Application des impulsions attosecondes à la spectroscopie harmonique des molécules
Auteur / Autrice : | Nan Lin |
Direction : | Pascal Salières |
Type : | Thèse de doctorat |
Discipline(s) : | Physique (Lasers et matière) |
Date : | Soutenance le 16/12/2013 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Ondes et Matière (Orsay, Essonne ; 1998-2015) |
Partenaire(s) de recherche : | Laboratoire : Service des photons, Atomes et Molécules (Gif-sur-Yvette) - Laboratoire Interactions, Dynamique et Lasers (ex SPAM) |
Jury : | Président / Présidente : Annie Klisnick |
Examinateurs / Examinatrices : Pascal Salières, Annie Klisnick, Pierre Agostini, Valérie Blanchet, Philippe Zeitoun, Amelle Zaïr | |
Rapporteur / Rapporteuse : Pierre Agostini, Valérie Blanchet |
Mots clés
Résumé
La génération d'harmoniques d'ordre élevé (HHG) est un processus non linéaire extrême qui peut être compris intuitivement par la séquence de trois étapes: i) ionisation tunnel de la cible atome/ molécule et création d'un paquet d'ondes électronique (EWP) dans le continuum, ii) accélération de l'EWP par le champ laser intense et iii) recombinaison avec le cœur ionique et émission d’une impulsion attoseconde de lumière cohérente dans l’extrême UV (XUV). La HHG fournit ainsi une source ultracourte accordable dans l’XUV/ rayons X mous à l'échelle de temps attoseconde pour les applications (schéma «direct»). Dans le même temps, elle encode de manière cohérente dans le rayonnement XUV émis la structure et la dynamique de réarrangement de charge des atomes/molécules qui rayonnent (schéma «auto-sonde» ou Spectroscopie d'harmoniques d'ordre élevé). Cette thèse est consacrée à ces deux schémas d'application en attophysique basés sur une caractérisation et un contrôle avancés de l'émission attoseconde. Dans ce qu'on appelle le schème ''auto-sonde'', la dernière étape de la HHG, la recombinaison électron-ion peut être considérée comme un procédé de sonde et l'émission peut coder des informations fructueuses sur le système se recombinant, telles que la structure moléculaire et la dynamique. Dans la première partie, nous avons effectué la spectroscopie harmonique de molécules N₂O et CO₂ qui sont alignées par rapport à la polarisation du laser générateur. Nous avons implémenté deux méthodes basées respectivement sur l'interférométrie optique et quantique afin de caractériser l'amplitude et la phase de l'émission attoseconde en fonction à la fois de l'énergie des photons et de l'angle d'alignement. Nous avons découvert de nouveaux effets dans la génération d'harmoniques qui ne peuvent pas être expliqués par la structure de l'orbitale moléculaire la plus haute occupée (HOMO). Au lieu de cela, nous avons trouvé que pendant l'interaction avec le champ laser, deux états électroniques sont excitées de manière cohérente dans l'ion moléculaire, formant un paquet d'ondes de «trou» se déplaçant à une échelle de temps attoseconde dans la molécule après l’ionisation tunnel. Nous nous sommes concentrés sur l'exploration de ce mouvement électronique cohérent à l'intérieur de la molécule, et comparé les mesures de N₂O et CO₂. La différence frappante dans la phase harmonique nous a conduits à l'élaboration d'un modèle multi-canal permettant l'extraction de l’amplitude et de la phase relative des deux canaux impliqués dans l'émission. Un déphasage inattendu de pi/4 entre les deux canaux est obtenu. En outre, nous avons étudié le profil des impulsions attosecondes émises par ces deux molécules, et nous avons proposé un moyen simple mais flexible pour la réalisation de la mise en forme d’impulsions attosecondes. Dans la deuxième partie, la spectroscopie harmonique a été étendue à d'autres systèmes moléculaires, y compris certaines molécules relativement complexes, par exemple, SF₆ et petits hydrocarbures (méthane, éthane, éthylène, acétylène). Elle a révélé de nombreux résultats intéressants tels que des distorsions de phase observées pour la première fois. Dans le schéma «direct», nous avons photoionisé des atomes de gaz rares en utilisant des impulsions attosecondes bien caractérisées combinées avec un laser infrarouge d’habillage avec un délai contrôlé, stabilisé à environ ± 60 as. Nous avons mesuré des différences marquées dans les distributions angulaires des photoélectrons, en fonction du nombre de photons IR échangés. Jointes à notre interprétation théorique, ces observations apportent de nouvelles connaissances sur la dynamique de cette classe de processus de photo-ionisation multi-couleurs qui sont une étape clé vers l'étude de la photo-ionisation dans le domaine temporel avec une résolution attoseconde.