Thèse soutenue

Mécanique statistique d'écoulements idéaux à deux dimensions et demi

FR  |  
EN
Auteur / Autrice : Simon Thalabard
Direction : Bérengère Dubrulle
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 28/10/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Physique de la région parisienne (....-2013)
Partenaire(s) de recherche : Laboratoire : Service de physique de l'état condensé (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Frédéric Moisy
Examinateurs / Examinatrices : Bérengère Dubrulle, Frédéric Moisy, Julien Barré, Marc-Étienne Brachet, Bruce Turkington
Rapporteur / Rapporteuse : Julien Barré, Marc-Étienne Brachet, Bruce Turkington

Résumé

FR  |  
EN

Dans cette thèse, nous nous intéressons à la mécanique statistique d’une classe d’écoulements “quasi-bidimensionnels”. Nous nous penchons plus particulièrement sur le cas des écoulements tri-dimensionnels axisymétriques, bidimensionnels stratifiés et bidimensionnels magnéto hydrodynamiques. La dynamique de ces écoulements est génériquement décrite par les équations d’évolution d’un champ de vitesses incompressible bidimensionnel,couplées à une équation d’évolution d’un champ scalaire. Ce dernier représente tantôt une température, tantôt un courant électrique, tantôt un mouvement tourbillonnaire transverse. Ces écoulements ont un intérêt géophysique ou astrophysique : ils peuvent être utilisés pour modéliser grossièrement les ouragans, les courants océaniques à l’échelle planétaire, les taches solaires, etc. Ils ont aussi un intérêt plus fondamental.Malgré leur géométrie bidimensionnelle intrinsèque, les écoulements “2D3C” peuvent être en effet tri-dimensionnellement connotés. Dans les cas que l’on regarde, la vorticité n’est pas seulement transportée : elle est aussi étirée. Il n’est ainsi pas évident de savoir si la tendance naturelle des écoulements 2D3C est de s’organiser en structures cohérentes énergétiques à grande échelle comme en deux dimensions, ou plutôt de répartir leur énergie sur les petites échelles comme en trois dimensions. Il n’est a priori pas clair nonplus de savoir si une forme d’énergie (cinétique ou magnétique/tourbillonnaire) y est privilégiée aux dépends de l’autre.Pour répondre à ces questions de manière très générale, nous étudions et décrivons la mécanique statistique d’équilibre des écoulements 2D3C sus-mentionnés, en nous plaçant d’abord dans le cadre des “ensembles d’équilibre absolu” considérés par Robert Kraichnan à la fin des années 1960, puis dans le cadre plus moderne des “mesures microcanoniques stationnaires” introduites par Raoul Robert, Jonathan Miller et Joël Sommeria pour les fluides bidimensionnels au début des années 1990. Les équilibres 2D3C sont décrits dans la première partie de ce manuscript. La seconde partie du manuscript est plus pratique, et également plus spéculative. Nous nous servons d’ outils de la mécanique statistique d’équilibre pour interpréter des données turbulentes expérimentales provenant d’expériences de type Von Kármán . Nous utilisons ensuite des résultats récents de théorie de probabilité pour montrer que des régimes de turbulence quasi-bidimensionnelle (turbulence tri-dimensionnelle avec rotation,turbulence dans des couches savonneuses) ont des propriétés d’invariance conforme statistique, analogues à celles observées dans des systèmes de spins ferromagnétiques au point critique.