Thèse soutenue

La formation de l'hydrogène moléculaire sur des silicates interstellaires : des expériences aux observations
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Lisseth Gavilan
Direction : Jean-Louis Lemaire
Type : Thèse de doctorat
Discipline(s) : Astronomie et astrophysique
Date : Soutenance en 2013
Etablissement(s) : Observatoire de Paris
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine1992-....)
Jury : Président / Présidente : Bruno Sicardy
Examinateurs / Examinatrices : Jean-Louis Lemaire

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

L'objectif de cette thèse est de comprendre la formation de l'hydrogène moléculaire dans le milieu interstellaire (MIS) via des expériences de laboratoire et des observations astronomiques. Les expériences ont été réalisées avec FORMOLISM, un montage fonctionnant dans l'ultra-vide pour étudier la formation de molécules dans le MIS. On s'intéresse à la distribution en énergie de molécules d'hydrogène formées sur une surface refroidie par cryogénie (< 10 K). La technique de Resonance Enhanced Multi-Photon Ionization (REMPI 2 + 1) est utilisée pour sonder la population des niveaux rovibrationnels de l'état électronique fondamental de l'hydrogène moléculaire. Nous avons examiné différentes surfaces d'intérêt astrophysique : des silicates amorphes et cristallins, et de la glace d'eau solide amorphe poreuse (p-ASW). Nous avons confirmé l'augmentation du taux de formation de l'hydrogène moléculaire sur une surface recouverte au préalable des molécules d'hydrogène et nous avons quantifié la formation D₂en tant que mécanisme de désorption non-thermique. Nous avons mesuré le rapport ortho-para de l'hydrogène moléculaire nouvellement formée sur la surface de p-ASW, qui correspond à la valeur attendue à l'équilibre statistique à haute température (> 100 K). Nous avons fabriqué au laboratoire de nouvelles surfaces de silicates (forstérite et fayalite) pour examiner l'impact de leur morphologie et de leur composition chimique sur la formation de l'hydrogène moléculaire. On a observé l'abaissement de la température de rotation des molécules d'hydrogène formées (par rapport à la température de rotation du jet moléculaire) émergeant de surfaces cristallines. Nous avons également étudié la conversion de spin nucléaire des molécules d'hydrogène absorbées sur une surface de sillicate. Les prédictions observationnelles qui on été déduites de ces expériences ont été testées par spectroscopie à longue fente dans l'infrarouge proche disponible au VLT et au Keck. Des nébuleuses planétaires présentant simultanément des émissions de H₂ont été détectées sur certains de nos objets. La distribution d'intensité de ces raies est comparée à des modèles théoriques de formation H₂dans l'espace. Une partie de cette thèse traite également de la spectroscopie VUV à haute résolution de CO et de ses isotopes, en utilisant le spectromètre à transformée de Fourier disponible au synchroton SOLEIL. Cela complète le travail sur l'hydrogène dans le contexte plus large de l'astrochimie de petites molécules.