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Abstract

This dissertation is devoted to the study of the existence of solutions for
some evolution problems. The study is concerned with perturbed sweeping
process associated on the one hand with prox-regular sets and on the other
hand with subsmooth sets. It is assumed that the sets move either in a
Lipschitz way or in an absolutely continuous way.

Cette these est consacrée a ’étude d’existence de solutions pour certains
problemes d’évolution. Il s’agit de processus de rafle perturbés associés d’une
part a des ensembles prox-réguliers et d’autre part a des ensembles sous-lisses.
Les ensembles sont supposés évoluer de facon Lipschitzienne ou absolument
continue.
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Introduction générale

La these est constituée d'un chapitre préliminaire puis de cinq chapitres
traitant des inclusions différentielles d’évolution régies par des cones nor-
maux et des perturbations multivoques. Le chapitre préliminaire rappelle
divers concepts et résultats d’analyse variationnelle non lisse utilisés dans le
développement de la these. Nous allons ci-dessous résumer brievement les
résultats principaux de chacun des cing autres articles.

Chapitre I: Ensemble sous-lisse et processus de
rafle.

Ce premier chapitre de la these est consacré a ’étude de processus de rafle
régi par des ensembles sous-lisses. Ces ensembles correspondent a une pro-
priété de sous-monotonie du cone normal; cette propriété est dans la ligne
de 'hypomonotonie du cone normal des ensembles prox-réguliers.

Un sous-ensemble C' d'un espace de Hilbert H est dit étre prox-régulier en
uy € C, quand il existe r > 0 et § > 0 tels que pour tous uy, uy € B(ug,d)NC
et & € No(u;) NB avec i =1,2, on a

1
(& — &, up —ug) > —;Hul — us|?,

ou N¢(u;) désigne le cone normal de Clarke a C' en w; et B la boule unité
fermée de 'espace de Hilbert H centrée a l'origine.

Plusieurs exemples, propriétés et caractérisations d’ensembles prox-
réguliers ont été donnés dans [2, 3, 4, 5, 11, 12].

Récemment, dans leur article ”Subsmooth sets: functional characteriza-
tions and related concepts” publié en 2005 dans Transactions of American
Mathematical Society (voir, [1]), D. Aussel, A Daniilidis et L. Thibault ont
considéré comme une extension du concept de prox-régularité, les ensembles
sous-lisses.



Ensemble sous-liss.

On dit qu’un sous-ensemble non vide C' de H est sous-lisse en ug € C', si
pour chaque € > 0 il existe 6 > 0 tel que pour tous uj, us € B(ug,d) NC' et
& € No(u;) "B avec i = 1,2, on a

(1) (€1 = &2y ur —uz) = —¢flur — ugl|.

Ceci nous a amené a introduire le concept de famille équi-uniformément
sous-lisse d’ensembles.

Définition 0.0.1. Soit E un ensemble non vide et (C(t))icg une famille
de sous-ensembles non wvides de H. On dit que cette famille est équi-
uniformément sous-lisse, si pour chaque € > 0 il existe 6 > 0 tel que (1)

ait liew pour tout t € E et tous uy,ug € C(t) avec ||ug — us|| < 6 et tous
& € No(u) NB avec i =1, 2.

Les deux lemmes suivants ont été utilisés dans la démonstration du
Théoreme 0.0.1 ci-dessous. Le premier lemme est un résultat bien connu
pour les ensembles sous-lisses, voir [1]. Il nous dit que les sous-différentiels
(resp. les cones normaux) de Clarke et de Fréchet ddeo(u) et Opde(u) (resp.
Ne(u) et NE(u)) coincident quand C' est sous-lisse en u € C' et fermé autour
de u. De facon précise:

Lemme 0.0.1. 57 C est un sous-ensemble de H qui est sous-lisse en ug € C
et fermé autour de ug, alors les assertions suivantes ont lieu:

((l) 8dc(U0) = 8ch(u0).
(b) Ne(uo) = N (uo).

Le second lemme apporte un résultat nouveau. Il correspond a une pro-
priété de fermeture du sous-différentiel de la fonction distance a des ensembles
sous-lisses. Dans son énoncé et par la suite, pour une multi-application M
entre deux ensembles non vides X et Y, nous notons gph M son graphe,
¢’est-a-dire

gph M :={(z,y) e X xY :y € M(x)}.

Lemme 0.0.2. Soient E un espace métrique, (C(t))icr une famille de sous-
ensembles non vides de H, n > 0 un réel strictement positif, ) C E et
sog € adh@, ou adh(@Q) désigne l'adhérence de () dans E. On suppose que
la famille (C(t))ier est équi-uniformément sous-lisse. Alors, les assertions
sutwantes ont lieu:

(a) Pour tout (s,u) € gphC, on a nddc(s)(u) C nB.
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(b) Pour toutes suites généralisées (s;)jes € Q, (u;)jes € H et ((j)jes €
H telles que s; — sy dans E, u; — u € C(sg) dans (H,|| -||) avec
u; € O(s)) et dogs;)(y) — 0 pour chaque y € C(so) et (5 — ¢ dans
(H,w(H, H)) avec ¢; € nddc(s;)(u;j), on a ¢ € ndde(sy) (u).

De ce qui précede on a déduit la proposition suivante:

Proposition 0.0.1. Soient I un intervalle de R et (C(t))ier une famille de
sous-ensembles non vides de H et n > 0 un réel strictement positif. On
suppose que (C(t))er est équi-uniformément sous-lisse et qu’il existe une
fonction continue ¥ : I — Ry tel que, pour tousy € H et s,t € I avec s <t,

d(y, C(t)) < d(y,C(s)) +I(t) — I(s).
Alors, les assertions suivantes ont liew:
(a) Pour tout (s,u) € gphC, on a nddcs)(u) C nB.

(b) Pour toutes suites (sp)n € I, (un)n € H telles que s, — s avec s, > s,
up, — u € C(s) avec u, € C(s,) et pour chaque £ € H, on a
limsup o (&, 70dc(s,) (un)) < 0(&,m0dc(s) (u)),

n—0o0

ol a(-,n@dc(s)(u)) désigne la fonction d’appuie de [’ensemble
n@dC(S)(u).

Résultats principaux

Soient Ty, T" deux nombres réels positifs avec 0 < T, < T. Soient C' :
1o, T] = H et ' : [To,T] x H = H deux multi-applications, la premiere
étant a valeurs fermées non vides et la seconde prenant des valeurs convexes
fermées non vides et vérifiant I’hypothese de croissance suivante:

d(0,T(t,z)) < a(t)(1+ ||z]|)
pour tout t € [Ty, T] et tout x € C([Ty,t]) == U C(s), ou a est une
Ty<s<t

fonction Lebesgue intégrable sur [Ty, 7] a valeurs réelles positives. On a
établi notre théoreme d’existence sous les hypotheses suivantes:

(H11) Pour chaquet € [Ty, T], C(t) est un sous-ensemble boule-compact de H;
il existe une fonction absolument continue croissante ¥ : [Ty, 7] — R,
telle que, pour tous y € H et s,t € [Ty, T] avec s <t

d(y, C(t)) < d(y, C(S)) +9(t) — 9(s);
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(H2,) La famille (C(t))seqr,m est équi-uniformément sous-lisse;

(Hs1) Lamulti-application I' est £([T0, T'])®@B(H )-mesurable et semi-continue
supérieurement par rapport a la seconde variable, ou L([Tp, T]) désigne
la tribu de Lebesgue de [Ty, T| et B(H) la tribu de Borel de H.

Théoreme 0.0.1. On suppose que les hypothéses Hi 1, Ha1, Haa ci-dessus
sont satisfaites pour Uintervalle I = [Ty, T|. Alors, il existe une application
absolument continue x : I — H solution de l’inclusion différentielle

i(t) € =New (z(t)) + (¢, z(t)) pp. tel
(&) x(t)e C(t) vtel
ZE(T0> =g € C(To)

Pour faciliter la lecture, rappelons qu’un sous-ensemble S de H est boule-
compact quand l'ensemble S N rB est compact dans (H, | - ||) pour chaque
r > 0, ou B désigne comme ci-dessus la boule unité fermée de H. Rappelons
aussi, étant donné un espace mesurable (€2, 7'), qu'une multi-application M :
Q) = H est T —mesurable quand pour tout ouvert U de H nous avons

MY U)eT, on M HU) :={weQ: Mw)NU #0}.
Le résultat suivant est une conséquence directe du Théoreme 0.0.1.

Corollaire 0.0.1. Soit T' : [Ty, +oo[xH = H wune multi-application
L([Ty, T)) @ B(H)-mesurable et semi-continue supérieurement par rapport a
la seconde variable. On suppose que les hypotheses suivantes sont satisfaites:

- 1l existe une fonction positive B(-) € LS (Ry) telle que

loc
d(0,T(t,z)) < B(t)(1 + [|=[))
pour tous t € [Ty, +oo[ et x € C([Ty,t]);
- La famille (C(t))ieimy,+oof €St €qui-uniformément sous-lisse;

- Pour chaque t € [Ty, +oo[, C(t) est un sous-ensemble boule-compact
de H; il existe une fonction localement absolument continue croissante
Y [T, +oo[— Ry telle que, pour tous y € H et s,t € [Ty, +00] avec
s <t

d(y,C(t)) < d(y,C(s)) + 9(t) — I(s).
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Alors, pour chaque x¢ donné dans H avec xo € C(1y), il existe une applica-
tion localement absolument continue x : [Ty, +o0o[— H solution du probléme
suivant:

i(t) € —New (z(t)) + T(t,z(t))  p.p. t € [Ty, +o0]
() z(t) € C(t) Yt e [To, +o0f

.Z’(To) =T € C(Tg)

Théoreme 0.0.2. Supposons que Ho 1 et les hypotheses suivantes soient sat-
isfaites:

(a) Pour chaque t € I, C(t) est un sous-ensemble non vide compact de H
et il existe une fonction absolument continue ¥ : I — Ry telle que,
pour tous y € H et s,t € I avec s <'t,

[d(y, C(t) — d(y. C(s))| < [9(t) —I(s)];

(b) Pour chaque sous-ensemble borné S de H, il existe deux fonctions og
et Bs dans Ly (I) telles que

d(0,T(t, z)) < as(t) + Bst)||zl| pour tout (t,z) € I x S.
Alors, il existe une application absolument continue x : I — H solu-
tion de linclusion différentielle (£)
Le prochain résultat est un corollaire du Théoreme 0.0.2.
Corollaire 0.0.2. On suppose que les hypotheses suivantes sont vérifiées:

(a) Pour chaque t € [Ty, 400, C(t) est un sous-ensemble non vide boule-
compact de H; Il existe une fonction localement absolument continue
U [T, +oo[— Ry telle que, pour tous y € H et s,t € [Ty, +00|

[d(y, C(t)) — d(y,C(s))| < [0(t) — I(s)l;
(b) La famille (C(t))icim,,+oof €St €qui-uniformément sous-lisse;

(¢) La multi-application T est L([To,+oo]) ® B(H)-mesurable et semi-
continue supérieurement par rapport a la seconde variable et I' satisfait
la condition de croissance: pour chaque sous-ensemble borné S de H,

il existe deuz fonctions as et Bs dans Ll (R,) telles que

d(0,T(t,z)) < as(t) + Bs(t)||z]|  pour tout (t,z) € [Ty, +00[xS.

Alors, 1l existe une application localement absolument continue x :
[Ty, +o00|— H solution de l'inclusion différentielle (Ex).
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Chapitre II: Perturbation avec mémoire de
processus de rafle gouverné par des ensembles
sous-lisses.

