Méthodes stochastiques en dynamique moléculaire
Auteur / Autrice : | Nicolas Perrin |
Direction : | Denis Talay, Nicolas Champagnat |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 20/03/2013 |
Etablissement(s) : | Nice |
Ecole(s) doctorale(s) : | École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire J.-A. Dieudonné (Nice) |
Jury : | Président / Présidente : Nicole El Karoui |
Examinateurs / Examinatrices : Denis Talay, Nicolas Champagnat, Nicole El Karoui, Stéphane Menozzi, Philippe Briand, François Delarue |
Résumé
Cette thèse présente deux sujets de recherche indépendants concernant l'application de méthodes stochastiques à des problèmes issus de la dynamique moléculaire. Dans la première partie, nous présentons des travaux liés à l'interprétation probabiliste de l'équation de Poisson-Boltzmann qui intervient dans la description du potentiel électrostatique d'un système moléculaire. Après avoir introduit l'équation de Poisson-Boltzmann et les principaux outils mathématiques utilisés, nous nous intéressons à l'équation linéaire parabolique de Poisson-Boltzmann. Avant d’énoncer le résultat principal de la thèse, nous étendons des résultats d'existence et unicité des équations différentielles stochastiques rétrogrades. Nous donnons ensuite une interprétation probabiliste de l'équation non-linéaire de Poisson-Boltzmann sous la forme de la solution d'une équation différentielle stochastique rétrograde. Enfin, dans une seconde partie prospective, nous commençons l'étude d'une méthode proposée par Paul Malliavin de détection des variables lentes et rapides d'une dynamique moléculaire.