par le cadre hilbertien.

1 Introduction

Let € denotes a bounded open in R3 of class C'!, simply-connected and with a connected boundary
0V =T, representing an obstacle and ) is its complement i.e. Q = R3\ /. Then a unit exterior
normal vector to the boundary can be defined almost everywhere on I'; it is denoted by n.

The purpose of this paper is to solve the Stokes equation in 2, with two types of non standard

boundary conditions on I'.

—Au+Vr=f and divu=yx in €,
(87)
u-n=g and curluxn=hxmn onl,

and

—Au+Vr=f and divu=yx in

(Sw)
mT=79, uxXxm=gxn on [' and /u-ndazO.
r

Since this problem is posed in an exterior domain, an approach adapted to the solution is the use
of weighted Sobolev spaces. Let us begin by introducing these spaces. A point in 2 will be denoted by
x = (21,9, 23) and its distance to the origin by r = |x| = (27 + 23 + 23)/2. We will use the following
weights:

p=p(r)=(1+r%)"2

For all m in N and all k in Z, we define the weighted space

W2(Q) = {ue D'(Q); YA e N3 : 0< |\ <m, p(r)F ™Dy e L2(Q)},
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which is a Hilbert space for the norm
. 1/2
HUHW;"’2(Q) = Z HpkimHAIDAUH%Q(Q) )
IN=0
where |[.||2(q) denotes the standard norm of L*(2). We shall sometimes use the seminorm
1/2
‘U‘W;"*Z(Q) = Z Hka)\uH%Q(Q) :
[A|=m

In addition, it is established by Hanouzet in [42], for domains with a Lipschitz-continuous boundary,
that D(Q) is dense in W,TQ(Q) We set W,:nz(ﬂ) as the adherence of D() for the norm || . ||Wm,2(Q).
k

Then, the dual space of W,;n ’2((2), denoting by W_;" ’2(9), is a space of distributions. Furthermore,

as in bounded domain, we have for m =1 or m = 2,
Wklz(Q) = {v € Wkl’Q(Q), v=0 on 89},

and

Wﬁ%m:{vemﬁgmv222200ném}

v
where — is the normal derivate of v. As a consequence of Hardy’s inequality, the following Poincaré

n
inequality holds: for m = 0 or m = 1 and for all k in Z there exists a constant C' such that
Trm,2
’ m < m, .
Vve W, (9Q), HUHWk 2 C|U|W 2(q)» (IV.1)

i.e., the seminorm ‘.|W£n,2(Q) is a norm on W;”L?(Q) equivalent to the norm H.lezn,Q(Q).

In the sequel, we shall use the following properties. For all integers m and k in Z, we have
Vn €Z with n<m-—k—-2 P, cC W), (IV.2)

where P, denotes the space of all polynomials (of three variables) of degree at most n, with the con-
vention that the space is reduced to zero when n is negative. Thus the difference m —k is an important

parameter of the space W) 2(Q) We denote by P2 the subspace of all harmonic polynomials of P,,.

Using the derivation in the distribution sense, we can define the operators curl and div on L*(12).
Indeed, let < .,. > denote the duality pairing between D(2) and its dual space D'(Q2). For any
function v = (vy,v2,v3) € L*(R), we have for any ¢ = (¢1, @2, p3) € D(Q),

/ v-curlpdx
Q

_ Ops _ Opa Op1 _ Os O¢2 _ Op1
o / ( (8£U2 8x3)+v2(8x3 a$1)+ (8CU1 a.’bg) dIII,

(curl v, )
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IV.1 Introduction

and for any ¢ € D(Q)

. B B Oy i 8

We note that the vector-valued Laplace operator of a vector field v = (v1, vg, v3) is equivalently
defined by
A v = grad (div v) — curl curl v (IV.3)

or by
Av = (A’Ul, AUQ, AU:},).

This leads to the following definitions

Definition 1.1 For all integers k € Z, the space Hy(curl, Q) is defined by
H: (curl, Q) = {’U € W%Q(Q);curl vE ngl(Q)} ,

and is provided with the norm:

1

2
ol curt ey = (101 g + leurl ol oz )
The space Hy(div,Q) is defined by
Hy(div, Q) = {ve WP (Q);div v e WE (Q)}

and is provided with the norm

1

2
Joll sy = (I0lyp20y + v olEy02 o)

Finally, we set
X3(Q) = Hi(curl,Q) N Hi(div, Q).

It is provided with the norm

N|=

X2@) = (ol oy + v ol o + lleurl ol%ne o)

These definitions will also be used with Q) replaced by R3.

The argument used by Hanouzet see [42] to prove the density of D(Q) in W, () can be easily adapted
to establish that D (1) is dense in H(div, Q) and in Hz(curl, Q) and so in X3 (). Therefore, denoting

by n the exterior unit normal to the boundary I', the normal trace v-n and the tangential trace v x n
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can be defined respectively in H~/2(T") for the functions of H?(div, ) and in H~Y2(T") for functions
of H?(curl,Q), where H'/2(T") denotes the dual space of H'/2(T'). They satisfy the trace theorems

i.e, there exists a constant C' such that

Vo € Hi(div, ), [lo-nllym < Clloll g o) (1V.4)

Vv e Hz(CUFL Q)a H’U X nHH—l/Q(F) < CH'UHHi(curl,Q) (IV5)

and the following Green’s formulas hold: For any v € H3(div,Q) and ¢ € Wi,?(Q)

<'U-n,<,p>rz/'u-Vg0dx+/godivvdm, (IV.6)
Q Q

where (, ) denotes the duality pairing between H~1/2(I") and H'/?(T).
For any v € Hi(curl, Q) and ¢ € Wl_i(Q)

(VX n,p)p= / v - curl g dz —/ curl v - pdx, (IV.7)
Q Q

where (, ) denotes the duality pairing between H~Y/2(T') and HY?(T).

Remark 1.1 If v belongs to HE(div,Q) for some integer k > 1, then divwv is in L'(Q) and Green’s
formula (IV.6) yields
(v-m, 1) = / divvdz (IV.8)
Q

But when k < 0, then div v is not necessarily in L*(Q) and (IV.8) is generally not valid. Note also
that when k <0, WE’,?_I(Q) does not contain the constants.

The closures of D(Q) in HZ(div,Q) and in H}(curl, Q) are denoted respectively by Hlj (curl, )
and H ,3 (div, ) and can be characterized respectively by:

IiI;(curl, Q) = {'v € Hi(curl,Q); v x n =0 on F},

ﬁ;(div,Q) = {v € Hi(div,Q); v-n=0on F}.
Their dual spaces are characterized by the following propositions:

Proposition 1.1 A distribution f belongs to [ﬁs(div, O)) if and only if there exist 1 € W(i’i(Q) and
X € Wg}?_l(Q), such that f= ) + grad .

Moreover

112 e = 0 {1l oz Iz o} (IV.9)

Proof. Let v € W(ii(Q) and y € WE’,?_l(Q), we have

Yo e D(Q), (Y +gradx, v)o @)xn@) = /Q(¢ v — xdive)de.
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Therefore, the linear mapping £ : v —— [o(¢ - v — x divv) dz defined on D(Q) is continuous for
the norm of IiI:(div, ). Since D(S?) is dense in Iof,f(div, 2), £ can be extended by continuity to a
mapping still called £ € [foI,j(div, )]". Thus ¥ + grad y is an element of [fI,f(div, ).

Conversely, Let E = W%Q(Q) X W,?fl (Q) equipped by the following norm:
_ 2 . 2 1
Jols = (lolFyna gy + Idiv ol 0z o)?.

The mapping 7' : v € Iof,?(div, Q) — (v, dive) € E is an isometry from Ioilf(div, Q) in E. Suppose
G = T(Iof,f(div, Q)) with the E-topology. Let S =T : G — fI:(div, ). Thus, we can define
the following mapping:

ve G — (f,Sv) for f € [Hy(div, Q)

[EL2 (div, Q)] x H, (div, Q)
which is a linear continuous form on GG. Thanks to Hahn-Banach’s Theorem, such form can be extended

to a linear continuous form on F, denoted by Y such that

1] (IV.10)

= Hf‘ |[iI:(diV, Q)]/

From the Riesz’s Representation Lemma, there exist @ € W%i(Q) and x € ng_l(Q), such that for
any v = (v1,v2) € E,

T, v) :/v- da:—i—/v dx,
( >E><E Ql¢ QzX

with || 1|z = max {’|¢|’W(i>i(g)a HXHWE’,?_I(Q)}' In particular, if v = Ty € G, where ¢ € D(Q), we

have:
i, 9°>[ﬁ§(div, QX HE(div,Q) ¥ -Vxe) [ 2 (div, Q)) x H 2 (div, Q) °
and (IV.9) follows imeddiatly from (IV.10). O

We skip the proof of the following result as it is similar to that of Proposition 1.1.