Le chapitre II étudie 'inclusion différentielle (£) du chapitre I dans le cas ou
intervient un retard dans la multi-application I'.

Soient H un espace de Hilbert et r > 0 un réel strictement positif. Soient
aussi C': [0, 7] = H et I': [0,T] x Cy(—r,0) == H deux multi-applications
données. L’inclusion différentielle du chapitre I en présence de retard se
présente alors sous la forme suivante:

i(t) € —Now(z(t)) + L(t,A(t)r) pp. t€0,T];
(&) x(t) e C(t) Vte [0,T7];

2(-) = ¢(-) in[=r0]

ou A(t) est 'application de Cy(—r,T) dans Cy(—r,0) définie, pour tout = €
Cu(—r,T), par A(t)xz(s) := x(t+s) pour tout s € [—r,0], et  est un élément
de Cy(—r,0) tel que ¢(0) € C(0). Ici nous notons Cy(—r,T') l'espace des
applications continues de [—r,T| dans H.

Nous avons étudié 'existence de solutions pour l'inclusion différentielle
(&:). Nous appelons solution de (&,) toute application z : [—r,T| — H telle
que

1. pour chaque s € [—r, 0], nous avons x(s) = ¢(s);
2. x(t) € C(t) pour tout t € [0,T];

3. la restriction x| de x & [0,7] est absolument continue et sa dérivée
satisfait presque partout l'inclusion

i(t) € —New (z(t)) + T (¢, A(t)z) p.p. t €[0,T).

Les hypothéses concernant 1’ensemble C'(t) et la multi-application I" avec
lesquels nous avons travaillé sont les suivantes:

(H12) Pour tout ¢ € [0, 7], C(t) est un sous-ensemble boule-compact de H;
I'ensemble C(t) bouge de facon absolument continue, c¢’est-a-dire, il
existe une fonction absolument continue ¥ : [0,7] — R telle que, pour
chaque y € H et tous s,t € [0, 7]

[d(y, C(t)) — d(y, C(s))| < [9(t) — 9(s)];
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(H2,2) La famille (C(t))scppm est équi-uniformément sous-lisse;

(Hs2) La multi-application I' & valeurs non-vides convexes fermées, est
L([0, T))®@B(Cy(—r,0))-mesurable et semi-continue supérieurement par
rapport & ¢ € Cy(—r,0) pour presque tout ¢ € [0,7]. De plus

d(0,T(t,¢)) < a(t)(1 + [[¢]l)

pour tout ¢ € [0,7] et tout ¢ € Cy(—r,0), ou « est une fonction
intégrable sur [0, 7] a valeurs réelles positives.

Dans ce chapitre, nous avons appliqué le résultat du chapitre I concernant
la fermeture du sous-différentiel de la fonction distance, afin d’obtenir la
propriété de semi-continuité supérieure de la fonction d’appui o (§ ,n0dc, ()) .
Nous avons ainsi démontré le théoreme suivant d’existence de solution pour
'inclusion differentielle (&,).

Théoreme 0.0.3. On suppose que les hypotheses Hi o, Hoo, Hso ci-dessus
sont satisfaites. Alors, pour chaque ¢ dans Cy(—r,0) avec p(0) € C(0),
Uinclusion différentielle (€.) admet au moins une solution.

Chapitre III: Processus de rafle non-convexe
avec un ensemble dépendant de I’état.

Dans le chapitre I I'évolution des ensembles C'(¢) intervenant dans I'inclusion
différentielle ne dépend que du temps. Le chapitre III est consacré au cas
ou l'ensemble dépend a la fois du temps et de I'état, c¢’est-a-dire se présente
sous la forme C'(,u(t)).

Le théoreme suivant démontre que la projection métrique sur des ensem-
bles prox-réguliers est Holderienne par rapport a la distance de Hausdorff.
C’est une propriété importante qui a son propre intérét en analyse variation-
nelle. Dans I’énoncé du théoréeme, pour C' C H, v €]0,1][ et 7 > 0 nous
utilisons la notation

UNC):={ve H:0<d(v,C)<n~r},
désignant le tube ouvert autour de C.

Théoréme 0.0.4. Soient deux ensembles C et C' d’un espace de Hilbert H
qui sont r-proz-réguliers pour une constante r > 0 et soit v €]0,1[. Alors
pour tous uw € UY(C) et v € UY(C') on a
_ 2yr 1/2
[Pe(u) = Per(@)l < (1 =) u = vl 4/ (Havs (€.€))
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ou Haus (C, C") désigne la distance de Hausdorff entre les ensembles C' et C'.
Le corollaire suivant en est une conséquence immeédiate.

Corollaire 0.0.3. Soit C(t,u) un ensemble r-proz-régulier de H pour une
constante v > 0 et soit v €]0,1[. On suppose qu’il existe un réel constant
L > 0 tel que pour tous t € [0,T] et ,u,v € H, on ait

Haus (C(t,u),C(t,v)) < L|lu —v||.
Alors, pour tous u,v € H et x € UY(C(t,u)) NUY(C(t,v)), on a

2yrL

2
Ty — o2,

IPogu) () — Pew ()] <

Cette propriété et I'extension du théoreme de point fixe de Schauder de
[7] ou [10] font partie des résultats cruciaux utilisés dans la démonstration
du Théoréme 0.0.5 ci-dessous.

Résultats principaux

Soient C': [0,T] = Het G : [0,T]x H = H deux multi-applications données,
qui sont a valeurs non vides fermées et a valeurs non vides convexes fermées
respectivement. Les hypotheses suivantes vont intervenir dans le prochain
théoreme:

(G13) La multi-application G est scalairement semi-continue supérieurement
par rapport aux deux variables et il existe un certain o > 0 tel que

d(0,G(t,u)) < a
pour tous t € [0,T] et u € H avec u € C(t,u);

(G23) Pour chaque t € [0,7] et chaque u € H, les ensembles C(t,u) sont
r-prox-reguliers pour une constante r > 0;

(Gs3) 1l existe deux constantes réelles Ly > 0, Lo €]0, 1] telles que, pour tous
t,s €[0,T] et x,y,u,v € H

Jd(z, C(t,w) — d(y, Cls,))| < & — gl + Lalt — 5| + Lafju — o]}
(Gy3) Pour chaque sous-ensemble borné A C H, I'ensemble C([0,7] x A) est
relativement boule-compact, ¢’est-a-dire, I'intersection de C([0,7] x A)

avec chaque boule fermée de H est un ensemble relativement compact
dans H.
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Théoréme 0.0.5. Supposons que les hypotheses Gi3,--- ,Gag sotent satis-
faitess. Alors, pour chaque ug € H avec ug € C(0,ug), il existe une applica-
tion Lipschitzienne u : [0,T] — H telle que

[ u(t) € —NC(tm(t)) (u(t)) + G(t,u(t)) p.p.tel0,T],

(D) § u(t) € O(t,ult)) vt € (0,17,

| u(t) = uo + [ u(s)ds Vt € [0, T,

c’est-a-dire, u est une solution Lipschitzienne de l'inclusion différentielle (D)
avec [[a(t)|| < 5222 p.p. ¢ €10,T].

Le prochain résultat est une extension du Théoreme 0.0.5.

Théoréeme 0.0.6. Soit G : R, x H = H une multi-application scalairement
semi-continue supérieurement par rapport auzr deuzr variables. On suppose
que les hypothéses suivantes sont satisfaites:

Il existe une fonction positive B(-) € L2 (Ry) tel que

loc

d(0,G(t,u)) < B(t)

pour tous t € Ry et uw € H avec u € C(t,u);

Pour chaque t € Ry et chaque uw € H, les ensembles C(t,u) sont
r-proz-requliers pour une constante r > 0;

Il existe deux constantes réelles Ly > 0, Ly €]0, 1] telles que, pour tous
t,se R, etx,y,u,ve H

[d(a, Ot w)) = d(y, C(s,0))| < 1w = yll + Lalt — 5| + Lolu — vl

Pour chaque sous-ensemble borné A C H, l'ensemble C'([0,T] x A) est
relativement boule-compact.

Alors, pour chaque uy donné dans H avec ug € C(0,uq), il existe une appli-
cation localement Lipschitzienne u : Ry — H solution du probleme suivant:

(u(t) e =N ) (u(t)) + G(t,u(t)) p.p.teRy,

o (tu(

(D) u(t) € C(t,u(t)) Vvt € Ry,

| u(t) =uo + [ i(s)ds Vt € R,
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Les deux corollaires suivants sont des conséquences directes du Théoreme
0.0.5 et du Théoreme 0.0.6 respectivement.

Corollaire 0.0.4. Soit G : [0,T] x H = H une multi-application scalaire-
ment semi-continue supérieurement par rapport auzr deux variables. On sup-
pose que H est un espace Euclidien de dimension finie et que les hypotheses
suivantes sont satisfaites:

- 1l existe un nombre réel positif « tel que
d(0,G(t,u) <a
pour tous t € [0,T] et w € H avec u € C(t,u);

- Pour chaque t € [0,T] et chaque uw € H, les ensembles C(t,u) sont
r-prox-requliers pour une constante r > 0;

- 1l existe deux constantes réelles Ly > 0, Ly €]0, 1] telles que, pour tous
t,s €10,T] et x,y,u,v € H

4w, C(tw) — dy, C(s.0))| < llz = yll + Lilt = | + Laflu— vl
Alors, pour chaque uy donné dans H avec ug € C'(0,uq), il existe une appli-

cation Lipschitzienne u : [0,T] — H solution du probléme (D). De plus, on
a la(t)]] < L222 pop. 1€ [0,7].

Corollaire 0.0.5. Soit G : Ry x H = H une multi-application scalairement
semi-continue supérieurement par rapport auxr deuzr variables. On suppose
que H est un espace Fuclidien de dimension finie et que les hypothéses suiv-
antes sont satisfaites:

- 1l existe une fonction positive 5(-) € LS (R,) telle que

loc
4(0,G(t,w) < (1)
pour tous t € Ry et uw € H avec u € C(t,u);

- Pour chaque t € Ry et chaque u € H, les ensembles C(t,u) sont
r-proz-requliers pour une constante r > 0;

- 1l existe deux constantes réelles L1 > 0, Ly €]0, 1] telles que, pour tous
t,seR, etz,y,u,ve H

jd(x C(t,w)) — d(y, C(s,0))| < lla =yl + Lalt — | + Lalu— ]

Alors, pour chaque uy donné dans H avec uy € C(0,uy), il existe une appli-
cation localement Lipschitzienne v : Ry — H solution du probléme (Dg. ).
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Chapitre IV: Perturbation avec mémoire de
processus de rafle gouverné par des ensembles
prox-réguliers dépendant de 1’état.

Le chapitre IV traite le probleme d’évolution (D) du chapitre III dans le cas
ol intervient un retard dans la multi-application G.

