Thèse soutenue

Études des solutions solides de type M(1-x)M'xXO4 homéotypes du quartz-alpha et cristallogenèse d’un matériau bi-fonctionnel GaAsO4 à propriétés piézoélectriques et optiques non linéaires
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Manhal Souleiman
Direction : Claire LevelutOlivier Cambon
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 29/11/2013
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Laboratoire Charles Coulomb (Montpellier)
Jury : Président / Présidente : Philippe Papet
Examinateurs / Examinatrices : Claire Levelut, Olivier Cambon, Philippe Papet, Patrick Simon, Fabrice Sthal, Alain Largeteau
Rapporteurs / Rapporteuses : Patrick Simon, Fabrice Sthal

Résumé

FR  |  
EN

Des cristaux de Ga1-xFexPO4 ont été obtenus par voie hydrothermale avec xmax=0.23. La synthèse hydrothermale in-situ par spectroscopie d'absorption des rayons X a permis de mettre en évidence le rôle essentiel des cations Ga3+ lors de la nucléation et la cristallisation de la phase mixte Ga1-xFexPO4 de structure quartz-α. La solution solide a été particulièrement étudiée par spectroscopie Raman et des calculs théoriques par DFT ont permis d'identifier clairement les modes de vibration dont la fréquence dépend de la composition chimique du matériau (modes couplés). Dans la même famille des matériaux de type MIIIXVO4, la cristallogénèse de monocristaux de GaAsO4 de grande taille (plusieurs cm3) a été réalisée par croissance hydrothermale basse pression (P < 2MPa). A partir de ces cristaux des mesures piézoélectriques sur résonateur ont permis de confirmer que GaAsO4, possède le coefficient de couplage électromécanique le plus élevé de la famille (20%) ce qui représente 2.5 fois les propriétés du quartz. Par ailleurs GaAsO4 possède des propriétés intéressantes dans le domaine de l'optique non-linéaire. Les mesures ont permis d'obtenir un coefficient de couplage électro-optique d11= 2.98pm/V (3.29pm/V par calcul DFT) ce qui place GaAsO4 parmi les matériaux les plus performants dans ce domaine. Compte tenu de sa haute stabilité thermique, GaAsO4 constitue un matériau bi-fonctionnel très prometteur pour des applications high-tech.