Thèse soutenue

Contribution à la commande adaptative non linéaire des robots sous-marins à faible inertie
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Divine Maalouf
Direction : René Zapata
Type : Thèse de doctorat
Discipline(s) : Systèmes Automatiques et Microélectroniques
Date : Soutenance le 22/11/2013
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....)
Jury : Président / Présidente : Wisama Khalil
Examinateurs / Examinatrices : René Zapata, Wisama Khalil, Giuseppe Casalino, Luc Jaulin, Jorge Torres, Vincent Creuze, Ahmed Chemori, Lofti Chikh
Rapporteurs / Rapporteuses : Giuseppe Casalino, Luc Jaulin

Résumé

FR  |  
EN

L'utilisation des véhicules sous-marins (ROV, AUV, gliders) s'est considérablement accrue ces dernières décennies, aussi bien dans le domaine de l'offshore ou de l'océanographie, que pour des applications militaires. Dans cette thèse, nous abordons le problème particulier de la commande des véhicules sous-marins à faible inertie et fort rapport puissance/inertie. Ces derniers constituent des systèmes fortement non linéaires, dont la dynamique est susceptible de varier au cours du temps (charge embarquée, caractéristiques des propulseurs, variation de salinité...) et qui sont très sensibles aux perturbations environnementales (chocs, traction sur l'ombilical...). Afin d'assurer des performances de suivi de trajectoire satisfaisantes, il est nécessaire d'avoir recours à une commande adaptative qui compense les incertitudes ou les variations des paramètres du modèle dynamique, mais également qui rejette les perturbations, telles que les chocs. A cette fin, nous proposons dans ce manuscrit, l'étude théorique et la validation expérimentale de plusieurs lois de commande pour véhicules sous-marins. Nous analysons tout d'abord des approches classiques dans ce domaine (commande PID et commande par retour d'état non linéaire), puis nous les comparons avec deux autres architectures de commande. La première est la commande adaptative L1 non linéaire, introduite en 2010 notamment pour la commande des véhicules aériens, et implémentée pour la première fois sur un véhicule sous-marin. Le découplage entre adaptation et robustesse permet l'utilisation de très grands gains d'adaptation (et donc une convergence plus rapide des paramètres estimés, sans aucune connaissance a priori), sans pour autant dégrader la stabilité. La seconde méthode, que nous proposons et qui constitue l'apport principal de cette thèse, est une évolution de la commande L1, permettant d'en améliorer les performances lors du suivi d'une trajectoire variable. Nous présentons une analyse de stabilité de cette commande, ainsi que sa comparaison expérimentale avec les autres lois de commande (commande PID, commande adaptative par retour d'état non linéaire et commande adaptative L1 standard). Ces expérimentations ont été réalisées sur un mini-ROV et plusieurs scenarii ont été étudiés, permettant ainsi d'évaluer, pour chaque loi, sa robustesse et son aptitude à rejeter les perturbations.