Soient H un espace de Hilbert et r > 0 un réel strictement positif. Soient
aussi C': [0,7] = H et G : [0,T] x Cy(—r,0) = H deux multi-applications
données. L’inclusion différentielle du chapitre III en présence de retard se
présente alors sous la forme suivante:

(u(t) € _NC(t,u(t)) (u(t)) + G(t, Alt)u) aete 0,17,

(D) u(t) € C(t,u(t)) vtelo,T),

u = in [—r0],

\

ou lapplication A(t) et l'espace Cy(—r,T) sont définis comme dans le
chapitre II ci-dessus. Les hypotheses suivantes vont intervenir dans le
prochain énoncé:

(G14) La multi-application G est a valeurs non vides convexes fermées et
est scalairement semi-continue supérieurement par rapport aux deux
variables et il existe un certain a > 0 tel que

d(0,G(t,p)) <«
pour tous ¢t € [0,T] et ¢ € Cy(—r,0);

(G2.4) Pour chaque t € [0,7] et chaque u € H, les ensembles C(¢,u) sont
p-prox-réguliers pour une constante p > 0;

(Gs.4) 1l existe deux constantes réelles Ly > 0, Lo €]0, 1] telles que, pour tous
t,s €[0,T] et x,y,u,v € H

|d(z, C(t,u)) —d(y,C(s,v))| < ||z — yll + Lalt — s| + La|ju — vl|;

(Gy4) Pour chaque sous-ensemble borné A C H, I'ensemble C([0,7] x A) est
relativement boule-compact.

Théoréme 0.0.7. On suppose que les hypotheses Gy, -+ ,Gaa sont satis-
faites.  Alors, pour chaque ¢ € Cy(—r,0) et pour chaque vy € H avec
©(0) = ug € C(0,ug), le probleme d’évolution (D,) admet au moins une

solution w : [—r,T| — H, qui est continue sur [—r,T| et Lipschitzienne sur
[0, T avec |[iu(t)| < B2 pop. t € [0,T].
2
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Chapitre V: Processus de rafle perturbé régi
par des ensembles sous-lisses dépendant de
I’état.

Ce chapitre considere le probleme d’évolution (D) du chapitre III dans le
cadre d’ensembles sous-lisses. 1l s’agit d'une classe d’ensembles beaucoup
plus large que celle des ensembles prox-réguliers.

La proposition suivante est une adaptation de la proposition 0.0.1 quand
les ensembles dépendent a la fois du temps et de I'état. Elle a été utilisée
dans la démonstration du théoreme 0.0.8 ci-dessous.

Proposition 0.0.2. Soit {C(t,v) : (t,v) € [0,T] x H} une famille
d’ensembles non vides fermés de H et n > 0 un réel strictement positif.
On suppose que (C(t,v))¢v)efo,r)xH €st €qui-uniformément sous-lisse et qu’il
existe deux constantes Ly > 0 et Ly > 0 tel que, pour tous z,y,u,v € H et
s,t €[0,T]

Alors, les assertions suivantes ont lieu:
(a) Pour tout (s,v,y) € gphC, on a nOdcsw(y) C nB;

(b) Pour toutes suites (s,)n € [0,T], (vp)n € H et (yn)n € H telles que
Sp = S, vy = v ety, =y € C(s,v) avec y, € C(s,,v,) et pour chaque
E€H, ona

limsup o (f, NOdc (s, v,) (yn)) < U(f; Ndc (s ) (3/>) .

n—o0

En utilisant des idées de [6, 9] on a établi une démonstration du théoreme
suivant sous les mémes hypotheses (Gi 3,33, Ga3) utilisées dans le chapitre
III, sauf que 'hypothese (G, 3) est remplacée par:

(Gy3) pour tous t € [0,T] et u € H, les ensembles C(t,u) sont non-vides et
équi-uniformément sous-lisses.

Théoréme 0.0.8. On suppose que les hypothéses G 3, G 5, Gs 3, Ga3 sont sat-
isfaites. Alors, pour chaque ug € H avec ug € C(0,uyg), il existe une applica-

. . ., . . . L142a
tzon[Oszpifchztzzenne u:[0,T] — H solution de (D) avec |[u(t)|| < 5= pop.
tel0,7).

Avant d’énoncer les prochains résultats, il est important de mentionner
que ce sont des extensions de ceux obtenus dans le chapitre I1I, puisque la
classe d’ensembles utilisée, dans cette partie, contient celle du chapitre III.
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Théoreme 0.0.9. Soit G : R, x H = H une multi-application scalairement
semi-continue supérieurement par rapport auxr deuzr variables. On suppose
que les hypothéses suivantes sont satisfaites:

Il existe une fonction positive 5(-) € Lo (R4 telle que

4(0.G(t,w) < B(1)

pour tous t € Ry et uw € H avec u € C(t,u);

Pour chaque t € Ry et chaque u € H, les ensembles C(t,u) sont non-
vides et équi-uniformément sous-lisses;

Il existe deux constantes réelles Ly > 0, Ly €]0,1] telles que, pour tous
t,seR, etx,y,u,ve H

[d(a, C(tw)) = d(y, C(s,0))| < lle =yl + Lult — 5| + Lolu — vl

Pour chaque sous-ensemble borné A C H, 'ensemble C([0,T] x A) est
relativement boule-compact.

Alors, pour un ug donné dans H avec ug € C(0,uy), il existe une application
localement Lipschitzienne v : Ry — H solution du probléme (Dg. ).

Comme conséquences directes du Théoreme 0.0.8 et du Théoreme 0.0.9
on obtient:

Corollaire 0.0.6. Soit G : [0,T] x H = H une multi-application scalaire-
ment semi-continue supérieurement par rapport auzr deux variables. On sup-
pose que H est un espace Euclidien de dimension finie et que les hypotheses
sutvantes sont satisfaites:

- 1l existe un nombre réel positif « tel que
d(0,G(t,u)) < a
pour tous t € [0,T] et w € H avec u € C(t,u);

- Pour chaque t € [0,T] et chaque u € H, les ensembles C(t,u) sont
non-vides et équi-uniformément sous-lisses;

- 1l existe deux constantes réelles L1 > 0, Ly €]0, 1] telles que, pour tous
t,s €[0,7) et x,y,u,v € H

[d(w, C(tw)) — d(y, C(s,0))| < 1w = yll + Lt — 5| + Lalu — vl
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Alors, pour chaque uy donné dans H avec uy € C(0,uy), il existe une appli-
cation Lipschitzienne u : [0,T] — H solution du probléme (D). De plus, on

a li)]] < L222 pp. 1€ [0,7)

Corollaire 0.0.7. Soit G : Ry x H = H une multi-application scalairement
semi-continue supérieurement par rapport auxr deux variables. On suppose
que H est un espace Fuclidien de dimension finie et que les hypothéses suiv-
antes sont satisfaites:

- 1l existe une fonction positive B(-) € LS.(Ry) telle que

loc
d(0,G(t,u)) < B(t)
pour toust € Ry et u € H avec u € C(t,u);

- Pour chaque t € Ry et chaque uw € H, les ensembles C(t,u) sont non-
vides et équi-uniformément sous-lisses;

- 1l existe deux constantes réelles Ly > 0, Ly €]0, 1] telles que, pour tous
t,seR, etz,y,u,ve H

d(w, C(tw)) — d(y, C(s,0))| < 1w =yl + Lalt — 5| + Lalu — vl

Alors, pour chaque uy donné dans H avec ug € C'(0,uq), il existe une appli-
cation localement Lipschitzienne v : Ry — H solution du probléme (Dg_ ).

22



Bibliography

[1] D. AusserL, A DANILIDIS AND L. THIBAULT, Subsmooth sets: func-

tional characterizations and related concepts, Trans. Amer. Math. Soc. 357
(2005), 1275 1301.

2] F. H. CLARKE, R. J. STERN, P. R. WOLENSKI, Prozimal smoothness
and lower-C? property, J. convex Anal. 2 (1995), 117-144.

[3] G. CoLoMBO, V. GONCHAROV, The sweeping process without convezity,
Set-Valued Anal. 7 (1999), 357-374.

[4] G. CorLomBO, L. THIBAULT, Proz-reqular sets and applications, in
Handbook of Nonconvex Analysis, D.Y. Gao and D. Motreanu eds., Inter-
national Press, 2010.

[5] H. FEDERER, Curvature measures, Trans. Amer. Math. Soc 93 (1959),
418-491.

[6] T. HADDAD, Nonconvex Differential variational inequality and state de-
pendent sweeping process, submitted to J. Optim. Theory Appl.

(7] A. Ipzik, Almost fixed points theorems, Proc. Amer. Math. Soc. 104
(1988), T79-784.

[8] J. NOEL, L. THIBAULT, Subsmooth sets and sweeping process.

9] J. NoEL, L. THIBAULT, Nonconver sweeping process with a moving set
depending on the state

[10] S. PARK, Fized points of a approximable or Kakutani maps, J. Nonlinear
Convex Anal. 7 (2006), 1-17.

[11] R.A. PoLiQuIN, R.T. ROCKAFELLAR, L. THIBAULT, Local differen-
tiability of distance functions, Trans. Amer. Math. Soc. 352 (2000), 5231-
5249.

23



[12] A. SHAPIRO, FEzistence and differentiability of metric projections in
Hilbert space, SIAM J. Optimization 4 (1994), 130-141.

24



Preliminary chapter

Throughout this chapter, we give some preliminary definitions and results
used in the dissertation. A great part will be focused on some useful proper-
ties both on prox-regular sets and on subsmooth sets.

Let us start with various concepts of normal cones in variational analysis.

Definition 0.0.1. Let C be a set of the normed space (X, || -||) and x € C.
The Clarke normal cone N5'(x) of C' at x is the negative polar (TS (z))° of
the Clarke tangent cone, that is,

N (z) = {a" € X" : (z",h) <OVh € TS (z)},

where o
—u
TS (x) := lim inf ,
t¢0,uz>:v

and u o T means u — I along with v € C. Otherwise stated h € TS (x) if

and only if, for any sequence (t,,), tending to 0 with t, > 0 and any sequence
(Xn)n in X converging to x with x, € C, there exists a sequence (hy), in X
converging to h such that

Tn +toh, € C' for alln € N.

When x & C' we define both tangent and normal cones to be empty.

Through the Clarke normal cone we introduce the Clarke subdifferential
as follows.

Definition 0.0.2. Let f : X — RU {—o00,+00} be an extended real-valued
function defined on the normed space X and x be a point where f is finite.

The Clarke subdifferential Ocy f(x) of f at z is defined by
ale<l’> = {ZE* € X" (JI*, _]-) S Necp’)llf(x7f(x))}
We also put 0oy f () = 0 when f(x) is not finite.
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Above epi f denotes the epigraph of f, that is,
epi f ={(z,r) € X xR : f(z) <r}.

Definition 0.0.3. Let C' be a set of the normed space (X, || -||) and x € C.
An element x* € X* is a Fréchet normal of the set C' at x € X when for any
real € > 0 there exists some neighborhood U of x such that

(y—x) <elly—z| foralyeCnU,

that is,

limsup &Y =)

<0.
L P

The set NJ () of all Fréchet normals of C' at x is the Fréchet normal cone
of C at z.
Similarly, the Fréchet subdifferential Or f () of f at x is defined as follows:

Orf(x) ={2" € X" : (2", —1) € Neiif(%f(x))}

We always have
NE(z) ¢ N§(z) and Opf(x) C Ocif (x).

We recall that a Banach space X is called Asplund if every separable
subspace of X has a separable topological dual. In particular, every reflexive
Banach space is Asplund.

Definition 0.0.4. Let (X, || - ||) be an Asplund space. A continuous linear
functional x* € X* is a Mordukhovich limiting subgradient of f at x if there
exists a sequence ((zn, f(x,)))n converging to (z, f(x)) and a sequence (z7),
converging weakly star to x* such that x* € 0¥ f(x,). The set Opf(x) of all
limiting subgradients of f at x is the Mordukhovich limiting subdifferential of
f at x, that is,

O () =" lim sup O f (),

u—xT
!

where *“limsup denotes the weak star sequential limit superior when u — x
U—T
7

and f(u) — f(x).