Proposition 1.2 A distribution f belongs to [IOI,?(curl, )] if and only if there exist functions
e W22(Q) and € € W2 _(Q), such that f= 1 + curl €.

Moreover

112 ety = 5 1l oz 1€ oz

Definition 1.2 Let Xi,N(Q); Xz,T(Q) and Xi(Q) be the following subspaces of X3 (Q):
XI?,N(Q) = {UG X?(Q); vxn=0on P},

Xir(Q2) = {’UG X2 (Q);v-n=0on F},
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and
o 2
X5, (Q) = X7 n () N X7 ().

Now, we give some results related to solving the Dirichlet problem and Neumann problem which are
essential to ensure the existence and the uniqueness of some vectors potentials and one usually forces
either the normal component to vanish or the tangential components to vanish. We start by giving

the definition of the kernel of the Laplace operator for any integer k € Z:
A,?,l = {X € Wi,?(QL Ax=0 in Q and x=0 on F}.

In contrast with a bounded domain, the Dirichlet problem for the Laplace operator with zero data
can have nontrivial solutions in an exterior domain; it depends upon the exponent of the weight. The

result that we state below is established by Giroire in [41].

Proposition 1.3 For any integer k > 1, the space AkA_l is a subspace of all functions in Wi’kZ(Q)
of the form v(p) — p, where p runs over all polynomials of iPk,A_l and v(p) is the unique solution in
Wol’Q(Q) of the Dirichlet problem

Av(p)=0 in  and v(p)=p on I. (Iv.11)

AkAfl s a finite-dimentional space of the same dimension as ‘.PkAfl and Ak{l = {0} when k <0.

Our second proposition is established also by Giroire in [41], it characterizes the kernel of the Laplace

operator with Neumann boundary condition. For any integer k € Z,

NkA_lz{eri’lf(Q); Ax=0 in Q and Z—fb:o on F}.

Proposition 1.4 For any integer k > 1, NkAfl the subspace of all functions in Wi’,?(Q) of the form
w(p) — p, where p runs over all polynomials of kaA_l and w(p) is the unique solution in W01’2(Q) of the

Neumann problem

Ow(p) _ Ip
on on

Here also, we set Nk{l = {0} when k <0; NkAfl s a finite-dimentional space of the same dimension

Aw(p)=0 in Q and on I. (IV.12)

as P2 | and in particular, N5 = R.

Next, the uniqueness of the solutions of Problem (87) and Problem (8 y) will follow from the charac-

terization of the kernel. For all integers k in Z, we define
Y%,N(Q) = {w € sz’N(Q); divw=0 and curlw=0 in Q}

and

Yir(Q) = {we X2 7(Q); dvw=0 and curlw=0 in Q}.
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The proof of the following propositions can be easily deduced from [38].

Proposition 1.5 Let k € Z and suppose that ' is of class OV, simply-connected and with a Lipshitz-

continuous and connected boundary I.

If k <1, then Y 5(€) = {0}.

If k> 1, then Y7 5(Q) = {V(U(p) —p), PE ’PkA_l}, where v(p) is the unique solution in Wy*(Q) of
the Dirichlet problem (IV.11).

Proof. Let k € Z and let w € X?; () such that divw = 0 and curl w = 0 in Q. Then since €' is
simply-connected, there exists y € Wi,? (©), unique up to an additive constant, such that w = V .
But w x n = 0, hence, x is constant on I' (T is a connected boundary) and we choose the additive
constant in x so that x =0 on I'. Thus x belongs to A2 () .

Due to Proposition 1.3, we deduce that if k& < 1, yx is equal to zero and if k > 1, x = v(p) — p, where p
runs over all polynomials of £ | and v(p) is the unique solution in VVO1 2(Q) of problem (IV.11) and
thus w = V(v(p) — p). Now, to finish the proof we shall prove that V(v(p) — p) belongs to Y,?’N(Q)

and this is a simple consequence of the definition of p and v(p). O
We skip the proof of the following result as it is entirely similar to that of Proposition 1.5.

Proposition 1.6 Let the assumptions of Proposition 1.6 hold.
If k <1, then Y} 1(92) = {0}.

If k > 1, then Y,iT(Q) = {V(w(p) —-p), PE i]’k{l}, where w(p) is the unique solution in W(}’Q(Q) of
the Neumann problem (IV.12)

The imbedding results that we state below are established by V. Girault in [38]. The first imbedding

result is given by the following theorem:

Theorem 1.1 Let k < 2 and assume that € is of class CY''. Then the space X,?_LT(Q) is continu-
ously imbedded in W,lc’Q(Q). In addition there exists a constant C' such that for any ¢ € Xlg—l,T(Q):

lell iz < € (I!@\!uzgzl(g) +11div ] oy + chrlsouwg,z(m) . (1V.13)

If in addition, Q' is simply-connected, there exists a constant C such that for all ¢ € X,?_LT(Q) we

have
||‘PHW11€,2(Q) < C’(|\div<p|\WZ,z(Q)+||curlcp||W%2(Q)

N(—k)
£ 2| Vuta) do, (v.14)
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where {g;}; (2 ") denotes a basis of {q € P2, q(0) = 0}, N(—k) denotes the dimension of P>, and
w(qy) is the corresponding function of Nék. Thus, the seminorm in the right-hand side of (IV.14) is
a norm on X7 7(Q) equivalent to the norm H(PHWI,Q(Q).
’ k

The second imbedding result is given by the following theorem:

Theorem 1.2 Let k < 2 and assume that Q' is of class CY'. Then the space X,?_LN(Q) is continu-
ously imbedded in Wi’Q(Q). In addition there exists a constant C such that for any ¢ € Xl?—l,N(Q):

HSOHW%Q) <C <|’(’0HW2’21(Q) + HdiV‘PHWzv?(Q) + chrlsonzﬂ(Q)) . (IV.15)

If in addition, Q' is simply-connected and its boundary T is connected, there exists a constant C' such
that for all ¢ € X,?_LN(Q) we have

lellwiag) = C(Ildivcpllwoa(g +|\cur1¢|\up,2
- \/ n)do| + Z y/ @ - n)g;jdal), (IV.16)

(=)

where the term | [.(¢ - m)do| can be dropped if k # 1 and where {qj}év:l denotes a basis of P2,. In

other words, the seminorm in the right-hand side of (IV.16) is a norm on X,?_LN(Q) equivalent to

the norm |](,0||W12 @

Finally, let us recall the abstract setting of Babuska-Brezzi’s Theorem (see Babuska [16], Brezzi [19]
and Amrouche-Selloula [14]).

Theorem 1.3 Let X and M be two reflevive Banach spaces and X' and M’ their dual spaces. Let
a be the continuous bilinear form defined on X x M, let A € L(X; M') and A’ € L(M; X') be the
operators defined by

Yo e X, Ywe M, alv,w) = < Av,w > = < v, A'w >

and V = Ker A. The following statements are equivalent:

i) There exist > 0 such that

inf sup _alv,w) > . (IV.17)
weM yex [|[v]x [[wllm
w0 g

ii) The operator A: X/V + M’ is an isomophism and 1/f3 is the continuity constant of A~1.

iii) The operator A’ : M w X' 1V is an isomophism and 1/ is the continuity constant of (A’)~1

Proof. First, we note that ii) < éii) because (X/V) = X’ 1V where this last space contains the
elements f € X’ satisfying (f, v) = 0 for any v € V. It suffices then to prove that i) < iii). We begin
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with the implication i) = éi7). Due to (IV.17), we deduce that there exists a constant 5 > 0 such
that: .
Vwe M, ||lw|a < - sup Jav, )]
Buex vllx
v#£0

So, 1

lwllar < 3
and A’ is injective. Moreover, Im A’ is a closed subspace of X’ where A’ : M — X'. Moreover,
Im A’ = (Ker A)* = X’ 1 V. It remains to prove that iii) = ). For this, it suffices to prove that if
ii1) holds, then (IV.18) also holds and (IV.17) follows immediately. O

1A w]|x, (IV.18)

Remark 1.2

As consequence, if the Inf-Sup condition (IV.17) is satisfied, then we have the following properties:

i) If V = {0}, then for any f € X', there exists a unique w € M such that
1
Yo e X, a(v,w) =< f,v> and |w|y < BHfHX/ (IV.19)

ii) If V = {0}, then for any f € X', satisfying the compatibility condition:
Yv eV, < f,v> =0, there exists a unique w € M such that (IV.19).

iii) For any g € M', Jv € X, unique up an additive element of V', such that:

1
Vwe M, a(v,w) = <g,w> and |jv]lx;v < Zllgllar-

2 Preliminary results

In this sequel, we prove some imbedding results. More precisely, we show that the results of Theorem
1.1 and the result of Theorem 1.2 can be extended to the case where the boundary conditions v-n = 0
or v xn = 0 on I' are replaced by inhomogeneous one. Next, we study some problems posed in
an exterior domain which are essentials to prove the regularity of solution for the Problem (87) and
Problem (8y).

