Thèse soutenue

Conception, reconstruction et évaluation d'une géométrie de collimation multi-focale en tomographie d'émission monophotonique préclinique

FR  |  
EN
Auteur / Autrice : Didier Benoit
Direction : Irène Buvat
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 05/12/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Imagerie et modélisation en neurobiologie et cancérologie (Orsay, Essonne ; 2006-2019)
Jury : Président / Présidente : Christian Morel
Examinateurs / Examinatrices : Irène Buvat, Christian Morel, Jacques Darcourt, Johan Nuyts, Serge Maitrejean, Thomas Carlier
Rapporteur / Rapporteuse : Jacques Darcourt, Johan Nuyts

Résumé

FR  |  
EN

La tomographie d'émission monophotonique (TEMP) dédiée au petit animal est une technique d'imagerie nucléaire qui joue un rôle important en imagerie moléculaire. Les systèmes TEMP, à l'aide de collimateurs pinholes ou multi-pinholes, peuvent atteindre des résolutions spatiales submillimétriques et une haute sensibilité pour un petit champ de vue, ce qui est particulièrement attractif pour imager des souris. Une géométrie de collimation originale a été proposée, dans le cadre d'un projet, appelé SIGAHRS, piloté par la société Biospace. Ce collimateur présente des longueurs focales qui varient spatialement dans le plan transaxial et qui sont fixes dans le plan axial. Une haute résolution spatiale est recherchée au centre du champ de vue, avec un grand champ de vue et une haute sensibilité. Grâce aux simulations Monte Carlo, dont nous pouvons maîtriser tous les paramètres, nous avons étudié cette collimation originale que nous avons positionnée par rapport à un collimateur parallèle et un collimateur monofocal convergent. Afin de générer des données efficacement, nous avons développé un module multi-CPU/GPU qui utilise une technique de lancer de rayons dans le collimateur et qui nous a permis de gagner un facteur ~ 60 en temps de calcul, tout en conservant ~ 90 % du signal, pour l'isotope ⁹⁹^mTc (émettant à 140,5 keV), comparé à une simulation Monte Carlo classique. Cependant, cette approche néglige la pénétration septale et la diffusion dans le collimateur. Les données simulées ont ensuite été reconstruites avec l'algorithme OSEM. Nous avons développé quatre méthodes de projection (une projection simple (S-RT), une projection avec volume d'intersection (S-RT-IV), une projection avec calcul de l'angle solide (S-RT-SA) et une projection tenant compte de la profondeur d'interaction (S-RT-SA-D)). Nous avons aussi modélisé une PSF dans l'espace image, anisotrope et non-stationnaire, en nous inspirant de la littérature existante. Nous avons étudié le conditionnement de la matrice système pour chaque projecteur et collimateur, et nous avons comparé les images reconstruites pour chacun des collimateurs et pour chacun des projecteurs. Nous avons montré que le collimateur original proposé est le système le moins bien conditionné. Nous avons aussi montré que la modélisation de la PSF dans l'image ainsi que de la profondeur d'intéraction améliorent la qualité des images reconstruites ainsi que le recouvrement de contraste. Cependant, ces méthodes introduisent des artefacts de bord. Comparé aux systèmes existants, nous montrons que ce nouveau collimateur a un grand champ de vue (~ 70 mm dans le plan transaxial), avec une résolution de 1,0 mm dans le meilleur des cas, mais qu'il a une sensibilité relativement faible (1,32x10⁻² %).