Thus, we define the limiting normal cone N5(z) as follows:

NE&(x) = lim sup N§ ().

uU—T
C
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It is always true that
NE(x) € Né(x) € N&'(x) and - Opf(x) C Of(x) C deuf (x).

It is known that * € Opf(z) if and only if for any & > 0 there exists some
neighborhood U of = such that

(" y —2) < fy) — f(@) +elly — = forallyeU.

Definition 0.0.5. Let H be a Hilbert space, a vector ( € H is a proximal
normal vector to the set C' at v € C' when there exist a real constant o > 0
and a neighborhood U of x such that

(Cy—x) SUH?/—QCHQ for ally e UNC.

The set of such vectors is the proximal normal cone Ni(x) of C' at x.

Definition 0.0.6. Let H be a Hilbert space and f : H — RU{—o00, 400} be
an extended real-valued function which is finite at x € H. A wvector ( € H
is a prozimal subgradient of f at x provided that (¢, —1) € NJ; (=, f(z)).

The set O,f(x) of all vectors prozimal subgradient of f at x is the proximal

subdifferential of f at x and we put O,f(x) = 0 when f is not finite at x.

It is known that ¢ € 0,f(z) if and only if there exist some real number
o > 0 and some neighborhood U of x such that

(Cy—a) < fly)— flz) +olly—z|* forallyeUNC.
In the Hilbert setting, we always have the following inclusions
NZ(x) € Ni(x) € Ni(x) € Ne'(w),
Opf () C Opf(x) COLf(x) C Do f ().

0.1 Prox-regularity in Hilbert space

We start with the definition of prox-regular sets. Let C' be a closed subset of
H. The set C'is known to be proz-regular at uy € C, when there exist r > 0
and § > 0 such that for all u € B(up,d) N C and all £ € NZ(u) N B, we have

(2) u € Projo(u +7¢).
In the latter inclusion, for any v € H,
Projc(v) :={u e C:d(v,C) = |v—u|}

is the set of nearest points of v in C. When this set has a unique point, we
will use the notation Po(v).
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Figure 1: The set C' is r-prox-regular.
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Figure 2: The set C” is not r-prox-regular at uq.

Further, C'is called prox-reqular if it is prox-regular at every ug € C. The
set C' is uniformly prox-reqular or r-prox-reqular if there exists r > 0 such
that (2) holds for all u € C' and { € N (u). Figure 1 provides an example of
a prox-regular set C' and Figure 2 an example of a non prox-regular set C’
(non prox-regular at ug).

Certain characterizations below are formulated as either the hypomono-
tocity property or the cocoercivity of a set-valued mapping involving a trun-
cated normal cone. For a normed space X and an extended real r €]0, +00],
a set-valued mapping M : X = X* is said to be r-hypomonotone on a subset
U of X provided

1
(w% — 25,11 — 29) > —~||2y — 25> forall 3, € U C Dom M, x} € M(x;).
r

When U = X one just says that M is r-hypomonotone. The r-
hypomonotonicity for r = +o00 amounts to the monotonicity of the set-valued
mapping M.

Th set-valued mapping M is c-coercive on U for some real ¢ > 0 when

(wt — 2%, 21 — 29) > ||z — 25> forall 3, € U € Dom M, xf € M(x;),

i
It instead

(wt — 2%, 11 — x9) > ||} — 23> forall 3, € U C Dom M, xf € M(x;),

i
one says that M is c-cocoercive on U.

Theorem 0.1.1. /2, 3, 5] Let C be a closed subset of H and r €]0,+oc].
Then the following assertions are equivalent.
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(a)
(b)

(¢)

(d)

(¢)

()

(g)

(h)

(i)

(1)
(k)

The set C' is r-prox-reqular.

For any x,2' € C' and v € N} (x) one has
(v.0' — ) < 5_[lolla’ ~ 2]
- 2r
For any x € C, any v € NA(x) N B, and any nonnegative real number

t <r one has © = Po(x + tv).

For any z; € C,v; € N&(x;) "B with i = 1,2 one has
1 2
(01 — Vg, 21 — x9) > _;Hl'l — z9||%,

that is, the set-valued mapping N&(-) N B is 1/r-hypomonotone.

For any positive v < 1, foru; € UY(C):={ve H:0<d(v,C) <r},
and for y; € (I +~vrB N NE(-)) (u;) with i = 1,2, one has

(y1 — Yo, ur — uz) > (1 =) llyr — v2f7,

that is, the set-valued operator (I4+~rBNNE(-))™ is (1 —y)-cocoercive
on the set UY(C).

For any positive v < 1 the mapping Pc is well-defined on UY(C') and
Lipschitz continuous on U (C) with (1 —~)~" as a Lipschitz constant,
that is,

1Po(ur) = Po(uz) | < (1 =) lus = wal| - for all ui,us € UY(C).
For any positive v < 1 the mapping Pc is well-defined on UY(C) and
Po(u) = (I +~yrBNNE()) Hu) for allu € UY(C).

The mapping Pc is well-defined on U,.(C) :={ve H:0 < d(v,C) <r}
and locally Lipschitz continuous there.

The function dZ is of class C' on U,(C) and Vdz(u) = 2(u — Po(u))
for all uw € U,(C).

The function dz, is of class C* on U,(C).

The function dZ is Fréchet differentiable on U,.(C).
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(1) Opdc(u) # 0 for allu € U, (C).
(m) Opdc(u) # 0 for allw € U, (C).

If C is weakly closed (which holds whenever H is finite dimensional), then
one can add the following the list of equivalences:

(n) The mapping Pc is well-defined on U,.(C).
The next theorem concerns the local prox-regularity.

Theorem 0.1.2. /3] Let C be a closed subset of H and let & € C. Then the
following assertions are equivalent.

(a) The set C is prox-regular at T.

(b) There ezist a neighborhood U of & and a real number r > 0 such that
for allz € CNU and v € Ni(x) N B one has

1
(v, —x) < ng’ —z||* foralla € CNU.

(¢) There ezist a neighborhood U of T and a real number r > 0 such that
for allz € CNU and v € Nj(x) one has

1
(v, —x) < g[lvHHx’ —z||* forallz' € CNU.

(d) There exist a neighborhood U of & and a real number r > 0 such that for
any x € CNU, any v € Ni(x) N B, and any nonnegative real number
t <r one has © = Po(x + tv).

(e) There exist a neighborhood U of & and a real number r > 0 such that
for all x; € CNU,v; € N&(z;) N\B with i = 1,2 one has

1
(U1 — Vg, 1 — x9) > —;||1L'1 - $2||2>

that is, the set-valued mapping N&(-) NB is 1/r-hypomonotone on U.

(f) There exist a neighborhood U of T and a real number B > 0 such that
P¢ is well defined on U and -cocoercive (hence monotone) there, that
18,

(Po(u) — Po(ug), up —ug) > B||Po(uy) — Po(ug)||*  for all uy,uy € U.
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(9) There ezist a neighborhood U of T and a real number B > 0 such that
Po is well defined on U and Lipschitz continuous on U with Po =
(I +~yrBNNE())™! there.

(h) The function d% is of class C*' on some neighborhood U of T.

(i) The function dz, is of class C' on some neighborhood U of .

(7) The function d2 is Fréchet differentiable on some neighborhood U of Z.
(k) There exist a neighborhood U of T such that 0,dc(u) # 0 for allu € U.
(1) There exist a neighborhood U of T such that Opdc(u) # 0 for allu € U.

If C is weakly closed (which holds whenever H is finite dimensional), then
one can add the following the list of equivalences:

(m) The mapping Pc is well-defined on U of .

Prox-regular sets are proximally normally regular as stated in the follow-
ing proposition.

Proposition 0.1.1. Let C be a closed subset of H. If C' is proz-reqular at
u € C, then for some neighborhood U of u one has the normal reqularity

NZ(u) = N&(u) = NE(w) = NE(u)  for allu € CNU.

0.1.1 Preservation of prox-regularity under operations

This section is related to the study of the preservation of prox-regularity
under certain operations on sets.

To provide general sufficient conditions under which the prox-regularity
of intersection or inverse image is preserved, we have to introduce the concept
of normal cone property for intersection of finitely many sets or for inverse
image set. Following [3], we say that a finite family of closed sets (Cx)i,

of H has the normal cone intersection property near a point T € lﬁlC’k with

respect to a normal cone Niy(-) if there exist some real § > 0 and some
neighborhood U of z such that for all z €e UNCy N ---NC,, we have

(3) N

=1

Ck(x) NB C N, (z)NPB+ -+ Ng,, (z) N SB.

Let now F : H — Y be a mapping from H into another Hilbert space Y
and let D be a subset of Y and z € F~!(D). In the same way, we say that
the inverse image set F'~1(D) has the normal cone inverse image property at
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T € [71(D) with respect to the normal cone N,(-) if there exist some real
B > 0 and some neighborhood U of Z such that for all z € U N F~1(D)

(4) Np-1(py(z) "B C DF(z)" (ND(F(x)) N @B).

Theorem 0.1.3. /3] Let (Cy)i, be a finite family of closed sets of H and
let D be a closed set of Y.

(a) If all the sets Cy, are proz-reqular at a point T of their intersection and
if they have the normal cone intersection property near T with respect

to the Fréchet normal cone, then their intersection set ]ﬁlC’k 1S prox-

reqular at T.

(b) If a mapping F : H — Y s of class CY* around a point ¥ € F~1(D)
and if the inverse image set F~'(D) has the normal cone inverse image
property at & with respect to the Fréchet normal cone, then the inverse
image set F'~1(D) is proz-reqular at T.

As a consequence we have the useful corollary

Corollaire 0.1.1. /3] Let C be a closed set of H which is proz-reqular at
z € C andlet h : H — R™ be a mapping of class CY' near € M =
{z € H : h(x) =0} and such that Dh(Z) onto. Assume that the only vector
A= (A1, Am) in R™ such that

Z \iVhi(Z) € NE(z)

is the null vector A = (0,---,0). Then C' N M is proz-reqular at Z.

The case of a real-valued function h (that is, m = 1) is of particular
importance.

Corollaire 0.1.2. /3] Let C be a closed set of H which is proz-reqular at
z € C andlet h: H— R be a real-valued function of class C*' near & €
M :={x € H:h(x)=0}. If

Vh(z) & N&:(2) U (=N&(2)),

then C'N M is proz-reqular at T.
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The next proposition consider the complement of the sublevel set of a
semiconvex function. Recall that a function f : X — R U {400} is o-
semiconvex on an open convex set U of the normed space X whenever

Fltw+ (U= )y) < 1) + (1= )5 ) + 5010 = 1) — y?
for all ¢ €]0,1[, x,y € U.

Proposition 0.1.2. [3/ Let g : H — R be a continuous function, C = {z €
H :g(x) >0}, and & € C with g(x) = 0. Assume that g is C' near T and
semiconver near T. Assume also that Dg(Z) is non-null. Then the set C' is
proz-reqular at T. More precisely, if on open convex set U, with x € U, the
function g is o-semiconvexr and Dg is y-Lipschitz continuous, and if there s
some real o > 0 such that ||Dg(x)|| > « for all z € U N g~ (0), then C is
a Yo + 27)-proz-reqular at every point x € UNC.

The next result is concerned with direct images of prox-regular sets. In
this result O,.(C) denotes the set O,/ (C) :={z € H : de(x) <1'}.

Corollaire 0.1.3. [3] Let H and Y be Hilbert spaces, C C H be a closed
r-proz-reqular set. Let 0 < r' < r and f : Ou(C) — Y be a C'-mapping
such that Df is Lipschitz continuous on O,(C) with constant M, and
sup{||Df(x)| : « € C} < N. Assume that f is one to one over C' and such
that f=1 (the inverse of the restriction fo : C — f(C) with fo(x) = f(z)
for all x € C') is Lipschitz continuous over C' with L as a Lipschitz constant.