For any integers k in Z, we introduce the following spaces:

Z2r(Q) = {ve X2(Q) and v-ne H(D)}, 2Z2y(Q) = {ve XA(Q) and vxne H/(D)}

ME(Q) = {ve W7, (), divee W5(Q), curlve WFh(Q) and v-ne HY*(I)}.
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Proposition 2.1 Let k = —1 or k =0, then the space Z,?,T(Q) is continuously imbedded in W,ifl(Q)

and we have the following estimate for any v in Zg’T(Q).'

HvHWklfl(Q) < C’(HvHW?c,z(Q) + ||curl v”W2f1(9) + ||div v”Wzgfl(Q) +||v- ”HHl/?(r))- (IV.20)

Proof. Let k= —1 or kK = 0 and let v any function of Z gT(Q) Let us study the following Neumann

problem:

Ay =dive inQ and 0I,x =v-n onl. (Iv.21)
It is shown in Theorem 3.7 and Theorem 3.9 of [38], that Problem (IV.21) has a unique solution x in
W23 (Q)/R if k= —1 and x is unique in W,”3(Q) if k = 0. With the estimate

19 Xlhy,22 @) < CUIdIV 0lly02 ) + 10~ mll173(r))- (1v.22)

Let w = v — grady, then w is a divergence-free function. Since Wklfl(Q) — W,S’2(Q), then
w € X,aT(Q). Applying Theorem 1.1, we have w belongs to Wklfl(Q) and then v is in Wklfl(Q)
According to Inequality (IV.13), we obtain

[l 22 @) < Clwl oo + leurlwlyos o).

Then, the inequality (IV.20) follows directly from (IV.22). O

Similarly, we can prove the following imbedding result:

Proposition 2.2 Suppose that Q' is of class C*'. Then the space MELT(Q) is continuously imbedded
in W22(Q) and we have the following estimate for any v in MElT(Q)

ol iz < C 0l iy + lleurl ol oy + [div ol gy + 10 ll o). (1v.23)

Proof. Proceeding as in Proposition 2.1. Let v in MELT(Q). Since €Y is of class C' %!, then according
to Theorem 3.9 of [38], there exists a unique solution y in W;*(Q)/R of Problem (IV.21). Setting
w = v — grad x. Since W>*(Q) is imbedded in ng 2(), it follows from Corollary 3.16 of [38], that

w belongs to W12 2((2) and moreover we have the following estimate
[|w]| w22(Q) < C(H“’H wi?(@Q) + [[curl w|| Wi’2(Q))‘

Then v = w + grad x belongs to W %(Q) and we have the estimate (IV.23). O

Although we are under the hilbertian case but the Lax-Milgram lemma is not always valid to
ensure the existence of solutions. Thus, we shall establish two "Inf-Sup" conditions in order to apply

Theorem 1.3. First recall the following spaces for all integers k € Z:
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VEir(Q) = {z € X?r(Q); divz=0in Q and / z-V(w(q) —q)do =0,V (w(q) —q) € Nék_l}
’ ' r
V,?’N(Q) = {z € X,?}N(Q); divz=0in  and /(z ‘n)qdo =0,V q¢€ TPAkl} .
r
The first "Inf-Sup" condition is given by the following lemma:

Lemma 2.1 The following Inf-Sup Condition holds: there exists a constant B > 0, such that

Jocurley - curlp de

inf sup > B. (IV.24)
eeVer () ypevz, (@ 1¥Ylxz, (@llPllxz, @
AR ’ ’

Proof. Let g ¢ W(E(Q) and let us introduce the following Dirichlet problem:
—Ax=divg in 2, x=0 on TI.

It is shown in Theorem 3.5 of [38], that this problem has a solution x € Wif (Q) unique up to an

element of A5 and we can choose y such that
HV XH w2(Q) < CHQ” w2 (@)
Set z =g — Vx. Then we have z € W>3(Q), divz = 0 and we have
”’ZHW??(Q) < CHQHW(E(Q)' (IV.25)

Let ¢ any function of VOQVT(Q), by Theorem 1.1 we have ¢ € X&T(Q) — W1%(Q). Then due to
(IV.14) we can write

| [ curlp - gdz|

llell 2 < Clleurl || o2,y =C  sup (IV.26)
Xor(® MO ewozg) N9lwos)
g7#0
Using the fact that curlp € H2(div, Q) and applying (IV.6), we obtain
/ curlp -V xydz =0. (IV.27)
Q

Now, let \ € Wol 2(Q) the unique solution of the following problem:

AX=0 in Q@ and A=1 on TI.
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1))
It follows from Lemma 3.11 of [38] that / In do = C7 > 0. Now, setting
r on

1
E:z—a<z-n,1)FV)\.

It is clear that z € W%(Q), divz = 0 in Q and that (z-n,1); = 0. Due to Theorem 3.15 of [38],
there exists a potential vector @ € W2(€2) such that

z=curly, divyp=0 inQQ and ¥ -n=0 onl. (IV.28)

and we have

Y v(q) € N2, / - Vou(q)do =0. (IV.29)
r
In addition, we have the estimate
||¢HW1_?(Q) < C||E||W(l’f(ﬂ) < CHZHW%(Q)' (IV.30)

Using (IV.29), we obtain that 1) belongs to VEZT(Q). Since ¢ is H' in a neighborhood of T', then ¢

has an H' extension in ' denoted by @. Applying Green’s formula in €', we obtain

0= [ div(curlg)dz = (curlp - n,1)p = (curly - n, 1) .
Q/

Using the fact that curlp in HZ(div,Q) and A in Wi’f(ﬂ) and applying (IV.6), we obtain
0= (curlyp-n,1)p = (curlp - n,\) = / curly - V Adz. (Iv.31)
Q
Using (IV.27) and (IV.31), we deduce that

/ curlyp - gdx = / curlyp - zdz = / curlp - zdz. (IV.32)
Q Q Q

From (IV.30), (IV.25) and (IV.32), we deduce that

| [ocurlp-zdz| | [gcurly - curlyp dz|

HE|’W2’§(Q) B chrlwuwoj(g)

| o curle - gdz|

<C
Hg”W(lvf(Q)

Applying again (IV.14) and using (IV.29), we obtain

| [ocurlp - gdz| | [ curlp - curley dz|

lall w2 (Q)

<C

)

1%l x2,

and the Inf-Sup Condition (IV.24) follows immediately from (IV.26). O

The second "inf sup" condition is given by the following lemma:
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Lemma 2.2 The following Inf-Sup Condition holds: there exists a constant 8 > 0, such that

Jocurley - curlpdx

inf sup > 8. (IV.33)
ee V2, (@ yeve @) 1Plxz @ llellx2, @
»#0 PYF#0

Proof. The proof is similar to that of Lemma 2.1. Let g € W?’Z(Q) and let us introduce the

following generalized Neumann problem:
div(Vx—¢)=0 in @ and (Vx—g)-n=0 on I. (Iv.34)
It follows from [41] that Problem (IV.34) has a solution x € VVl1 2(Q) and we have
H Vx HWIO,Z(Q) < CH QH w2 (@)
Setting z = g — V x, then we have z € Ioflg(div, Q) and div z = 0 with the following estimate:
HZHW(IW(Q) < CHgHW?’Q(Q)' (IV'?’S)

Let ¢ be any function of V2, (). Due to Theorem 1.2, we have X2, y(€) < Wh(Q) and by
(IV.16) we can write

| o curle - gdz|
lellxz, y@ = Clewrlellyor g =C  sup == =
, gew?@) 19w )
970

(IV.36)

Observe that curl¢ belongs to H?,(div,Q) with ¢ x n = 0 on I' and x € W112(Q) Then using
(IV.6), we obtain
/ curlp - Vxdz = (curly - n,x)p =0. (IV.37)
Q

