Spectre et pseudospectre d'opérateurs non-autoadjoints

par Raphaël Henry

Thèse de doctorat en Mathématiques

Sous la direction de Bernard Helffer.

Le président du jury était Nicolas Burq.

Le jury était composé de Bernard Helffer, Nicolas Burq, Frédéric Hérau, André Martinez, André Voros, Nicolas Lerner.

Les rapporteurs étaient Frédéric Hérau, André Martinez.


  • Résumé

    L'instabilité du spectre des opérateurs non-autoadjoints constitue la thématique centrale de cette thèse. Notre premier objectif est de mettre en évidence ce phénomène dans le cas de certains modèles naturels tels que l'opérateur d'Airy, l'oscillateur harmonique ou l'oscillateur cubique complexes. Dans ce but, nous nous intéressons au comportement des projecteurs spectraux associés aux valeurs propres de ces opérateurs, poursuivant une démarche initiée par E. B. Davies. Le second objectif de notre travail consiste à montrer de quelle manière ces modèles peuvent contribuer à la compréhension de certains problèmes issus de domaines mathématiques et physiques aussi variés que la mécanique quantique, la supraconductivité ou la théorie du contrôle. Nos résultats sur l'instabilité spectrale de l'oscillateur cubique complexe viennent ainsi corroborer un travail de B. Krejcirik et P. Siegl, soulignant l'impossibilité de fournir une justification rigoureuse aux théories actuelles de la mécanique quantique non-hermitienne. Par ailleurs, nous nous appuyons sur les propriétés des modèles mentionnés ci-dessus pour obtenir des résultats sur le spectre et la résolvante d'opérateurs de Schrödinger à potentiels imaginaires purs dans des ouverts bornés. Ces résultats peuvent en particulier être appliqués à l'étude du système de Ginzburg-Landau dépendant du temps en supraconductivité. Enfin, nous présentons des résultats sur la contrôlabilité d'équations paraboliques dégénérées qui reposent sur une étude spectrale et pseudospectrale de l'opérateur d'Airy et de l'oscillateur harmonique complexes. Ce dernier travail est le fruit d'une collaboration avec K. Beauchard, B. Helffer et L. Robbiano.

  • Titre traduit

    Spectra and pseudospectra of non-selfadjoint operators


  • Résumé

    Spectral instability of non-selfadjoint operators is the main subject of this thesis. Our first goal is to understand the pseudospectral behavior of natural models such as the complex Airy operator, harmonic oscillator and cubic oscillator. To this purpose, we analyze the asymptotic behavior of the spectral projections associated with the eigenvalues of these operators, following a work initiated by E.B. Davies. Our second goal is to illustrate how such models can be used in several problems arising in quantum mechanics, superconductivity or control theory. For instance, our results on the spectral instability of the complex cubic oscillator enable us to confirm that the current theory of non-hermitian quantum mechanics can not be rigorously justified, as recently pointed out by B. Krejcirik and P. Siegl. On the other hand, we obtain spectral information and resolvent estimates for semi-classical Schrödinger operators with purely imaginary potentials in a bounded domain, by using the properties of the models mentioned above. In particuler, these results entail some information on the time-dependent Ginzburg-Landau system in superconductivity. Finally, we reproduce a joint work with K. Beauchard, B. Helffer et L. Robbiano in which the controllability of some degenerate parabolic operators is investigated. An analysis of the spectrum and resolvent of the complex Airy operator and harmonic oscillator yields some controllability and non-controllability results for the equation under consideration.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DiBISO. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.