Set .
N
lemin{%,L_2<M—l—7) }

Then f(C') is closed and r-proz-reqular.

0.2 Subsmooth sets

In this section, C' will be a closed subset of the Banach space X.

First we begin by recalling that a subset C' is subsmooth at ug € C, if for
every € > 0 there exists § > 0 such that for all uy,uy € B(ug,0) N C and all
uf € N§'(w;)) N\Bx+, i = 1,2 we have

(5) (uy —uy, up — ug) > —¢lluy — upl|.

The set C'is called subsmooth, if it is subsmooth at every ug € C. Further, C
is called uniformly subsmooth, if for every € > 0 there exists 0 > 0, such that
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(5) holds for all uy, uy € C satisfying |Ju; —us|| < § and all u} € N§'(u;) By,
1=1,2.

Inspired by the notion of subsmoothness recalled above, we introduce the
notions of uniform subsmoothness.

Definition 0.2.1. Let E be a nonempty set. We say that a family (C(t))icr
of closed sets of X is equi-uniformly subsmooth, if for every ¢ > 0, there
exists 6 > 0 such that (5) holds for any t € E and all uy,uy € C(t) satisfying

|lur — usl|| < 0 and all u} € Ng(lt)(ui) NBx«, i € {1,2}.

Another concept in the line of (5) is related to the Clarke subdifferential of
the distance function to the set C'. The Clarke subdifferential recalled above
takes a simpler from for a locally Lipschitz function. Indeed, it is known that
the Clarke subdifferential of a locally Lipschitz continuous function f: X —
R at a point u € X is reduced the set

dorf(u) == {u" € X*: (u",v) < fO(u;v) Vv € X},
where
2(u: v) 1= lim sup fly+tv) — f(y)
, ' t10,y—u t .

The above function f°(u;-) is called the Clarke directional derivative of f at
u. Recall that for any u € C' we have

Berdo(u) C No(u) NBy-  and Nc(u):clw*<R+8Cldc(u)>,

where cl,« denotes the closure with respect to the w(X*, X)-topology. Using
the Clarke subdifferential of the distance function to the C' in (5) intead of
the truncated of the Clarke normal cone with the closed unit ball, we consider
the following definition.

Definition 0.2.2. We say that the set C' (closed near uy € C') is metrically
subsmooth at ug when for every e > 0 there exists some 6 > 0 such that (5)
holds for all uy,us € B(up,d) N C and all uf € Ocide(u;), i = 1,2. When
the property holds at any ug in a closed set C' we say that C' is metrically
subsmooth.

The following result makes the connection between subsmoothness and
other classical geometrical concepts.

Definition 0.2.3. A function f : X — R U {+o0} is subsmooth at z, €
dom f, if for every e > 0 there exists § > 0 such that for all x,y € B(x,0)
with x € dom d¢ f, a* € Oc f ()

fly) > f(z) + (2", y — x) —elly — z].
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Remark 0.2.1. If f is of class C' on an open set U C X, then it is subsmooth
at any point of U.

Proposition 0.2.1. A function locally Lipschitz f is subsmooth at xq €
dom f if, and only if, the set epi f is subsmooth at uy = (xo, f(x0)).

Proposition 0.2.2. [1] Let C be a closed subset of X. Then the following
assertions hold:

(a) Uniformly proz-reqular sets are also uniformly subsmooth.
(b) Every proz-regular set C' at ug is subsmooth at ug.

(c) If C is subsmooth at ug, then it is normally Fréchet reqular at ug, that
18

NE (ug) = N&(uo) = NE' (uo).
We consider the following functions:

_.5/3 >
f.g:R — R such that f(z) = —a°/3 andg(as):{ . itz >0

oo else.

.é{g‘

= (0,0)
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Figure 3: Two subsmooth sets C' and C” which are not prox-regular.

Concerning the set C' :=epi f, for ug = (0,0), we have the equalities
NE(uo) = {(0,0)} and N& (up) = {0} x] — 00,0}, or N&(uo) # N (uo),

hence C' is not prox-regular at uy according to Proposition 0.1.1. The non
prox-regular of the set C” := epig can be seen throught the equalities

N2 (ug) = (] — 00, 0]x] — 00, 0[) U{(0,0)} and NZ (ug) =] — o0, 0]x] — o0, 0],
so NZ,(ug) # Nt (ug), hence C” is not prox-regular at u.

Remark 0.2.2. The converse of property (b) in the above proposition fails
as shown by the following examples, in Figure 3, of sets C and C" which are
subsmooth at uy = (0,0) but not proz-reqular at uy.

We now characterize subsmoothness in terms of the Fréchet normal cone
when X is a reflexive Banach space. In the following theorem we assume
that U is an open subset of X and C NU # 0.
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Theorem 0.2.1. [1] Let C' be a closed subset of X. Then the following
assertions are equivalent:

(a) C is subsmooth on CNU;

(b) (5) holds at every point of CNU with N&(-) NB in place of NS'(-) NB;
(c) (5) holds at every point of CNU with NE(-)NB in place of NS'(-) NB;
(d) (5) holds at every point of C N U with Ocydc(+) in place of NS'(-) NB.

Remark 0.2.3. By the theorem above, it is easily seen that C' is subsmooth
on CNU if and only if C' is metrically subsmooth on C N U.

We recall the concept of Lewis’ near radiality, C'is called nearly radial at
ug € C' if for every € > 0 there exists § > 0 such that for all u € C'N B(uy, )
we have

A(K () uo — ) < eflug — ull,

where K¢ (u) is the Bouligand tangent cone to the set C' at u, that is,
v € Ke(u) <= V6 > 0,3t €]0,6[ such that (u-+tB(v,0)) NC # 0.

Further, if TS5 (u) = Keo(u) for all u € C, we say that C is tangentially
regular.

In the following result, we suppose that C'is a closed set and U is an open
subset of X such that C N U # (.

Theorem 0.2.2. [1] If C is subssmooth on C NU, then it is tangentially
reqular on C N U and nearly radial on C NU.

Figure 4: The sets which are epi-Lipschitzians at a certain boundary point.

38



We recall that a closed set C' is said to be epi-Lipschitz at uy € C with
respect to the direction d € X if there exist ¢ > 0,0 > 0 such that for
all d € B(d,o), all u € C N B(ug, o) and all t €]0,d] we have u + td € C.
Therefore, every set C'is epi-Lipschitz at every ug € intC' (interior of C') with
respect to any d € X and other hand, if vy € bdC' (boundary of C'), then C'
is epi-Lipschitz at uy with respect to some d # 0 if, and only if, the set C'
can be represented in a neighbourhood of uy as the epigraph of a Lipschitz
continuous function f, which is called a locally Lipschitz representation of C'
at ug, see Figure 4. This means that there exists a topological complement
X4 of Rd :={td : t € R} in X (that is, X = X; @ Rd), a neighbourhood U
of ug and a locally Lipschitz function f : X; — R such that

CNU={axdsd:xze Xy, f(x)<s}NU.

Here X, is endowed with the norm induced by the norm of X. We denote
by m: X — Xy and p : X — R the continuous linear mappings satisfying
u=m(u)® p(u)d for all u € X.

Let us recall that a function f : X — RU{+oc} is called approzimatively
conver at ug if for every ¢ > 0 there exists 6 > 0 such that, for all u,v €
B(ug,0) and t €]0, 1], we have

fltu+ (1 —t)w) <tf(u)+ (1 —1t)f(v) +et(l —t)|Ju— .

Theorem 0.2.3. [1] Let X be a Banach space, let C be an epi-Lipschitz
subset of X, and let ug € bdC. Then the following statements are equivalent;

(a) C is subsmooth at uy.

(b) Every locally Lipschitz representation f of C' at ugy is approximately
convez at 7(ug).

(¢) Some locally Lipschitz representation f of C' at ug is approximately
convez at m(ug).

Below we provide some sufficient conditions for subsmoothness of set-
valued mapping.

Proposition 0.2.3. [6] Suppose that G is defined by G(u) = g(u) + C' for
alluw € X, where g : X =Y is a C' mapping and C is a closed subset of Y .
Let (u,v) € gph G. If C' is subsmooth at v — g(u), then gph G is subsmooth
at (u,v).
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0.2.1 Preservation of subsmoothness under operations

Let FF: X — Y be a mapping between X and another Banach space Y and
let D be a subset of Y. Suppose that F' is of class C! near ug € C' := F~(D)
(here, F is assumed be of Class C', while under the prox-regularity it is
required that F' is of class C!''). Extending (4), we say that the inverse
image of the set D by F, say C' := F~Y(D), has the truncated normal cone
wmwverse image property near ug provided there are a positive constant § and
a neighborhood U of ug sucht that

(6)  Ne(u) By C DF(u)* (ND (F(u)) N maay*) forallu e CNU,

where DF(u)* denotes the adjoint of the derivative mapping DF'(u) of F' at
u. Concerning the intersection of finitely many sets, we need, as for (3), to
translate the condition in the inclusion above. Let (C;)¥_; be a finite system

k
of sets of X and ug € ,ﬂlCi. We say that this system of sets satisfies the
1=

truncated normal cone intersection property near ug if there are a positive
constant S and a neighborhood U of ug sucht that for allu € UNC1N---NCy,
we have

(7) Ny (u)NBx- C Ney(u) N (BBy«) + -+ -+ Ne, (uw) N (BBy~).

N C;

Another important concept is related to the distance function to the set
C and it does not require the subdifferentiability of the mapping F'. We say
that the mapping F' is metrically calm at ug relative to the set D if there
exist some constant 8 > 0 and some neighborhood U of ug sucht that

do(u) < Bdp(F(u)) for all u € U.

Theorem 0.2.4. [/] Let F': X — Y be a mapping between Banach spaces
X andY and let C := F~Y(D), where D is a subset of Y. Assume that F is
of class C' near ug € C, that is, the derivative mapping DF(-) is continuous
near ug, and assume that D is closed near F(ug). The following hold.

(a) If the set D is subsmooth at F(ug) and if the truncated normal cone
inverse image property is satisfied for F~1(D) near ug, then C is sub-
smooth at ug.

(b) If the set D is metrically subsmooth at F(ug) and if the mapping F
18 metrically calm at ug with respect to the set D, then the set C is
metrically subsmooth at uy.
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Theorem 0.2.5. [}] Let Cy,--- ,Cy, be a finite system of sets of X which are
k
closed near uy € .OIC’i. The following holds.

- If the sets C,--- ,Cy are subsmooth at ug and if the truncated normal
cone intersection property is satisfied for these sets mear ug, then the

k
intersection N C; is subsmooth at uyg.
i=1

1=

The next two theorems concern the uniform subsmoothness.

Theorem 0.2.6. Let F': X — Y be a mapping between Banach spaces X
and Y and let C := F~Y(D), where D is a subset of Y. Assume that F is of
class C'.

- If the set D is uniformly subsmooth and if the truncated normal cone
inverse image property (6) is satisfied with the same real constant 5 > 0
for alluw € F~Y(D), then C is uniformly subsmooth.

Theorem 0.2.7. Let Cy,--- ,Cy be a finite system of sets of X. Suppose that

the sets C1,---,Ci are uniformly subsmooth and that the truncated normal

cone intersection property (7) is satisfied for these sets with the same real
k k

constant B > 0 for all u € -chi' Then the intersection DIC'Z» 1s uniformly

subsmooth.