Due to Proposition 3.12 of [38], there exists a potential vector ¢ € W%’2(Q) such that

z=curly, divyp=0 inQ and ¥ xn=0 onT (IV.38)
and
/ ¥ -ndo =0 (IV..39)
r
In addition, we have
H¢Hw%v2(g) < Cll7|| w2 () (IV.40)

Then, we deduce that 1) belongs to V&N(Q). Using (IV.35), (IV.37) and (IV.38), we deduce that

curlp - gdex curlp - zdx curlyp - curly dax
0 < colle _ Q

HZHW(;Q(Q) ”CllI'l’(ﬂHW?,Q(Q)

llgll wi2(Q)
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Applying again (IV.16) and using (IV.39), we obtain

| [ocurlp - gdz| _ | [ curlp - curley dz|

9

Tolwoey lxz @)

and the Inf-Sup Condition (IV.33) follows immediately from (IV.36). O

Next, we need to study the problem:

—Agf=f and divE=0 in €,

N (IV.41)
Exn=gxn on I' and /(ﬁ-n)qdo’:O,VquPk.
r

(En)

Proposition 2.3 Let k = —1 or k =0 and suppose that g x n =0 and let f € [IOI,f_l(curl, D] with
div f= 0 in Q and satisfying the compatibility condition:

2 _
Vv € Yign(9), (B 002 (curt w2 (curt,0) = O (IV.42)
Then, Problem (E n) has a unique solution in Wl_i(Q) and we have:

Moreover, if fin WE’,SJFI(Q) and ' is of class C>', then the solution & is in Wz’,irl((l) and satisfies
the estimate:
< . .
1€ HW};H(Q) < f ||W(i’i+1(9) (Iv.44)

Proof. i) On the first hand, observe that Problem (F ) is reduced to the following variational
problem: Find & € Vzk,LN(Q) such that

YV ope XE N (), / curlé - curlpdz = (f, p)q, (IV.45)
' Q

where the duality on € is
e =<, '>[ﬁ1,f,1(cur1,Q)]'xﬁz,f,l(curl,sz)‘

On the other hand, problem (IV.45) is equivalent to the following problem: Find & € Vzk_L ~(Q)
such that

Vo VI n(Q) / curl¢ - curl pdz = (£, ). (IV..46)
’ Q

Indeed, every solution of (IV.45) also solves (IV.46). Conversely, assume that (IV.46) holds, and let
peX ,3_17 ~(€). Let us solve the exterior Dirichlet problem:

—Ax=divep in © and x=0 on I. (IV.47)

It is shown in Theorem 3.5 of [38] that problem (IV.47) has a unique solution x € WkZ’Q(Q) JAB,.
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First case: if kK =0, we set

_ 1
<P=<P—Vx—a<so—vx,1>rv(v(l) - 1),

1
where v(1) is the unique solution in W01’2(Q) of the Dirichlet problem (IV.11) and Cy = / agsl) do.
r

It follows from Lemma 3.11 of [38] that C; > 0 and since V(v(1) — 1) belongs to Yf,N(Q), we deduce
that ¢ belongs to VELN(Q).

Second case: if k = —1, for each polynomial p in P£, we take @ of the form

p=¢p—Vx—V(u(p) —p)

where v(p) is the unique solution in Wy*(Q2) of the Dirichlet problem (IV.11). The polynomial p is

chosen to satisfy the following condition:
/F(¢-n)qda:o Vg e Pr. (IV.48)
To show that this is possible, let T" be a linear form defined by:
T: P2 — R?

p— (/F W‘i‘”/pWmlda’ﬂwx2da’ﬂ(wx3d0)v

where {1,21, 29,23} denotes a basis of PL. It is shown in the proof of Theorem 7 of [39], that

if /a(v(p)_p)qdazo Vg€ PA then p=0.
r on

This implies that T is injective and so bijective. And so, there exists a unique p in iPlA so that condition
(IV.48) is satisfied and since V(v(p) — p) belongs to Y%N(Q), we prove that ¢ € VEZN(Q).

Finally, using (IV.42), we obtain for k = 0 and k = —1 that
(f,V(u(p) =p)la=0 and (f,V(v(1)=1))o=0
and as D(Q) is dense in IiI,jfl(curl , ), we obtain that
(f,Vx)a=0.

Then we have
/ curl€ - curlpdx = / curl¢ - curlpdz = (f, p)q.
Q Q

Then Problem (IV.45) and Problem (IV.46) are equivalent. Now, to solve Problem (IV.46), we use
Lax-Milgram lemma for £ = 0 and the Inf-Sup condition (IV.33) for k = —1. Let us start by k£ = 0.
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We consider the bilinear form a : VELN(Q) X VELN(Q) — R such that

al&, ) = /chrls -curl ¢ dz.

According to Theorem 1.2, a is continuous and coercive on VEL ~(€). Due to Lax-Milgram lemma,
there exists a unique solution & € VEL ~(€2) of Problem (IV.46). Using again Theorem 1.2, we prove
that this solution & belongs to WO1 2(Q) and the following estimate follows immediately

|| ¢ ||W012(Q) < CH f ||[I°131(curl,Q)]" (IV'49)

When k£ = —1, we have that Problem (IV.46) satisfies the Inf-sup condition (IV.33). Let consider
the following mapping £ : V327N(Q) — R such that £(¢) = (f,¢)q. It is clear that £ belongs to
(VEQ’ ~(92))" and according to Remark 1.2, there exists a unique solution & € V& ~(€2) of Problem
(IV.46). Due to Theorem 1.2, we prove that this solution & belongs to W112(Q) It follows from
Remark 1.2 i) that

1€l w2(Q) < CHfH[I;IEQ(curl,Q)]" (IV.50)

1) We suppose in addition that f is in W%i“(ﬂ) for k= —1or k=0 and ' is of class C %! and we
set z = curl§, where £ € Wﬁ(Q) is the unique solution of Problem (E ). Then we have

z € W(iz(Q), curlz=f ¢ W(i’iH(Q), divz=0 and z-mn=0 on T

and thus z belongs to XE;@T(Q). By Theorem 1.1, we prove that z belongs to Wl_iH(Q) and using
(IV.14), we prove that z satisfies:

< . .
HZHWj:H(Q) S CHwaEfH(Q) (IV.51)
As a consequence £ satisfies:
e Wl_’z(Q), curl¢ € Wiz_H(Q), divE=0 and &€xn=0 on T.

Applying Corollary 3.14 in [38], we deduce that & belongs to WE,? 1(£2) and using in addition the
boundary condition of (IV.41) we prove that

1€llw22 (o) < Clleurl€lly e o). (IV.52)

Finally, estimate (IV.44) follows from (IV.51) and (IV.52). O
Corollary 2.1 Letk = —1 ork =0 and let f € [H,_, (curl, Q)] with div f= 0 in Q and g € HY*(D)

and satisfying the compatibility condition (IV.42). Then, Problem (E ) has a unique solution & in
Wl_i(ﬂ) and we have:

1€ 1we2) < € (11 £y +119% Al ) (1V.53)
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Moreover, if fin WE’,?H(Q), g in H*?(T) and V' is of class C>', then the solution & is in WE,?H(Q)

and satisfies
1€llwez, o <€ (Il Fllwnz, o)+ llgx wll s ) (IV.54)

Proof. Let k=0 or k = —1 and let g € HY?(T'). We know that there exists £, in H'(Q) with

compact support satisfying
& =9, on I' and divgy=0 in £,

where g_ is the tangential component of g on I'. Since support of §, is compact, we deduce that &,
belongs to Wl_i(ﬂ) for k = —1 or k = 0 and satisfies

€0l wl2(Q) <Cl g, ||H1/2(1")' (IV.55)
Setting z = £ — £, then Problem (E y) is equivalent to: find z € Wi,?(Q) such that

—Az=f+A¢ and divz=0 in €,

R (IV.56)
zxn=0 on I' and /(z-n)qdon,VquPk.
r

Observe that F' = f—curl curl §, belongs to [IOI,?,l(curl, 2)]". Since D(N) is dense in IiI,il (curl, ),
we have for any v € Ylg_k.’N(Q):

(curlcurlé,, v), = / curl§ - curlvdx = 0.
Q

Thus F satisfies the compatibility condition (IV.42). Due to Proposition 2.3, there exists a unique
z € Wi,? () solution of problem (IV.56) such that

