Adaptation de maillages pour des schémas numériques d'ordre très élevé

par Estelle Carine Mbinky

Thèse de doctorat en Mathématiques Appliquées

Sous la direction de Frédéric Alauzet.

Soutenue en 2013

à Paris 6 .


  • Résumé

    Mesh adaptation is an iterative process which consists in changing locally the size and orientation of the mesh according the behavior of the studied physical solution. It generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh adaptation methods have proven to be extremely effective in reducing significantly the mesh size for a given precision and reaching quickly an second-order asymptotic convergence for problems containing singularities when they are coupled to high order numerical methods. In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods based on a control of the interpolation error in Lp-norm and Goal oriented methods that control the approximation error of a functional through the use of the adjoint state. However, with the emergence of very high order numerical methods such as the discontinuous Galerkin method, it becomes necessary to take into account the order of the numerical scheme in mesh adaptation process. Mesh adaptation is even more crucial for such schemes as they converge to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the solution must be as important as the order of the method is high. This thesis deals with the extension of the theoretical and numerical results getting in the case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial solutions. These solutions are represented using kth-order Lagrangian finite elements (k ≥ 2). This thesis will focus on modeling the local interpolation error of order k ≥ 3 on a continuous mesh. However, for metric-based mesh adaptation methods, the error model must be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce such an area, it is necessary to decompose the homogeneous polynomial and to approximate it by a quadratic form taken at power k. This modeling allows us to define a metric field necessary to communicate with the mesh generator. The decomposition method will be an extension of the diagonalization method to high order homogeneous polynomials. Indeed, in 2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and its extension to high dimensions will allow us to decompose locally the error function, then, to deduce the quadratic error model. Then, this local error model is used to control the overall error in Lp-norm and the optimal mesh is obtained by minimizing this error. In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation method for analytic functions and numerical simulations using kth-order solvers (k ≥ 3).

  • Titre traduit

    Mesh adaptation for very high order numerical schemes


  • Résumé

    L'adaptation de maillages est un processus itératif qui consiste à changer localement la taille et l’orientation du maillage en fonction du comportement de la solution physique étudiée. Les méthodes d’adaptation de maillages ont prouvé qu’elles pouvaient être extrêmement efficaces en réduisant significativement la taille des maillages pour une précision donnée et en atteignant rapidement une convergence asymptotique d’ordre 2 pour des problèmes contenant des singularités lorsqu’elles sont couplées à des méthodes numériques d’ordre élevé. Dans les techniques d’adaptation de maillages basées sur les métriques, deux approches ont été proposées: les méthodes multi-échelles basées sur un contrôle de l’erreur d’interpolation en norme Lp et les méthodes ciblées à une fonctionnelle qui contrôle l’erreur d’approximation sur une fonctionnelle d’intérêt via l’utilisation de l’état adjoint. Cependant, avec l’émergence de méthodes numériques d’ordre très élevé telles que la méthode de Galerkin discontinue, il devient nécessaire de prendre en compte l’ordre du schéma numérique dans le processus d’adaptation de maillages. Il est à noter que l’adaptation de maillages devient encore plus cruciale pour de tels schémas car ils ne convergent qu’à l’ordre 1 dans les singularités de l’écoulement. Par conséquent, le raffinement du maillage au niveau des singularités de la solution doit être d’autant plus important que l’ordre de la méthode est élevé. L’objectif de cette thèse sera d’étendre les résultats numériques et théoriques obtenus dans le cas de l’adaptation pour des solutions linéaires par morceaux à l’adaptation pour des solutions d’ordre élevé polynomiales par morceaux. Ces solutions sont représentées sur le maillage par des éléments finis de Lagrange d’ordre k ≥ 2. Cette thèse portera sur la modélisation de l’erreur d’interpolation locale, polynôme homogène de degré k ≥ 3 dans le formalisme du maillage continu. Or, les méthodes d’adaptation de maillages basées sur les métriques nécessitent que le modèle d’erreur soit une forme quadratique, laquelle fait apparaître intrinsèquement un espace métrique. Pour pouvoir exhiber un tel espace, il est nécessaire de décomposer le polynôme homogène et de l’approcher par une forme quadratique à la puissance k/2. Cette modélisation permet ainsi de révéler un champ de métriques indispensable pour communiquer avec le générateur de maillages. En deux et trois dimensions, des méthodes de décomposition de tenseurs telles que la décomposition de Sylvester nous permettront de décomposer la fonction exacte d’erreur puis d'en déduire le modèle d’erreur quadratique. Ce modèle d’erreur local est ensuite utilisé pour contrôler globalement l’erreur en norme Lp et le maillage optimal est obtenu en minimisant cette erreur. Dans cette thèse, on s’attachera à démontrer la convergence à l’ordre k de la méthode d’adaptation de maillages pour des fonctions analytiques et pour des simulations numériques utilisant des solveurs d’ordre k ≥ 3.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (148 p.)
  • Annexes : Bibliogr. p. [139]-145. 93 réf. bibliogr.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2013 696

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2013PA066696
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.