The next two theorems concern a family of equi-uniformly subsmooth
sets.

Theorem 0.2.8. Let E be a nonempty set, let F' : X — Y be a mapping
between Banach spaces X and Y and let Cy; = F~Y(Dy) for any t € E,
where (Dy)ep is a family closed subsets of Y. Assume that the sets C; are
nonempty. Assume also that F is of class C' and that the truncated normal
cone inverse image property relative to a family sets (Dy)icp holds uniformly,
that is, there exists some real constant 3 > 0 such that, for any t € E, we
have

Ne,(w) N By C DF(u)* (NDt (F(u) N masy*> for allu € C,.

- If the family (Dy)icg s equi-uniformly subsmooth, then (Cy)iep is equi-
uniformly subsmooth.

Theorem 0.2.9. Let E be a nonempty set and let (Ci4)icr, - » (Crt)ier
be a finite system of families of sets of X such that for i = 1,--- |k every

k
family (C;1)er is equi-uniformly subsmooth. Suppose that Cy := DICM 18
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nonempty for any t € E. Suppose also that there is a real constant 5 > 0
such that for all u € Cy

th(u) N B)(* C NCM(U) N (5By*) + -+ ch,t(u) N (ﬁBy*)

Then the family (Cy)iep is equi-uniformly subsmooth.
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Abstract. The class of subsmooth sets has been introduced in
variational analysis in [1]. The subsmoothness property for a set
corresponds to a variational behavior of order one of the set, while
the prox-regularity property expresses a variational behavior of
order two. The present paper establishes the existence of solution
for perturbed differential inclusions defined by nonconvex and non
prox-regular sweeping process associated with subsmooth sets.
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Introduction

Let H be a real Hilbert space, T" > 0 be a positive real number, and C' :
[0,7] = H be a set-valued mapping with nonempty closed values moving

45



in an absolutely continuous way. For any z(0) = zo € C(0), consider the
differential inclusion

i(t) € =New (z(t)) aete 0,7

(1.1)
z(t) € C(t) Vte|0,T],

where N (-) denotes a general normal cone to the set C'(¢). This important
problem of evolution has been introduced and studied in 1970, when the sets
C(t) are convex, by Moreau in the analysis of elastoplastic systems (see,
[19, 20, 21]). In [4], C. Castaing introduced some new techniques from which
many results can be derived, essentially the existence of a solution of (1.1)
for C(t) = S + 9Y(t), where S is any fixed nonconvex closed subset of H
and ¥ is a mapping with finite variation. Later, M. Valadier [24] dealt with
sweeping processes associated with sets C'(t) = R"\int(K (¢)), where K (t) are
closed and convex sets. Condering the set-valued mapping G whose graph is
closed and contains the graph of (t,u) +— Ne¢)(u) N B, he showed that the
differential inclusion

i(t) € —=G(t,z(t)), =(0) =z € C(0)

admits at least a solution. Then, he obtained, in finite dimensional setting,
existence of solution for (1.1) whenever the set-valued mapping (¢,u) —
New(u) N'B has a closed graph, where N (-) is the Clarke normal cone.
Moreover, in the finite dimensional context, many works have been realized
when the sets C'(t) are nonconvex closed, as Benabdellah [2], Colombo and
Goncharov [10], and Thibault [23].

The evolution problems associated with perturbed sweeping process be-
gan with the paper of Henry (see, [16]). Studying the planning procedures
in mathematical economy, he introduced the differential inclusion

&(t) € Proj Tc(x(t))G(x(t)), z(0) = x¢ € C,

where G is an upper semicontinuous set-valued mapping with nonempty com-
pact convex values, C' is a (nonmoving) nonempty closed convex set, and
Te(-) denotes the tangent cone to C' and Projr, (.« denotes the metric
projection mapping onto the closed convex set Te(x(t)). This differential
inclusion has been also considered by B. Cornet [11, 12] with a Clarke tan-
gentially regular set C', reducing the problem as in [16] to the existence of a
solution of the differential inclusion

i(t) € =Nc(z(t)) + G(t,z(t)) x(0) =0 € C.
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C. Castaing, T. X. Duc Ha and M. Valadier [7] and C. Castaing and M.
D. P. Monteiro Marques [5] studied the sweeping process (1.1) with pertur-
bations

i(t) € =New (z(t) + G(t, z(t)) aet e[0T
(1.2) z(t) e C(t) Vte[0,T]
z(0) =z € C(0).

in the cases where all the sets C(t) are either convex or complements of
open convex sets. The first general study of the differential inclusion (1.2)
with general closed sets C'(t) moving in absolutely way in a finite dimensional
setting has been realized by L. Thibault [23]. Later, several other papers dealt
in the infinite dimensional Hilbert space H with the inclusion differential (1.2)
under uniform prox-regularity assumptions, as the works of M. Bounkhel and
L. Thibault [3], J. F. Edmond and L. Thibault in [14]

The main purpose of the present paper is to show how the subsmoothness
property allows us to study the differential inclusion (1.2) in the general
framework of infinite dimensional Hilbert space for nonconvex and non prox-
regular sets C'(t). The subsmoothness of a set corresponds to a variational
property of order one while the prox-regularity is a variational property of
order two. Subsmooth sets are strongly connected with nearly radial sets of
Lewis [17] and weakly regular sets of Jourani [15]. The plan of the paper
is the following. We recall the needed concepts in the first section. In the
second section, we prove the theorem of existence of solution of the differential
inclusion (1.2).

1.1 Preliminaries

Throughout the paper, H stands for a real separable Hilbert space whose
inner product is denoted by (-, -) and the associated norm by ||-||. The closed
unit ball of H with center 0 will be denoted by B and B(u,n) (respectively,
Blu,n]) denotes the open (respectively, closed) ball of center u € H and
radius 7 > 0. If I is a nonempty compact interval of R, we will denote
by Cy(I) the space of all continuous mappings from I to H. The norm of
uniform convergence on Cy (1) will be denoted by || - ||, "a.e.” denotes ”for
almost every” and & is the derivative of x.

Let C, C" be two subsets of H and let v be a vector in H, the real d(v, C)
or do(v) := inf{|lv — ul| : uw € C} is the distance of the point v from the set
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C. We denote by

Haus(C, C") = max { sup d(u, C"), sup d(v, C’)}

ueC ved’

the Hausdorff distance between C' and C”. For v € H the projection of v into
C C H is the set

Projc(v) :={u e C:dc(v) = |jv—ul}.

This set is nonempty whenever C' is ball-compact, that is, C' N rB is compact
for every real r > 0. Further, if u € Proj ¢(v) then we have v — u € N§(u)
where NZ(+) denotes the proximal normal cone of C' (see, [9]). If C' is closed
and convex, then Proj ¢(v) is a singleton and we will denote by proj ¢(v) the
unique element of Proj ¢(v). For a nonempty interval J of R, we recall that
a set-valued mapping F' : J = H is called Lebesgue measurable if for each
open set U C H the set F~1(U) :=={t € J : F(t)NU # 0} is Lebesgue
measurable. When the values of F' are closed subsets of H, we know (see
[6]) that the Lebesgue measurability of F' is equivalent to the measurability
of the graph of F', that is,

gph F € L(J) ® B(H),

where £(J) denotes the Lebesgue o-field of 7, B(H) the Borel o-field of H,
and
gph F = {(t,u) € T x H :u € F(t)}.

For any subset C' of H, ¢o C stands for the closed convex hull of C, and
o(+,C) represents the support function of C, that is, for all £ € H,

o(&,C) = sup(, u).

ueC

If C'is a nonempty subset of H, the Clarke normal cone N(C;u) or N¢(u)
of C'at u € C' is defined by

Ne(u) ={{ € H:(&v) <0,Yv e Te(u)},
where the Clarke tangent cone T'(C; u) or T (u) (see [8]) is defined as follows:
Ve > 0,46 > 0 such that

veTo(u) &
Vu' € B(u,d) N C,Vt €]0,0[, (v + tB(v,e)) N C # 0.
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Equivalently, v € T¢(u) if and only if for any sequence (u,), of C' converging
to w and any sequence of positive reals (t,), converging to 0, there exists a
sequence (v, ), in H converging to v such that

Uy, + t,v, € C for all n € N.

We put N¢(u) = (0, whenever u ¢ C. For any n > 0 we denote by N/ (u) the
truncated Clarke normal cone, that is,

Nl(u) = Ne(u) NnB.

We typically denote by f: H — RU {+o0} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential 0 f(u) of f at a point
u (where f is finite) is defined by

Of(u) = {€ € H: (§,—1) € N (u, f(w) ) }.
where epi f denotes the epigraph of f, that is,
epi f = {(u,r) € H xR : f(u) <r}.

We also put df(u) = 0 if f is not finite at u € H. If ¢)c denotes the indicator
function of the set C', that is, ¢ (u) = 0if u € C and ¥ (u) = 400 otherwise,
then

0Ye(u) = Neo(u) for all u € H.

The Clarke subdifferential 0f(u) of a locally Lipschitz function f at u has
also the other useful description

Of(u) ={6€ H: () < fu,v),Yv e HY,

where ) .
fo(u v) ;== limsup J +tv) - f(u)
’ ()= (u,0+) t

The above function f°(u;-) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([8]) to be related to the Clarke
subdifferential of the distance function through the equality

Ne(u) = cly (R 0de(u)) for all uw € C,

where Ry := [0,00[ and cl,, denotes the closure with respect to the weak
topology of H. Further

(1.3) ddc(u) C No(u) NB - for all uw € C.
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The concept of Frchet subdifferential will be also needed. A vector £ € H
is said to be in the Frchet subdifferential Op f(u) of f at u (see [18]) provided
that for every e > 0 there exists 6 > 0 such that for all v’ € B(u,d) we have

(€' —u) < fu') = flu) + el — ull.
It is known that we always have the inclusion
(1.4) Opf(u) C Of(u).
The Frchet normal cone of C' at u € C' is given by
NE(u) = Optpe(u),
so the following inclusion always holds true
(1.5) NE(u) € No(u)  for all u € C.

On the other hand, the Frchet normal cone is also related to the Frchet
subdifferential of the distance function since the following relations hold true
for all u € C

NE(u) = Ry Opdo(u)

and

(1.6) Ordc(u) = N& (u) NB.

Another important property is

(1.7) v —u € N&i(u) hence also v —u € Ne(u)

whenever u € Proj ¢(v), since NZ(u) C N (u).

1.2 Sweeping process with subsmooth sets
We begin by recalling the concept of subsmoothness developed in [1]; it will

be used to define the equi-uniformly subsmooth property for a family of
closed sets of H.
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1.2.1 Definition and elementary properties

Let C' be a closed subset of H. The set C is known to be prox-reqular
at up € C provided the following variational property of order two holds:
There exist 7 > 0 and § > 0 such that for all uy,us € B(ug,d) N C and all
& € No(u;) NB, i = 1,2 we have

(1.9 (61— G, —ua) > o — ]

For several properties, characterizations and examples of such sets we refer
the reader to [22].

Relaxing the inequality (1.8) in a variational property of order one, Aus-
sel, Daniilidis and Thibault defined the concept of subsmooth sets as follows.
The closed set C' C H is called subsmooth at uy € C, if for every € > 0 there
exists > 0 such that for all uy,us € B(ug,d) N C and all § € Ne(u;) N B,
1= 1,2 we have

(1.9) (&1 — &, ur — ug) > —¢l|uy — ug|.

The set C'is called subsmooth, if it is subsmooth at every ug € C. Further, C
is called uniformly subsmooth, if for every € > 0 there exists 0 > 0, such that
(1.9) holds for all uy,uy € C satisfying ||u; —uz|| < d and all & € Ne(u;) NB,
i=1,2.

