Théorèmes asymptotiques pour les équations de Boltzmann et de Landau
Auteur / Autrice : | Kléber Carrapatoso |
Direction : | Stéphane Mischler |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 09/12/2013 |
Etablissement(s) : | Paris 9 |
Ecole(s) doctorale(s) : | Ecole doctorale SDOSE (Paris) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en mathématiques de la décision (Paris) - CEntre de REcherches en MAthématiques de la DEcision |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Nous nous intéressons dans cette thèse à la théorie cinétique et aux systèmes de particules dans le cadre des équations de Boltzmann et Landau. Premièrement, nous étudions la dérivation des équations cinétiques comme des limites de champ moyen des systèmes de particules, en utilisant le concept de propagation du chaos. Plus précisément, nous étudions les probabilités chaotiques sur l'espace de phase de ces systèmes de particules : la sphère de Boltzmann, qui correspond à l'espace de phase d'un système de particules qui évolue conservant le moment et l'énergie ; et la sphère de Kac, correspondant à un système de particules qui conserve seulement l'énergie. Ensuite, nous nous intéressons à la propagation du chaos, avec des estimations quantitatives et uniforme en temps, pour les équations de Boltzmann et Landau. Deuxièmement, nous étudions le comportement asymptotique en temps grand des solutions de l'équation de Landau.