121wz <CUF g2 oy <C (Hf a2 ey + Nl eurléo HWO,;(Q)) . v

Then & = z + &, belongs to Wi,?(Q) is the unique solution of (Fy) and estimate (IV.53) follows
immediately from (IV.55) and (IV.57).
Regularity of the solution: Suppose in addition that € is of class C%!, f in WEfH(Q) and g in

H3/?(T). Then the function &, defined above belongs to H 2(Q) with compact support and thus &,

belongs to WE,?H(Q) and we have

€0l w22 (Q) <Cl g, ||H3/2(F)’ (IV.58)

Using again Proposition 2.3, we prove that z belongs to WE,? 11(92) and satisfies

|| z HWE}?H(Q) <C||F ||WE’k2+1(Q)'
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Then £ is in WE’]?H(Q) and estimate (IV.54) follows from (IV.58). O

The next theorem solves an other type of exterior problem:

Theorem 2.1 Let k= —1 or k =0 and let v belongs to W,S’Q(Q). Then, the following problem

—Aé=curlv and divE=0 in £,
& n=0 and (curlé—v)xn=0 on T, (IV.59)
[ € V@@ -adr=0, ¥ (wlg)-q N

has a unique solution & in Wle(Q) and we have:
€11 wA(Q) < Cllv w2 ()" (IV.60)

Moreover, if v € Wklfl(Q) and Y is of class %1, then the solution £ is in W,?fl(Q) and satisfies the

estimate:
1€l w22 o) = Cllvllrz () (IV.61)

Proof. At first observe that if € € W;Q(Q) is a solution of Problem (IV.59) for k = —1 or k = 0,
then curl € — v belongs to H7(curl, Q) and thus (curl§ — v) x n is well defined in T and belongs to
H~Y2(1).

On the other hand, note that (IV.59) can be reduced to the following variational problem: Find
e V,?,LT(Q) such that

Vo€ X2, 1(Q) / curlé - curlpdz = / v curl pde. (IV.62)
' Q Q

Indeed, every solution of (IV.59) also solves (IV.62). Conversely, let £ € V,?,LT(Q) a solution of the
problem (IV.62). Then,

Vi € D(Q), (curlcurlé — curlv, ¢)gy )xn) =0

Then
—A€=curlv in Q. (IV.63)

Moreover, by the fact that & belongs to the space V,?_LT(Q) we have divE = 0in Q and £ - n =0
on I'. Then, it remains to verify the boundary condition (curl€ — v) x n = 0 onI'. Now setting
z = curl £ — v, then z belongs to H?(curl, Q). Therefore, (IV.63) becomes:

curlz=0 in Q. (IV.64)
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Let ¢ € sz_LT(Q), by Theorem 1.1 we have XEk—l,T(Q) — Wl_i(Q) Thank’s to (IV.7) we obtain

/Qz ~curlpdx = (z X n, <p>H_1/2(F)XH1/2(F) +/Q curl z - pdaz. (IV.65)
Compare (IV.65) with (IV.62) and using (IV.64), we deduce that
Ve € XEk—l,T(Q)7 (zxmn,p)r=0.

Let now p any element of the space H 1/2 (T"). As Q' is bounded, we can fix once for all a ball Bp,
centered at the origin and with radius R, such that ¥ C Bpr. Setting Qp = Q N Bg, then we have
the existence of ¢ in H'(Qg) such that ¢ = 0 on dBr and ¢ = p, on T, where p, is the tangential
component of p on I'. The function ¢ can be extended by zero outside Br and the extended function,
still denoted by ¢, belongs to W}l’p (Q), for any « since its support is bounded. Thus ¢, belongs to
Wl_z(Q) It is clear that ¢ belongs to sz_LT(Q) and

(zxn,u)r = (zxn,u)r =(zxn,e)r=0. (IV.66)
This implies that z x n = 0 on I which is the last boundary condition in (IV.59).
On the other hand, let us introduce the following problem: Find & € V,f_le(Q) such that
Ve € Vzk_LT(Q) /chr1£ -curlpdx = /Q v-curl pde. (IV.67)
Problem (IV.67) can be solved by Lax-Milgram lemma if £k = 0 and by Lemma 2.1 if k = —1.

We start by the case &k = —1. Observe that Problem (IV.67) satisfies the Inf-Sup condition
(IV.24). Let consider the following mapping £ : V&T(Q) — R such that £(¢) = [, v - curl pdz.
It is clear that £ belongs to (V&T(Q))’ and according to Remark 1.2, there exists a unique solution
e V32,T(Q)- Applying Theorem 1.1, we deduce that this solution € belongs to Wif (Q). Tt follows
from Remark 1.2 i) and Theorem 1.2 that

H 13 Hwif(g) < CHE H(VO2,T(Q)), < CHUH W(l’f(Q)' (IV'68)
For k = 0, let us consider the bilinear form b : VELT(Q) X VELT(Q) — R such that

b(&, p) = /chrlé -curl pdax.

According to Theorem 1.1, b is continuous and coercive on VELT(Q). Due to Lax-Milgram lemma,
there exists a unique solution & € VELT(Q) of Problem (IV.67). Using again Theorem 1.1, we prove
that this solution & belongs to WO1 2(€) and estimate (IV.60) follows immediately.

Next, we want to extend (IV.67) to any test function in sz_l’T(Q). Let ¢ € sz_LT(Q) and
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let us solve the exterior Neumann problem:
. : dx
Ax=divep in  and I 0 on T. (IV.69)
n

It is shown in Lemma 3.7 and Theorem 3.9 of [38] that this problem has a unique solution y in
W_llf_l(Q) if K = —1 and unique up to a constant if £k = 0. Set

p=p—Vy. (IV.70)

It is clear that for k = 0 and k = —1, / @ -V (w(q) — q)do = 0 for any (w(q) — q) € N2. Then @
r
belongs to Vzk_lyT(Q). Now, if (IV.67) holds, we have

/curl&-curlcpd:c:/curlS-curlgBdm = /'v-curlcpdm.
Q Q Q

Hence, problem (IV.62) and problem (IV.67) are equivalent. This implies that problem (IV.59) has a
unique solution £ in W;Q(Q) fork=0or k=—-1.

Regularity: Now, we suppose that v € Wklfl(Q) — W2’2(Q) and ' is of class C%!. Let & €
W,iZ(Q) the weak solution of (IV.59) and we set z = curl€ — v. It is clear that z belongs to
X,?JV(Q). Applying Theorem 1.2, we obtain that z € W,CI_EI(Q) and using (IV.15) and (IV.60) we
obtain that

|| z Hwklfl(ﬂ) < C (’ z HW}S*Q(Q) + HdivzHWkofl(Q))
< c (| curl €[]y 0 g + 1] 0| oz g + lldiv v\|Wk0+,21(Q)>
< . :
< COllvllwz g (v.71)

This implies that & satisfies
e Wkl’2(Q), divé=0¢ Wkl_fl(ﬂ), curl € € Wklfl(Q) and £€-n=0 on T.

Applying Corollary 3.16 in [38], we deduce that & belongs to W,?fl(Q) and using (IV.71), we obtain

1€llwza@ < C(I€lwpae + leurlélly:a )
< C(HUHW,S‘Z(Q)+HZHWklfl(Q)+HUHW,€1f1(Q)>
< .
< | "’Hwklfl(g)
This finish the proof of the theorem. O

As consequence, we can prove other imbedding results. We start by the following theorem:

Theorem 2.2 Let k = —1 or k = 0. Then the space ZIS,N(Q) is continuously imbedded in Wklfl(Q)
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and we have the following estimate for any v in Z 5():
l|v|l w2 (9) < C(|jv]| wo ) + ||curl v|| wo2 (@)t |div UHW]?fl(Q) + lox nll g2 p)- (IV.72)

Proof. Let £ = —1 or kK = 0 and let v be any function of Z,?yN(Q). We set z = curl§ — v where
£ € W;Z(Q) is the solution of the problem (IV.59). Hence, z belongs to the space X,?N(Q) By
Theorem 1.2 and (IV.15), z even belongs to W;ﬁl(Q) with the estimate:

HZHWklfl(Q) < C(] 2] w2 T |div zHW;?fl(Q) + [Jcurl z|| ngl(ﬂ))' (IV.73)

Then, it suffices to prove that curl € € Wklfl(ﬂ) in order to obtain v € Wklfl(Q) Setting w = curl &.
It is clear that
/ w-ndo=0 (IV.74)
r

and then w satisfies:

—Aw=curlcurlv and divw=0 in Q

R (IV.75)
wxn=vxmn on [' and /(w-n)qdazO,VqET_k_l.
r

Note that curlv € ngl(Q) then curlcurl v is in [Igffk,_Q(curl, Q)] and we have v x n € H ().