For other variational properties of order one we refer to Lewis [17] where
nearly radial sets are considered and to Jourani [15] where weakly regular
sets are investigated. The connection between those two classes of sets and
the class of subsmooth sets is studied in [13].

We next define the concept of equi-uniform subsmoothness, which will be
basic to the rest of the paper.

Definition 1.2.1. Let E be a nonempty set. We say that a family (C(t))er
of closed sets of H is equi-uniformly subsmooth, if for every e > 0, there exists
d > 0 such that (1.9) holds for any t € E and all uy,uy € C(t) satisfying
|ur — usl| < 0 and all § € New(ui) NB, i € {1,2}.

The following results will be used in the proof of The main theorem.

Lemma 1.2.1. If a closed set C of H is subsmooth at u € C', then
8dc(u) = 8Fdo(u)

and
Ne(u) = Né (u).
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Proof. Let € > 0. From the subsmoothness of C' at u, there exists some
d > 0 such that for all v € C' with ||[v —u|| < ¢ and all £ € No(u)

(—&v—u) > —¢llv —u.
Hence, we may write
(&, v—u) <ellv—ul forallve Bu,d)NC.

This last inequality entails that ¢ € N&(u). This means N¢(u) C NE(u)
hence No(u) = NE(u) since the reverse inclusion always holds true (see
(1.5)). So, the second equality is established. Take now any ¢ € dd¢(u). Then
we have [|£]] < 1and £ € Ne(u) by (1.3). The equality proved above gives £ €
NE(u), thus € € N (u) NB, which is equivalent to & € Ordc(u) according to
(1.6). Consequently dd¢(u) C drdc(u) hence the equality Ode(u) = Opde(u)
holds true according to (1.4), completing the proof of the lemma. ]

Lemma 1.2.2. Let E be a metric space and let (C(t))er be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
n>0. Let Q C FE and sy € clQ). Then the following hold:

(a) For all (s,u) € gph C we have nddc(s)(u) C nB;
(b) For any net (s;)jes in Q converging to so, any net (u;j);e; converging
tou € C(so) in (H, || -||) with u; € C(s;) and des;)(y) d 0 for every
je
y € C(so) , and any net ((;),e; converging weakly to ¢ in (H,w(H, H))
with ¢; € nddcs,)(uj), we have ¢ € N0dc(sy)(u).

Proof. The assertion (a) being obvious according to (1.3), we have to
show (b). Let € > 0. By Definition 1.2.1 choose 6 > 0 such that for all s € F,
uy, up € C(s) with ||ug — ug|| < and all ¢; € Nesy(u;) N B

(110) <C1 — CQ,Ul — UQ> 2 —EHUl — U,2||

Fix any nets (s;)jes in () converging to sg, (u;)jes converging strongly to

u € C(so) in H with u; € C(s;) and des;)(y) - 0 for every y € C(so),
JjE

where (J, X) is a directed preordered set. Fix also any net ((;),es converging
weakly to ¢ in H such that ¢; € n0dc(s;)(u;). Since u; € C(s;), the latter
inclusion means 1~'(; € Ne(s,)(u;) VB for all j € J (see (1.6) and Lemma
1.2.1). Fix y € B(u,2)NC(sp). For each n € N and each j € J, choose some
Yjn € C(s;) such that

1
1Ym — yll < degsy)(y) + e
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Endowing J x N with the product preorder which is obviously directed,
(Yjm)(jmyesxn is a net in H. Since

1
des, - — 0,
o J)(y) + N (jn)eJxN

we have ||y;, — vl (jm):;xN 0, that is, y; » (jJEXN y strongly in H and hence
there exists jo € J and ng € N such that for all (j,n) € J x N with 7 = jg
and n > ng we have y;,, € B(u,$). Put u;, := u; for all (j,n) € J x N.
Obviously u;, — w strongly in H (because u; — u). So we may also
(j,n)eJxN jeJ

suppose that u;, € B(u, %) for all (j,n) € J x N, with j = jo and n > ny.
Thus, for all (j,n) € J x N with j = jo and n > ng we have

o —ull < 3 and g — ) < 5
Set (j, == ¢ and s;, = s; for all (j,n) € J x N. The net (s;,)(jn)csxn
converges to sy and the net (j,);n)esxn converges weakly to ¢ in H and
N in € Negs; ) (Ujn) NB. Thanks to the latter inequalities above, for all
(7,n) € J x N with j = jo and n > ny we have ||y;, — u;,|| < § with
Yjms Ujn € C(sj,) and hence according to (1.10)

(0 =07 G Yjn — i) = —€llyjm — sl
or equivalently
™ s Yion — wjin) < Ellysn — ujnll-
Since the net (17'(n)(jnyesxn is bounded (by the real number 1), we may
pass to the limit to obtain
(' ¢y —u) <elly —ul

for all y € B(u, 5) N C(so) and hence n~'¢ € N, (u). Further, n~'¢;, € B
for all (j,n) € J x N and this ensures n~'¢ € B. Thus, n7 !¢ € Ng(SO)(u) NB,
50 71 € Opde(sy)(u) C Ddesy)(w). The proof is complete. O

From Lemma 1.2.2 we easily deduce, thanks to properties of upper semi-
continuous set-valued mappings (see [6]), the following proposition.

Proposition 1.2.1. Let I be a nonempty interval of R and let (C(t))ier be
a family of nonempty closed sets of H which is equi-uniformly subsmooth
and let a real n > 0. Assume that there exists a nondecreasing continuous
function v : I — Ry such that, for anyy € H and s,t € I with s <t,

d(y,C(t)) < d(y,C(s)) + v(t) —v(s).

Then the following assertions hold:
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(a) For all (s,u) € gph C' we have nddc(sy(u) C nB;

(b) For any sequence (s,), in I converging to s with s, > s, any sequence
(tn)n converging to u € C(s) with u, € C(s,), and any § € H, we have

limsup o (&, nddc(s,) (un)) < 0(&, nddeqs)(u)).

n—00

Proof. Only (b) needs to be proved. Let (s,), and (u,), as in the
statement. Fix any £ € H. Extracting a subsequence if necessary, we may
suppose that

lim sup o (57 nadC’(sn) (U’n>) = lim o (57 nadC(sn) (un>) :

n—oo n—oo

For each n, chosse according to the weak compactness of n0dcs,)(u,) some
G € NOdcys,)(un) such that

<§7 CTZ> = 0-(57 nadC’(sn) (Un))

Since ||¢.|| < n by (a), a subsequence of ((,), (that we do not relabel)
converges weakly to some ( in H. It results that

(1.11) (&,¢) = limsup o (&, nddc(s,) (un)).

n—oo

Now, observe that for each y € C(s) that
0 < d(y,C(sn)) < d(y, C(s)) + visn) = v(s) = v(sn) = v(s),

hence d(y,C(s,)) — 0 as n — oo thanks to the right-hand continuity of v.
We then apply Lemma 1.2.2 to obtain ¢ € 70d¢(s)(u). Combining the latter
inclusion with (1.11) we see that

limsup o (€, n0de(s,) (un)) < o (& nddes)(u)),

n—o0

which finishes the proof. m

1.2.2 Main results

Our existence theorem is started under the following assumptions.
Let C': I = H be a set-valued mapping. It is required to satisfy the
following assumptions:
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(H1) For each t € I, C(t) is a nonempty ball-compact subset of H; there
exists a nondecreasing absolutely continuous function v : I — R, such
that, for any y € H and s,t € I with s <t

d(y,C(t)) < d(y,C(s)) +v(t) — v(s);

(H2) The family (C(t)),_, is equi-uniformly subsmooth;

tel

We consider also a set-valued mapping I' : I x H = H with nonempty
closed convex values which is £(I) ® B(H ) — measurable and upper semicon-
tinuous with respect to z € H for almost all ¢ € I.

(H3) The set-valued mapping I" satisfies the growth condition
d(0,T(t,7)) < a(t)(1+ ]zl

forall t € I and all x € C([Ty,t]) == U C(s), where o : [ — R, is
Ty<s<t
an integrable function on /.

Theorem 1.2.1. Let real numbers Ty and T be fized with 0 < Ty < T.
Assume that Hy, Ha, Hs above hold for the interval I = [Ty, T]. Then, there
exists an absolutely continuous mapping x : I — H which is a solution on
the whole interval I of the constrained differential inclusion

i(t) € =New (z(t)) + (¢, z(t)) ae tel
&) x(t)e C(t) vtel
x(Ty) = zo € C(Tp).

Proof. Fix I := [Ty, T| throughout the proof. Observe first by (#H3) that
there is some a € Lg (1) such that for all (¢, x) € I x C([Tp,t]), we have

(1.12) d(0,T(t,z)) < at)(1 + [|z])).

I. We suppose in this first part I that

W

(1.13) /Ta(s)ds < 1

To

Let us put

(o) = Q(onu + /T (0(s)|ds + 1>.

To
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We are going to construct a sequence of mappings (z,) in Cy(I) which
admits a subsequence which converges uniformly to a solution of (&).

Step 1. Construction of the sequence (z,,).

For any integer n > 1, consider the partition of I defined by the points

T-T
H="T+i—; 0

J(0<i<2m).

Let J ={0,1,---,2"—1}. Consider the mappings 6,, and 0,, from the interval
I of R into itself, defined by

t'?+1 if te [tyvt?+1[al €J
(1.14) 0, (t) =
T i t=T,

tp if teltrtry]ied

(1.15) 0,(1) =
To lf t:To

We have [0,(t) — t| < I3 and 10,(t) —t] < I hence

(1.16) 0,,(t) — t and 0,,(t) — t.

Put zf = zo € C(ty). Let fJ' be the mapping from [tf,¢}] into H given
by fi(t) as the element of minimal norm of I'(¢, zf), that is,

fo'(t) = Projr(.n)(0) for all t € [ty,t]].

The mapping f' is measurable according to the measurability of the set-
valued mapping I'(-, z). Thanks to (1.12) we get

(1.17) If5 @I < a(t) (X + llagll) vt € [, 27].

Since « is an integrable non-negative function on I, hence f' is bounded by
a function in Ly (I). Thus fi' € Ly (To, 7).
The ball-compactness of C(t) ensures that
oy

Proj c(m) (933 + f(?(s)ds> # 0.
To

Then, we can choose a point 7 in Proj cm) (2§ + f;g f&(s)ds), hence a7 €
C(t7) and

2 — (xg+ T:{L fg;(s)ds) ] _ d(ngr T:? f(y(s)ds,c(t;l)).
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So, according to (H;) and the inclusion xj € C(T}), we have

o = ([ )

To

< d(a+ Tlfg(s)ds,C(T0)>+v(t§‘)—v(T0)

IN

d(z3,C(Ty)) + H Tt? fg(s)dsH +o(t?) — u(Ty)

tn tn
< / 12 (s)llds + / o(s)ds.

TO TO

By (1.17), we obtain

|

Similarly as above, we choose a measurable mapping f{* from [t}, 5] into
H such that f'(t) € I'(t,z7) for all t € [t7,t}]. By (1.12), we have

t
To To

ot — (2 + t?fg@)ds)Hg/ (a() (1 + llagl) + 6(s)) ds.

