Thèse soutenue

Nano-structures métalliques pour du piégeage optique dans des cellules solaires ultra-fines à base de GaAs et de CIGS

FR  |  
EN
Auteur / Autrice : Clément Colin
Direction : Jean-Luc PelouardJean-François Guillemoles
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 18/12/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Photonique et de Nanostructures (Marcoussis, Essonne ; 1984-2016) - Laboratoire de photonique et de nanostructures
Jury : Président / Présidente : Laurent Vivien
Examinateurs / Examinatrices : Jean-Luc Pelouard, Jean-François Guillemoles, Laurent Vivien, Ludovic Escoubas, Gilles Lérondel, Stéphane Collin, Ayodhya Tiwari
Rapporteur / Rapporteuse : Ludovic Escoubas, Gilles Lérondel

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

L’une des tendances naturelle des technologies photovoltaïque est la réduction systématique de l’épaisseur des cellules solaires, que cela soit pour des raisons de coûts, d’économie d’éléments rares ou toxiques ou encore pour limiter les recombinaisons. Jusqu’à présent, les technologies couche minces cristallines (GaAs) et poly-crystallines (CIGS) trouvent des optimum d’efficacité de conversion pour des épaisseurs aux alentours de 1 ou 2 microns. Typiquement, cette gamme d’épaisseur ne nécessite pas de nouvelles solutions de piégeages optiques comme cela est le cas pour la filière silicium amorphe. Cependant, si l’on veut réduire ces épaisseurs d’un facteur 10 voire même 100 afin de s’orienter vers les nouveaux concepts de collections et conversions (GaAs ou GaSb) ou encore de réduire l’utilisation d’indium (CIGS), de nouveaux besoin en matière d’absorption efficace de la lumière sont nécessaires pour ces technologies. Ce manuscrit de thèse se concentre sur la conception, la simulation et la réalisation de solutions nanophotoniques nouvelles pour de futures cellules solaires cristallines ultrafines.Dans un premier temps, nous nous sommes engagé dans une approche en rupture avec la conception habituelle des cellules solaires pour piéger la lumière dans une cellule ultrafine (≤100 nm de matériaux couche-mince (GaAs, GaSb et CIGS). Nous proposons un réseau métallique nanostructuré placé en face avant de la cellule reportée sur un miroir métallique afin d'obtenir une absorption très élevée et multi-résonante, indépendante de l’angle d’incidence et de la polarisation. Une analyse numérique approfondie des mécanismes résonants en jeu a été menée ainsi que la fabrication et la caractérisation optique de démonstrateurs. Les résultats de cette étude sont motivants pour des travaux futurs sur les dispositifs ultrafins, mettant en jeu de nouveaux concepts de collection (transport balistique) ou de conversion (cellules solaires à porteurs chauds).Dans un deuxième temps, nous avons étudié la possibilité d’intégrer à court terme un contact arrière nanostructuré en or à des cellules solaires fines (200-400 nm) en CIGS afin d’augmenter potentiellement le courant de court-circuit et la tension de circuit ouvert. Nous avons proposé un procédé innovant pour réaliser cette structure et ce piégeage optique, jusqu’à lors inédits pour les cellules en CIGS. Etude numérique, fabrications de démonstrateurs et premières caractérisations de cellules solaires ultrafines sont présentés.