Thèse soutenue

Évolution et transformation automatisée de modèles de systèmes d’information : une approche guidée par l’analyse formelle de concepts et l’analyse relationnelle de concepts

FR  |  
EN
Auteur / Autrice : Abdoulkader Osman Guedi
Direction : Marianne Huchard
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/07/2013
Etablissement(s) : Montpellier 2 en cotutelle avec Université de Djibouti
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Thérèse Libourel
Examinateurs / Examinatrices : Marianne Huchard, Thérèse Libourel, Isabelle Comyn-Wattiau, Philippe Lahire, Isabelle Borne, Mohamed Djama Hassan, André Miralles, Clémentine Nebut
Rapporteurs / Rapporteuses : Isabelle Comyn-Wattiau, Philippe Lahire

Résumé

FR  |  
EN

L'évolution rapide des besoins dus entre autres à l'innovation technique, la concurrence ou la réglementation conduit souvent à décrire le cadre d'étude des systèmes d'information dans des modèles conceptuels, pour faciliter l'évolution du fonctionnement des systèmes. La mise au point de ces modèles s'effectue en plusieurs phase au cours desquelles collaborent plusieurs équipes de nature différente, chaque intervenant apportant sa perception du système à construire en se limitant à la partie de son domaine de spécialisation. Il faut alors concilier les différentes perceptions. L'objectif essentiel de la thèse est de concevoir les mécanismes permettant d'une part d'obtenir le modèle factorisant les concepts communs à plusieurs modèles et, d'autre part, de proposer aux concepteurs une méthodologie de suivi de l'évolution de la factorisation. Pour réaliser la factorisation, nous avons mis en œuvre l'Analyse Formelle de Concepts et l'Analyse Relationnelle de Concepts (ARC) qui sont des méthodes d'analyse de données basées sur la théorie des treillis. Dans un ensemble d'entités décrites par des caractéristiques, les deux méthodes extraient des concepts formels qui associent un ensemble maximal d'entités à un ensemble maximal de caractéristiques partagées. Ces concepts formels sont structurés dans un ordre partiel de spécialisation qui les munit d'une structure de treillis. L'ARC permet de compléter la description des entités par des relations entre entités. La première contribution de la thèse est une méthode d'analyse de l'évolution de la factorisation d'un modèle basée sur l'AFC et l'ARC. Cette méthode s'appuie la capacité de l'AFC et de l'ARC à faire émerger au sein d'un modèle des abstractions thématiques de niveau supérieur, améliorant ainsi la sémantique des modèles. Nous montrons que ces méthodes peuvent aussi être employées pour suivre l'évolution du processus d'analyse avec des acteurs. Nous introduisons des métriques sur les éléments de modélisation et sur les treillis de concepts qui servent de base à l'élaboration de recommandations. Nous effectuons une expérimentation dans laquelle nous étudions l'évolution des 15 versions du modèle de classes du système d'information SIE-Pesticides. La seconde contribution de la thèse est une étude approfondie du comportement de l'ARC sur des modèles UML. Nous montrons l'influence de la structure des modèles sur différentes variables étudiées (comme les temps d'exécution et la mémoire occupée) au travers de plusieurs expérimentations sur les 15 versions du modèle SIE-Pesticides. Pour cela, nous étudions plusieurs configurations (choix d'éléments et de relations dans le méta-modèle) et plusieurs paramètres (choix d'utiliser les éléments non nommés, choix d'utiliser la navigabilité). Des métriques sont introduites pour guider le concepteur dans le pilotage du processus de factorisation et des recommandations sur les configurations et paramétrages à privilégier sont faites. La dernière contribution est une approche de factorisation inter-modèles afin de regrouper au sein d'un modèle l'ensemble des concepts communs à différents modèles sources conçus par différents experts. Outre le regroupement des concepts communs, cette analyse produit de nouvelles abstractions généralisant des concepts thématiques existants. Nous appliquons notre approche sur les 15 versions du modèle du SIE-Pesticides. L'ensemble de ces travaux s'inscrit dans un cadre de recherche dont l'objectif est de factoriser des concepts thématiques au sein d'un même modèle et de contrôler par des métriques la profusion de concepts produits par l'AFC et surtout par l'ARC.