Thèse soutenue

Distributions angulaires de fragments de fission et validation de sections efficaces de fission

FR  |  
EN
Auteur / Autrice : Lou Sai Leong
Direction : Laurent Tassan-Got
Type : Thèse de doctorat
Discipline(s) : Physique nucléaire
Date : Soutenance le 27/09/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Modélisation et Instrumentation en Physique, Energie, Géosciences et Environnement (Orsay, Essonne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Institut de physique nucléaire (Orsay, Essonne ; 1956-2019)
Jury : Président / Présidente : Yorick Blumenfeld
Examinateurs / Examinatrices : Laurent Tassan-Got, Yorick Blumenfeld, Nicola Colonna, Jean-Luc Sida, Emmeric Dupont, Katsuhisa Nishio
Rapporteur / Rapporteuse : Nicola Colonna, Jean-Luc Sida

Résumé

FR  |  
EN

La connaissance actuelle de la distribution angulaire de la fission induite par neutrons est limitée à une énergie maximum de 15~MeV, avec de grands écarts autour de 14~MeV. Seulement 238U et 232Th ont été étudiés jusqu'à 100 MeV et un seul jeu de données existe. Nous avons réalisé une expérience à n_TOF au CERN pour mesurer les distributions angulaires de fragments de fission jusqu'à 1~GeV pour les isotopes 232Th, 235U , 238U , 237Np.L'expérience a été réalisée à l'aide d'un dispositif expérimental à base de compteurs à avalanche à plaques parallèles (PPAC). La méthode basée sur la détection des 2 fragments en coïncidence permet d'identifier sans ambiguïté la fission des autres réactions, notamment dans le domaine de spallation. Au-dessous de 10 MeV nos résultats sont cohérents avec les données existantes. Par exemple, dans le cas de 232Th , en dessous de 10 MeV ils montrent clairement la variation d'anisotropie se produisant dans les résonances vibrationnelles (1.6 MeV) correspondant à des états de transition de J et K donnés (spin total et sa projection sur l'axe de fission), et après l'ouverture de la deuxième chance de fission (7 MeV). Ils apportent une meilleure précision autour de la troisième chance de fission (14 MeV). Aux énergies intermédiaires, au-dessus de 20 MeV nous avons constaté une anisotropie significative mais bien inférieure à l'unique résultat antérieur. Notre résultat est en accord avec la systématique en fissilité du système composite et avec un modèle incluant les phénomènes essentiels, en particulier le preéquilibre. Dans le cadre de cette comparaison l'anisotropie plus grande que pour la fission induite par protons s'explique parfaitement. J'ai par ailleurs exploré et simulé les expériences de criticité qui permettent de tester la précision des données nucléaires. La section efficace de fission de 237Np induite par neutrons avait été mesurée sur l'installation n_TOF au CERN. Par rapport aux résultats antérieurs la section efficace de fission n_TOF était apparue plus élevée de 6-7% au-delà du seuil de fission. Pour vérifier la pertinence des données de n_TOF, nous avons simulé une expérience de criticité effectuée à Los Alamos avec une sphère contenant 6 kg de 237Np. Cette sphère est entourée par de l'uranium hautement enrichi en 235U de façon à approcher la criticité avec des neutrons rapides. La simulation prédit un facteur de multiplication keff en meilleur accord avec l'expérience (l'écart de -0.75% est réduit à +0.25%) quand on remplace la section efficace de fission de 237Np des bibliothèques évaluées par celle de n_TOF. Nous avons également exploré d'autres effets pouvant expliquer l'écart qui existait entre la mesure de criticité et sa prédiction par les simulations, en particulier nous avons testé la section inélastique de 235U et la multiplicité de neutrons de fission de 237Np. Dans les 2 cas la modification requise pour réconcilier l'écart de criticité n'est pas en accord avec les mesures. Des mesures de taux de fission dans des flux de neutrons dont le spectre est connu indiquent également que la section de fission du 237Np pourrait être plus grande de 4 à 5% par rapport à ce qui était admis aujourd'hui.