Since D(S2) is dense in Iofgk,z(curl ,§2), we prove that

Vo € Y,3+27N(Q), (curlcurlwv, ¢)[a = 0.

HEk,Q(curl ,Q)]’Xﬁik,Q(curl Q)

Due to Corollary 2.1, the function w belongs to W,ifl(Q) and satisfies the estimate:

@l < Clleurleurlol e ot lvx nl i)

IN

C(||curlv||W2fl(Q) + ||v x n||H1/2(F)). (IV.76)

Finally, estimate (IV.72) can be deduced by using inequalities (IV.73) and (IV.76). O

Before giving the second imbedding result, we need to introduce the following space for any integer
k in Z:

MZy(Q) = {v e Wil (Q), divee W' 5(Q), curlve Wilh(Q) and vxne H3/2(r)}

Proposition 2.4 Suppose that Q' is of class C*'. Then the space MELN(Q) is continuously imbedded
in W22(Q) and we have the following estimate for any v in MElN(Q)

H’UH W12’2(Q) < C(H’UH Wé’2(Q) + ||curl ’UH Wi,Q(Q) + ||diV 1)||W11,2(Q) + ||’U X n||H3/2(1"))‘ (IV77)
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Proof. The proof is very similar to that of Theorem 2.2. Let v be any function of M 31, ~(€Q) and
set z = curl € — v where £ € Wg 2((2) is the solution of the problem (IV.59). According to Corollary
3.14 of [38], we prove that z belongs to W *(Q) with the estimate:

IE] w22(q) < C(|=|| wi?(q) + ||div z||W11,2(Q) + chrleW},g(Q)). (IV.78)

Then, it suffices to prove that curl€ € W2?(€2) in order to obtain v € W %(Q). We set w = curl €.
Using Theorem 3.1 of [38], we prove that w satisfies Problem (IV.75). Using the regularity of Corollary
2.1, we prove that w belongs to W122(Q) and satisfies

1o ll o) < C (H curleurl v ||y 02 + v x nHHg/g(F))

and then estimate (IV.77) follows from (IV.78). O

3 Generalized solutions for (87) and (Sy)

We start this sequel by introducing the following space:
E2(Q) = {ve WI(Q); Ave [H(div, Q).

This is a Banach space for the norm

1ol B2(0) = lvllw 2 + 1AV g2 g 0y

We have the following preliminary result.
Lemma 3.1 The space D(Q) is dense in E*(Q).

Proof. Let P be a continuous linear mapping from Wé’Q(Q) to Wé’Q(R3), such that P v|q = v and
let £ € (E?(Q))’, such that for any v € D(Q), we have (£,v) = 0. We want to prove that £ = 0 on
E?(Q). Then there exists (f, g) € WEI’Q(RS’) X Iilfl(div, Q) such that : for any v € E%(Q),

(€,v) = (f, Pv) W 2R3 x Wh2(R3) T (Av, g>[f{fl(div, Q) xH, (div, Q) "

Observe that we can easily extend by zero the function g in such a way that g € H?,(div, R?). Now
we take ¢ € D(R?). Then we have by assumption that:

(f ‘P>W51’2(1R3)>< W (R3) + /R3 g Apdr =0,

because (f, ) = (f, P v) where v = ¢|n. Thus we have f + Ag = 0 in D’(R3). Then we can deduce
that Ag=—f € Wal’Z(]RS) and due to Theorem 1.3 of [7], there exists a unique A € Wé’Q(Rg) such

104



IV.3 Generalized solutions for (S7) and (Sy)

that AX = Ag. Thus the harmonic function XA — g belonging to W%%(R?’) is necessarily equal to zero.
Since g € W§(Q) and g € W§(R?), we deduce that g € W(l]z(Q) As D(Q) is dense in Wé’Q(Q),
there exists a sequence g, € D() such that g, — g in W?(), when k — co. Then Vg, = V- g
in L2(Q). Since W5?(Q) is imbedded in W”3(Q), we deduce that g, — g in H?,(div, Q). Now, we
consider v € E?(Q) and we want to prove that (£, v) = 0. Observe that:

(6 v) = —(Ag, Pv) o1y, wizesy T AV ) 2 i o, (aiv.o)

= Jim (_/QAgk Hvdr + {AY G152 i )i, (div, )

k—o0

= lim (—/ Agk~vda:+/ v-Ag,dx) = 0.
Q Q

k—o0

As a consequence, we have the following result.

Corollary 3.1 The linear mapping v : v — curlv|r x n defined on D(Q) can be extended to a linear

continuous mapping
v« EX(Q) — H V(D).

Moreover, we have the Green formula: for any v € E*(Q) and any ¢ € W(l)’Q(Q) such that dive =0
inQandp-n=0onl,

—(Aw, (P>[Hfl(div, O x B (div, Q) /Q curlv- curlpdz — (curlv x n, p)r, (IV.79)
where the duality on T is defined by (-, -)r = (-, '>H*1/2(F)><H1/2(F)-
Proof. Let v € D(Q). Observe that if ¢ € W*(Q) such that ¢ - n =0 on I we deduce that

pE XELT(Q), then (IV.79) holds for such ¢. Now, let p € H /?(I), then there exists ¢ € W(l)’Q(Q)
such that ¢ = p; on I and that div¢e = 0 with

||(P||W(1)’2(Q) < C||Ht||H1/2(r) < CH/LHHUQ(F)- (IV.80)

As a consequence, using (IV.79) we have

[(curlw x n, p)r| < CH”HE2(Q)H“HH1/2(F)-

Thus,
|[[curl v x n||H71/2(F)| < C'||fv\|E2(Q).

We deduce that the linear mapping v is continuous for the norm E?(Q). Since D(Q) is dense in
E?(Q), ~ can be extended to by continuity to v € £L(E2(Q), H /(")) and formula (IV.79) holds for
all ve E*(Q) and ¢ € W(l)’2((2) such that divep =0in Q and ¢-n=0on1I. O
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Proposition 3.1 Let f belongs to W?2(Q) with div f=0in Q, g € HY2(T') and h € HY?(T) verify
the following compatibility conditions: for any v € Y127T(Q),

/Qf vdx + <h X n, ’U>H71/2(F)XH1/2(1—‘) = 0, (IVSl)
f-n+divp(hxmn)=0 onT, (IV.82)

where divp is the surface divergence on I'. Then, the problem

—Az=f and divz=0 inQ,
(Er)
z-n=g¢g and curlzxn=hxn onl,

has a unique solution z in W&’Z(Q) satisfying the estimate:
|2l < € (1flwozay + Ng sy + 1A X nllgi) (1V.83)

Moreover, if h in HY?(T), g in H32(T') and Q' is of class C%, then the solution z is in W122(Q)

and satisfies the estimate

|2l wezqy < C (1 fllwazgy + 19 lasrmy + 1 X 2l sy - (1V.84)

Proof. First, note that if h € H ~Y/2(T'), then h x n also belongs to H ~/2(T").

On the other hand, let us consider the Neumann problem:

(N) AO=0inQ and %:g onl".
on

It is shown in Theorem 3.9 of [38], that this problem has a unique solution 6 € W02’2(Q) /R satisfying

the estimate:

|6 HWD2’2(Q) <Cl|lg HH1/2(F)~ (IV.85)

Setting £ = z — V 6, then problem (E7) becomes: find £ € Wé’Q(Q) such that

{_Ag =f and divé=0 in€, (IV.86)

En=0 and curléxn=hxn onl.

Now, observe that problem (IV.86) is reduced to the following variational problem: Find £ € VELT(Q)
such that
Vo e X2, 1(Q) /curlé-curlcpdm:/f-cpdm+<h><n,<p>p. (IV.87)
' Q Q

Indeed, every solution of (IV.86) also solves (IV.87). Conversely, let € a solution of the problem
(IV.87). Then,
Ve € D(Q), (curlcurlé —f, ©)p/()xp) =0
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So —A ¢ = f in Q. Moreover, by the fact that £ belongs to the space VELT(Q), we have divg = 0
in Qand £-n =0 onI'. Then, it remains to verify the boundary condition curl§ x n =h x n onI.
Observe that & belongs to E2(Q) so by (IV.79) and comparing with (IV.87) we deduce that for any
p € XELT(Q), we have:

(curl§ x n, p)r = (h xn, ¢)r.

