Thèse soutenue

Etude numérique des effets électrothermiques dans les nanodispositifs de Silicium
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Thu Trang Nghiem Thi
Direction : Philippe DollfusJérôme Saint-Martin
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 25/01/2013
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Institut d'électronique fondamentale (Orsay, Essonne ; 19..-2016)
Jury : Président / Présidente : Mireille Mouis
Examinateurs / Examinatrices : Philippe Dollfus, Mireille Mouis, Jesús Enrique Velázquez perez, Jean-Luc Thobel, Jean-Charles Barbé
Rapporteurs / Rapporteuses : Jesús Enrique Velázquez perez, Jean-Luc Thobel

Résumé

FR  |  
EN

Le développement de la technologie des composants CMOS ultimes à grille ultra-courte (L < 20 nm) se heurte à de nombreuses difficultés technologiques, mais également à des limites thermiques qui perturbent notablement les règles de mise à l'échelle communément employées jusqu'à présent. Les fortes densités de courant obtenues dans des zones actives aussi réduites génèrent un important échauffement local (par effet Joule), lié à l'émission de phonons par les porteurs chauds, qui peut conduire à des réductions très sensibles des performances, voire à des défaillances. Ce phénomène est identifié comme un des plus critiques pour la poursuite de l'augmentation de la densité d'intégration des circuits. Cela est particulièrement crucial dans les technologies SOI (silicium sur isolant), où la présence de l'isolant enterré constitue un frein à l'évacuation de la chaleur. À l'échelle nanométrique, l'étude théorique de ces phénomènes d'échauffement n'est plus possible par des modèles macroscopiques (coefficient de diffusion de la chaleur) mais nécessite une description microscopique détaillée des transferts de chaleur qui sont localement hors d’équilibre. Il s'agit donc de modéliser de façon appropriée, non seulement le transport électronique et la génération de phonons, mais aussi le transport de phonons hors équilibre et les interactions phonons-phonons et électrons-phonons.Le formalisme de l’équation de transport de Boltzmann (BTE) est très bien adapté à l'étude de ce problème. En effet, il est largement utilisé depuis des années pour l'étude du transport des particules chargées dans les composants semi-conducteurs. Ce formalisme est beaucoup moins standard pour étudier le transport des phonons. Une des problématiques de ce travail concerne le couplage de la résolution de la BTE des phonons avec celle des électrons.Ce travail de thèse a développé un algorithme de calcul du transport de phonons par résolution directe de la BTE des phonons. Cet algorithme de transport de phonon a été couplé au transport électronique simulé grâce au logiciel "MONACO" basé sur une résolution statistique (ou Monte Carlo) de la BTE. Finalement, ce nouveau simulateur électrothermique a été utilisé pour étudier les effets d’auto échauffement dans des nano-transistors. L’intérêt principal de ces travaux est de permettre une analyse du transport electro-thermique au-delà d’une approche macroscopique (respectivement formalisme de Fourier pour la thermique et dérive-diffusion pour le courant). En effet, il donne accès aux distributions de phonons dans le dispositif et pour chaque mode de phonon. En particulier, ce simulateur apporte une meilleure compréhension des effets des électrons chauds sur les points chauds et leur relaxation dans les accès.