Thèse soutenue

Etude de la photopolymerisation sol-gel de precurseurs inorganiques et application pour l'élaboration de films de silice mésoporeuse

FR  |  
EN
Auteur / Autrice : Héloise De Paz-Simon
Direction : Céline Croutxé BarghornAbraham Chemtob
Type : Thèse de doctorat
Discipline(s) : Chimie des matériaux
Date : Soutenance le 21/10/2013
Etablissement(s) : Mulhouse
Ecole(s) doctorale(s) : École doctorale pluridisciplinaire Jean-Henri Lambert, ED 494 (Mulhouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Photochimie et d'Ingenierie Macromoleculaires (LPIM) - EA 4567 - Laboratoire de Photochimie et d'Ingénierie Macromoléculaires

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Alors que le procédé sol-gel a été fortement étudié il existe peu d’études concernant le procédé sol-gel photoinduit. Le principe repose sur la libération in situ d’espèces acides ou basiques photogénérées capables d’amorcer les réactions d’hydrolyse et de condensation caractéristiques du procédé sol-gel. L’alternative photoinduite est particulièrement adaptée pour préparer des films minces et possède de nombreux avantages tel qu’une formulation de départ stable, sans solvant et photolatente ainsi que des vitesses de réactions plus importantes. À partir de précurseurs inorganiques simples, nous avons dans un premier temps réalisé une étude mécanistique et cinétique de ce procédé en catalyse acide. Puis l’influence de différents paramètres physiques, chimiques et photochimiques sur les vitesses de réactions a été évaluée. Une comparaison avec un système similaire en catalyse basique a aussi été réalisée.Dans un second temps, nous nous sommes intéressés à appliquer ce procédé photoinduit pour la préparation de films de silice mésoporeuse. Un tensioactif de type copolymère tribloc a été ajouté au précurseur inorganique de départ. La faisabilité d’une approche photochimique à partir de formulation sans eau ni solvant a d’abord été étudiée, des films mésoporeux ont été obtenus. Puis, nous nous sommes intéressés à la compréhension des 2 mécanismes interdépendants : le mécanisme d’assemblage du tensioactif et la condensation du réseau inorganique. Par la suite, le système a été optimisé pour aboutir à un contrôle précis de la structure et de la taille des pores. Enfin, une dernière étape a consisté à éliminer la partie organique (pour libérer la porosité) grâce à l’UV.