Proceeding as in the proof of Theorem 2.1, we prove that curlé x n =h xn on I.
On the other hand, let us introduce the following problem: Find & € VELT(Q) such that

Vo € VELT(Q) / curl€ - curlpdx = / f-odz+ (hxn, ). (IV.88)
Q Q

As in the proof of Theorem 2.1, we use Lax-Milgram lemma to prove the existence of a unique
solution £ in VELT(Q) of Problem (IV.88). Using Theorem 1.1, we prove that this solution & belongs
to WO1 () and the following estimate follows immediately

1€l w20 < C (Ifllwozy + Il X mll g -yaqry ) - (IV.89)

Next, we want to extend (IV.88) to any test function ¢ in XELT(Q). Let @ € XELT(Q) and let

us solve the exterior Neumann problem:
PO dx
Ax=diveg inQ and T 0 onT. (IV.90)
n

It is shown in Theorem 4.12 of [41] that this problem has a unique solution x in Wy"*(Q2) up to an
additive constant. Then, we set
p=p—Vyx. (Iv.91)

Since W02’2(Q) is imbedded in W_'*(Q), then ¢ belongs to VELT(Q). Now, if (IV.88) holds, we have
/curlﬁ-curlcﬁdm = /f-cfoda:—l—(hxn,cﬁ)r
Q Q
— /f-dem—<h><n,Vx>p.
Q

Using (IV.6) and (IV.82), we obtain

/curlﬁ-curl(odm:/f~§bd:1:+<h><n,<73)p. (IV.92)
Q Q

This implies that problem (IV.87) and problem (IV.88) are equivalent and thus problem (IV.86) has
a unique solution £ in W&’Q(Q). Finally, we set 2z =&§+ V0 € W(l)’z(Q) the unique solution of (Er).
Finally, (IV.83) follows immediately from (IV.89) and (IV.85).

Regularity of the solution: We suppose in addition that h is in HY?(T"), g in H*2(T") and ' is
of class C%! and let z in W(l)’Q(Q) be the weak solution of Problem (E7). Setting w = curl z, then
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w satisfies

we L), divw=0eW*Q), curlw=fec W*(Q) and wxn=-curlzxne HY*T).

Applying Theorem 2.2 (with & = 0), we prove that w belongs to W%Q(Q) This implies that z satisfies
ze WiA(Q), divz=0eW;?(Q), curlze W*(Q) and z-ne HY*T).

Applying Proposition 2.2, we prove that z belongs to W122(Q) and we have the estimate (IV.84). O

Next, we solve the Stokes problem (S7).

Theorem 3.1 (Weak solutions for (S1)) Suppose that g = 0 and x = 0. For f given in [IB-IEI(diV, )

and h given in H='/%() satisfying (IV.81). The Stokes problem (S1) has a unique solution
(u, m) € W(}’Q(Q) x L2%(Q) and we have the following estimate:

[l + Il < (17 g2 g 18X Allgvzey): (1V.93)

Proof. At first, observe that problem (87) is reduced to the following variational problem:
Find u € VELT(Q) such that

Vo € VELT(Q), / curlu - curlpdez
Q

=592 v,y xir? (@, T XM @O (IV.94)

Indeed, every solution of (87) also solves (IV.94). Conversely, let u a solution of the problem (IV.94).
Then,
Ve € D(Q) such that dive =0, (-Au—Ff, @) )xp@) =0

By De Rham theorem, there exists ¢ € D’(€2) such that

—Au—f=Vgq in Q.

Note that [E " (div, Q)] is imbedded in W5 () and thus ~Awu — f € W5 2(Q). It follows from
Theorem 2.7 of [38], that there exists a unique real constant C' and a unique 7 € L?(f2) such that 7
has the decompositio ¢ =7+ C.

Observe that since f and V 7 are two elements of [fIEl(div, )], it is the same for A u. Since
D(S?) is dense in Iinl(div, ), we obtain for any ¢ € Iofil(div, Q) such that dive = 0:

(V, @){f[,l(div, Q) x H_1(div, Q) — 0.
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Moreover, if ¢ € VELT(Q), using Corollary 3.1 we have

(A% @) g2 v oyxE?, @ive) /chrl u-curlpdz =

— (curlu x n, cp>H71/2(F)XH1/2(F).

We deduce that for all ¢ € VELT(Q)

(curlu x n, ‘P>H—1/2(F)><H1/2(F) = (h x n, ‘P>H—1/2(F)><H1/2(F)'

Let now p any element of the space HI/Q(F). So, there exists an element ¢ € W&’Q(Q) such that
diveo =0 in Q and ¢ = p, on I'. It is clear that ¢ € V2| () and

(curlu x n, p)yr — (h x n, pyr = (curlu x n, p)r — (b X n, p)r

= (curlu xn, ¢)r — (h xn, p)r =0.

This implies that curu x n = h x n on I As a consequence, Problem (IV.94) and (S7) are
equivalent. As in the proof of Theorem 2.1, we use Lax-Milgram lemma to prove the existence of a
unique solution u in VELT(Q) of Problem (IV.94). Using Theorem 1.1, we prove that this solution w
belongs to WOI’Q(Q). Then the pair (u, 7) € W&’2(Q) x L?(9) is the unique solution of the problem
(87). The estimate (IV.93) follows from (IV.14). O

Corollary 3.2 Let f, x, g, h such that
fe [H (div, ), y € LAQ), g€ HY2(T) and he H-V2(T),

and that (IV.81) holds. Then, the Stokes problem (8 1) has a unique solution (u, 7) € Wol’z(Q) xL2%(Q)

and we have:
w17 2@ < € (182, gy + 1K z2t0) + lllirsagey + I8 X Bl ) - (1V.95)

Proof. First case: We suppose that y = 0. Let 0 € WOQ’Q(Q) be a solution of the exterior
Neumann problem (N). Setting z = w — V 6, then, problem (87) becomes: Find (z,7) € W&’Z(Q) X
L2(2) such that

—Az+Vrn=f and divz=0 in €,
(IV.96)

z-n=0 and curlzxn=hxmn onl,

Due to Theorem 3.1, this problem has a unique solution (z, 7) € W01’2(Q) xL%(Q). Thusu = 2+V 40
belongs to Wol’z(Q) and using (IV.85) and (IV.93), we deduce that

[l w2 + 7l < CUF g2 oo + 190 + 10 X Bllgagy) (AV.97)
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Second case: We suppose that x € L?(£2). We solve the following Neumann problem in Q:

Af=yx in Q, @:g on I (IV.98)
on

It follows from Theorem 3.9 in [38] that Problem (IV.98) has a unique solution 6 in WOQ’Q(Q)/]R and

we have:

16112200y < € (IXIlz20) + gl o)) - (IV.99)

Setting z = u — V 6, then Problem problem (8 7) becomes: Find (z,7) € W(l)’2(Q) x L2(Q) such that

—Az+Vr=f+Vx and divz=0 inQ,
{ m=ftVx v (IV.100)

z-n=0 and curlzxn=hxmn onl,

o 2 . 12 o .
Observe that f + V x belongs to [H_,(div, Q)]" and (V x, v>[f{31(div7 Q2 (i, Q) = 0 for all v in

Y127T(Q). According to the first step, this problem has a unique solution (z, 7) € W01’2(Q) x L%(Q).
Thus w = z + V 6 belongs to Wol’z(Q) and estimate (IV.95) follows from (IV.97) and (IV.99). O

Now, we study the problem (Sy):

Theorem 3.2 (Weak solutions for (Sx)) Assume that x = 0. For f given in [foIil(curl, N, g
given in H'>(T) and o in H'/2(T), satisfying the following compatibility condition:

VA € YiN(Q), =\ n,mo)p- (IV.101)

<‘f’ A>[ﬁfl(curl,Q)]’Xﬁil(curl,ﬁ)
Then the Stokes problem (8 ) has a unique solution (u,m) € W(l)’Q(Q) x W2 (Q) and we have:
oz + 17 ey < CUF 2. oy + 195 Bl + 170 llagy). (V-102)
Proof. First, we consider the following problem:
Ar=divf in Q w=m on I. (IV.103)

Since f € [fIEl(curl, Q)], we deduce from Proposition 1.2 that div f belongs to W, ?(Q). Now, let
(v(1) — 1) an element of A§', it is clear that V(v(1) — 1) belongs to Y12,N(Q). Then using the density
of D(N) in Wl_f(Q) and (IV.101), we prove that

<din, (’U(].) - 1)> W;1’2(ﬂ)>< VQVI_’?(Q) = _<f7 \ (U(].) - 1)>[1?121(0u1‘1,Q)}’Xﬁlil(curl,ﬁ)
— (V1) = 1)-n,m)p. (IV.104)

Since (IV.104) is satisfied, we apply Theorem 3.6 of [38] to prove that Problem (IV.103) has a unique

solution 7 € W}"*(Q) and we have the following estimate:

17 20y < C (I1div £ L2 + 70 12y - (IV.105)
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Setting F' = f — V r, then F belongs to [Iilzl(curl, 2)]". Thus Problem (8 ) becomes: Find u €
Wé’Q(Q) such that:

—Au=F and divu=0 in

(IV.106)
uxn=gxn on ' and / u-ndo =0.
r
Using (IV.101) and the fact that D(Q2) is dense in IiIil(curl, 1), we prove that:
VA€ Y7 N(Q), (F,X) =0. (IV.107)

[E?, (curl Q)] x H | (curl ,Q)

Therefore F satisfies the assumptions of Corollary 2.1 and thus Problem (IV.106) has a unique solution
u e Wy*(Q) with

lallwszioy < € (IFN g2, ey + 19 % Bl ) (IV.108)
Thus estimate (IV.102) follows from (IV.117) and from (IV.105). O
Corollary 3.3 Let f, x, g, mo such that
fe[H (curl, Q). x € W12(Q), ge HY2(D), o € HY(D),
and satisfying the compatibility condition:

VA € Y12,N(Q)’ <f7 >‘>[1"-{21

2 (eurl Q)] f2 (curl @) — 70~ X)p - (Iv.109)

Then the Stokes problem (8 y) has a unique solution (u,m) € W(l)’Z(Q) x W2(Q). Moreover, we have

the following estimate:

ol ey + 1 iy < CULF et + 118 % 2oy + 1170 g2y + 1 x 2 y-110)
Proof. First, we consider the following problem:
Ar=divf+Ayx in Q w=m on I. (IV.111)

Since f € [Iglil(curl, Q)], we deduce from Proposition 1.2 that divf + A x belongs to W;'?(Q).

Proceeding as in the proof of Theorem 3.2, we prove that

<d1Vf + AX) (U(l) - 1)) WI_I’Q(Q)XIFV&?(Q) = <v (U(l) - ]-) " n, 7TU>F

and then we apply Theorem 3.6 of [38] to prove that Problem (IV.111) has a unique solution = €
W 2(Q) and we have the following estimate:

|7 a2y < C (I1div F + Ax |l -1z + I 7o |12y ) - (IV.112)
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Thus Problem (8 ) becomes: Find u € W¢?(2) such that:

—Au=f—-Vr and dive=yx in
(IV.113)
uxn=gxn on [ and /u-ndo:O.
r

On the other hand, let us solve the following Dirichlet problem:
A=y in Q 6=0 on TI.

Since W;"*(2) is imbedded in L2(£), it follows from Theorem 3.5 of [38], that this problem has a

unique solution 6 € W02’2(Q) (there is no compatibility condition) and we have the following estimate:

19 lw22(0) < Clx IL2)- (IV.114)

Setting

1
zZ=u— <V0—01<V0~n,1)FV(v(1)—1)>,

1
where v(1) is the unique solution in VVO1 2(2) of the Dirichlet problem (IV.11) and C; = 8;51) do.
r

We know from Lemma 3.11 of [38] that C; > 0 and that V(v(1) — 1) belongs to Y127N(Q). Then
Problem (IV.113) becomes: Find z € W?(Q) such that

—Az=f-Vr+Vyx and divz=0 in (,
(IV.115)
zxn=gxn onl and /z-'ndaz().
r

)

Now, we will solve the Problem (IV.115). Setting F = f—V 7+V x, then F belongs to [Hil(curl, ).
Using (IV.109) and the fact that D(Q) is dense in Iilzl(culrl7 2), we prove that:

VA€ YIN(Q),  (F,X) .- =0. (IV.116)

(H-{(curl Q)] Xﬁil (curl Q)

Therefore F satisfies the assumptions of Corollary 2.1 and thus Problem (IV.115) has a unique solution
z e W% (Q) with

12l Wiz < € (HFH[Iﬁl(curl,m]/ +1lg x n||H1/2(r)> (IV.117)

and estimate (IV.110) holds. O

4 Strong solutions for (87) and (Sy)

We prove in this sequel the existence and the uniqueness of strong solutions for Problem (S87) and
(8n), we start by Problem (87)
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Theorem 4.1 Suppose that ' is of class C*'. Let f, x, g, h such that
fe WA(Q), x e W,"*(Q), g€ H¥*() and he HY(T),

and that (IV.81) holds. Then, the Stokes problem (St) has a unique solution (w, ™) € W(Q) x
1,2
W% () and we have:

lell ey + 117 12y < 1 Fll oz + x g + l9llmsssy + 1B X Al ey (IV.118)

Proof. First case xy = 0. Since Wlo’Q(Q) is included in [IiIzl(diV, 2)]’, we deduce that we are under
the hypothesis of Corollary 3.2 and so Problem (8 7) has a unique solution (u, 7) € Wol’z(Q) x L2(Q).

Setting z = curl u, then z satisfies
ze L?(Q), divz=0¢ Wlo’z(Q), curlz=f € W?’2(Q) and zxmn=hxnecHY*I).
Applying Theorem 2.2 (with k = 0), we prove that z belongs to W%’Q(Q). This implies that u satisfies
1,2 o 1,2 1,2 _ 3/2
ue Wy (), dive=0eW;7(Q), curlue W;7(2) and u-n=ge H’*T).
Applying Proposition 2.2, we prove that u belongs to W122(Q) and thus Vo=f+Awu € W?’Q(Q).
Since 7 is in L2(Q) then = is in W,"*(Q).

Second case y is in W} (Q). Since ' is of class C'21, it follows from Theorem 3.9 in [38] that there
exists a unique solution # in W;*(Q)/R satisfies Problem (IV.98) and

16115200y < C (Il lyr20) + N9l zrar2qry ) - (IV.119)

The rest of the proof is similar to that Corollary 3.2. O

Remark 4.1

Assume that the hypothesis of Theorem 4.1 hold and suppose in addition that x = 0. Let (u, 7) €
WO1 2(€2) x L2(Q) the unique solution of Problem (87) then 7 satisfies the following problem

diviVr—f)=0 in Q@ and (Vr—f)-n=—-divpr(hxn) on TI. (IV.120)

It follows from [41] that Problem (IV.120) has a solution 7 in W;**(2). Setting F = Vr—f € W2(Q).
Then problem (87) becomes:

—Au=F and divu=0 in €,
u-n=g and curluxn=hxmn onl.

Therefore, F, g and h satisfy the assumptions of Proposition 3.1 and thus u belongs to W12 2(Q)
Next, we study the regularity of the solution for Problem (8 y).
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Chapter IV. Exterior Stokes Problem with Different Boundary Conditions

Theorem 4.2 Suppose that ' is of class C*'. Let f, x, g, o such that
fe W), x e W2(Q), ge HY*(I), = € HY*(I),

and satisfying the compatibility condition (IV.109). Then the Stokes problem (8 n) has a unique
solution (u, ) € W22 (Q) x Wi2(Q). Moreover, we have the following estimate:

|l w22(Q) + || 7 ”WIW(Q) <O £ w2(Q) + 1| g x nHH3/2(F) + || 7o HH1/2(F) + [l x lelv2(Q)IIV-12l)

Proof. First case: We suppose that x = 0. Since W {*(Q) is included in [fIEl(curl, )], we
deduce that we are under the hypothesis of Corollary 3.2 and so Problem (8 ) has a unique solution
(u, 7)€ Wi2(Q) x W?(Q). Setting z = curlu. Observe that u x n = g x n belongs to H*?(I)

and thus curl w - n belongs to H'/2(T') and so z satisfies
z€ L*(Q), divz=0c¢ W{)’Q(Q), curlz=f ¢ W?’Q(Q) and z-n=curlu-ne H/*I).

Applying Proposition 2.1 (with & = 0), we prove that z belongs to W%Q(Q) This implies that u

satisfies
u € W(l]’2(ﬂ), divu=0¢€ Wll’z(Q), curlu € W%z(Q) and wxn=gxneHY*).

Applying Proposition 2.4, we prove that u belongs to WIQQ(Q)
Second case: Yy is in I/Vl1 2(Q) The proof of this case is very similar to that Corollary 3.3. U
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