(1.18) IO < alt) (X + [l27]) vt € [ 5],

and this says in particular that f' is integrable over [t},t5].
The ball-compactness of C(t) ensures that

2
Proj cg) (95? +/ ff(s)d$> # 0.
i

Then, we can choose a point @} in Proj cy) (27 + ftt?g f*(s)ds), hence z% €
C(t%) and

‘xg— (x;w/tt ff(s)ds)H :d<x7f+/t:g ff(s)ds,o(tg)).
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So, according to (H;) and the inclusion z} € C(t}'), we have
ty
’ xh — (x’f + / f{‘(s)ds) ”
¢y

< o+ [ CD) + otth) o)

IN

a(at, ) + | / F1(s)ds|| + o(83) = o)

tn tn
< [Cirelas [ s

n n
1 1

hence the inequality in (1.18) yields

‘ xh — <x’f - /t:S f_{‘(s)ds) H < /t:S (04(3)(1 + ||27]) + ?}(3))613.

By repeating the process, we define finite sequences (z') and measurable
mappings (f7*) from [t}, ¢}, ] into H with the following properties:

(1.19)  fi(t) e T(t, 27) and | (O] < @)+ [lf)]) Ve € 68 0];

L
(1.20) 2% € Projcqn.,) (ﬂ + I <S)ds>;

t

(1.21) (

ey — (o7 + / fr(s)s)| < / (als) (1 + 1a71l) + is) ) ds.

Now, according to (1.21), and (1.19), we obtain

0 e
letall < a2l + 201 + [l22]) / a(s)ds + / o(s)ds
t

n n
ti i

240 ti
<l + 201+ g 31 [ oz(s)ds+/t o(s)ds.

n n
ti 7
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[terating it follows that

‘ U1 i U1
n < lam n '
et < bl 200+ gma ) 3 /| as)ds+3 | it
= k = k

T T
< gl 420+ g a2 [ a(ods [ iepds

Ty

This being true for all 0 < 5 < 2", then

0<j<2n

T T
max ||z} | < [|zgl| +2(1 + S Hx”H)/ a(s)ds +/ 0(s)ds.
To

It results, thanks to (1.13), that

1 T
< n )
max [l271] < (17l + 51+ max o7 ]) + /Tov<s>ds.

Consequently,
1 T
. < 0 — } = _
(1.22)  max fl7] < 2(“%” +3 +/TO v(s)ds) r(zo) =1,

the equality being due to the definition of r(xy). Combining this with (1.19),
we get

(1.23) L] < at)r(zo).
For all t € [t7, ¢}, ,[ and all i € J, let us set
(1.24) falt) := [ (1)

Define z,, : I — H by

(1.25) z,(t) = 2"+ 192%)1)_ ﬁg:tn - / (s ds / f(s

whenever ¢ € [t7,t}, ] and ¢ € J, where

(1.26) I(t) = / t (T(mo)a(s)—l—ij(s))ds vt el

To

It follows from (1.21), (1.22) and (1.26), that

(1.27) }

i
o=l = [ ] < ote) - o)
i
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For almost all t € [t t},,], i € J, we have

029) )= g s (st =t = [ o) + g2
and |

(1.29) D(t) = r(zo)a(t) 4+ 0(t).

We deduce from (1.24) and (1.27) that

(130 Jia(t) — ()] < r(zo)a(t) + 6(1)

Claim: The mapping z,, is absolutely continuous over I.
For all 7,t € [t7, 7, ,], and 7 < t, we have

000 = 0(r) = G (st =t = [ o) + [ ety

(2

[za(t) = @a(7)]]

0(t) —9(7)
-0 —9E)

7

n / 1 £7(s)]lds.

n n t?+l n
Tip1 — T4 _/ fi (s)ds
(2

We deduce from (1.23) and (1.27) that

[2n(t) — 2 (T)]| < O(t) = I(7) + 7’(330)/ a(s)ds,

by (1.26), we get

t
(1.31) Zn(t) — 2 (7)) g/ (27’(:60)04(5) +o(s))ds.
This last inequality above holds for all 7,¢ € [t7, 1] with 7 < ¢, hence the

mapping z,, is absolutely continuous.
Thanks to (1.15), (1.19), (1.24), (1.25) and we obtain, by construction

(1.32) fult) € F(t,xn(én(t))> Vel
Further, by (1.23) and (1.24)

(1.33) £ (B)]| < r(zo)a(t) Vte I
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it follows through (1.30) that
(1.34) ln (DI < 2r(z0)a(t) + 0(t).
According to (1.7) and (1.20), we have

ti

x! + fi(s)ds — x| € Near, ) (a:?ﬂ).
t

This combined with (1.14), (1.24), (1.25) (1.28) and we obtain, by construc-
tion, for almost all ¢ € I and for any n,

(1.35) Ealt) = Fult) € =Ny, ) (xn(en(t))).

Step 2. Now, we proceed to prove that the sequence (z,) admits a
subsequence, which converges uniformly to a solution of (£).
Observe first by (H;) and (1.31) that for any ¢ € [t} ¢}, |]

d(z,(t), C(t)) < ||wnl(t) — (&) + d(2a(t)), C(1))

< |za(t) = 2] + d(zalt]), C(t7)) + v(t) = v(t])

— /t (2r(zo)a(s) + 0(s))ds + v(t) — v(t}).

n
[

Fix any ¢t € I. From the latter inequality and (1.15) it ensures that

d(z,(t),C(t)) < 2/ (r(zo)a(s) + 0(s))ds,

On(t)

so, according to (1.16)

This allows us to write
zn(t) = cu(t) + e, (t) with ¢,(t) € C(t) and e, (t) — 0,

choose a real p; > 0 such that ||e,(t)|| < p; for all n. By (1.31), we have also
for all n

Jea(®l < llzll + [ (rlan)a(s) + i(5)ds =
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For r := p; + po, we obtain
c(t)y e Ct)NrB

hence the set {c,(t) : n € N} is relatively compact in (H,| - ||) thanks to
the ball-compactness of C(t). Using this and the convergence e, (t) — 0,
we immediately see that the set {z,(t) : n € N} is relatively compact in
(H,|| - ]|)- On the other hand, we observe that

/s (2r(zo)a(s) + |i(s)|)ds =+ 0 as  A(S) =0,

where A denotes the Lebesgue measure. This is equivalent to saying that for
all € > 0 there exists § > 0 such that

/S (2r(zo)a(s) + [0(s)])ds < e

whenever A(S) < 6. It is then obvious to see through the latter inequality
and through (1.31) that the sequence (z,,) is equi-continuous. Then it follows
from Arzela-Ascoli’s theorem that the sequence (x,) admits a subsequence
converging uniformly to some mapping x € Cy(I) .

Thanks to (1.34) and (1.33) the sequence (&), and (f,), are bounded
by a function in Ly (1). By extracting subsequences we may suppose that
fa(s) = f(-) and &,(-) — u(-), both convergences being obtained weakly in
LL(I), for some f(-) and some u(-) in L};(I). Thus, for any ¢ € I,

T

zp(t) = xo + /t Tn(s)ds = xo + / Ty (8) o4 (s)ds.

To To

Since the sequence (z,(t)) converges in H to x(t), we may pass to the limit

to obtain .

x(t) = xo + /T u(s)ly(s)ds = xo + / u(s)ds.

To To

Consequently x is absolutely continuous with () = w(t) for almost all t € [
and hence

(1.36) @ (-) — @(-) weakly in L, (1).

Thanks to (1.16) and the uniform convergence of z,(-) to x(-), we get
2, (0,(t)) converges to x(t) for each ¢t € I. Note also that, due to the fact
that d(z,(t), C(t)) converges to 0 on I, we have z(t) € C(t) for all t € 1.
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Step 3. Now, it remains to prove that z(-) is a solution of (&).
Due to the fact that (f,(-)) and (Z,(-)) converge both weakly in LL(I) to
f(+) and &(-) respectively, according to Mazur’s lemma, there is a sequence
(20(+), @n(-))n which converges strongly in Li; (1) to (i(-) — f(-), f(-)) with

zn € co{dy — fr: k>n} and ¢, € co{fr: k >n},

for each n > 1. Extract a subsequence (that we dot not relabel) (2,,(-), ¢5(+))n
converging to (&(-) — f(+), f(+)) a.e.. This yields some fixed Lebesgue negli-
gible set N C I such that for each ¢t € I\N we have (z,(t), ¢,(t)), converges
to (2(t) — f(t), f(t)) and thus,

(1.37) i(t) — f(t) € (oo {an(t) = fult) : k > n}

(1.38) f&)y e (@ {fult) : k >n}.

Fix t € I\N and for any n € N, using (1.30), (1.35) and putting n =
r(zo)a(t) + |0(t)|, we get by (1.6) and Lemma 1.2.1

inlt) = fult) € =N () (xn (Qn(t))> = 10, ) (:vn (Gn(t))).

Hence, by (1.37) and for all £ € H we have

(6,5(0) = F(0) < sup(€. 2u(t) = fult) < i;lga(é, 09, o) (50 (9k<t))))

& a(t)— f(t) < lim supa(&, —nadc(ek(t)) (xk (&;(0)))

n—oo kzn
thus

(€, @(t) — f(t)) <lim supa(f, —nadc(en@)) (x" (en(t))))

n—oo

or equivalently

(=6 =i(0) + 1(0) < mswpo (=00, ) (0,(6.00)) ).

n—o0

Since z,, (Hn(t)) € C(Qn(t)) along with 6, (t) — ¢ and z, (Hn(t)) — z(t) €
C(t) as n — oo, the latter inequality entails by Proposition 1.2.1 that

(=& —ilt) + (1)) < o — € nddew (1))

63



or equivalently

(€ () — F(1)) < o (& —nddeg ((1))).
Since ddc (x(t)) is convex and closed for each t € I\ N, we deduce that
(139) (1)~ f(t) € ~ndde(e(t) C ~New(x(t)).

It is not difficult to see that f(t) € I'(¢,z(t)). Indeed, it result from (1.38)
and (1.32) that for all € € H

(6110 < suple. ) < swpo (&0 (1an(du(0)) ).

thus

n—oo

(€ (1) < 1imsup0<£,T(t,xn(én(t))>).

~

By the convergence of z,(0,(t)) to x(t) and the upper semicontinuity of
u U(S,F(t,u)), we have, for all t € I\ N, for any £ € H,

(€ (1) < o (£ T(t,a(1)).
As T'(t,x(t)) is closed and convex, we conclude that, for all t € I\ N,
f@t) € T(t, 2(1)).
This, along with (1.39), implies for all t € I \ N
i(t) € —Nog) (z(t)) + T(t, 2(t)),

and hence z is a solution of the constrained differential inclusion (&).

I1. In this second part II, we consider the case where

’ 1
/ a(s)ds > —.
Ty 4

Taking € = }l there exists 6 > 0 such that for any Lebesgue measurable
subset S C [Ty, T] with A(S) < & we have [;a(s)ds < ;. Choose some
integer N > 1 such that % < 0 and consider a subdivision of I given by

T0<T1<~--<TN:TWithTi:T0+@WhereOSiSN. Of course,
for any 0 <7 < N — 1, we have



Thanks to the part I, there are an absolutely continuous mapping z; :
[Ty, 7] — H and an integrable mapping fi : [Ty, T3] — H such that z,(t) €
C(t) for all t € [Ty, Th], fi(t) € I'(t,z1(t)) for almost all ¢t € [Ty, T1] and

Il(t) S _NC(t) (Zlfl(t)) —+ fl(t) a.e. t e [T(),Tl]

Qfl(To) = Xy-

Likewise, according to the part I, there exists an absolutely continuous
mapping =, : [T1,T] — H and a integrable mapping fo : [T1,T2] — H
such that xo(t) € C(t) for all t € [T1,Ts], fo(t) € T'(t, z2(t)) for almost all
t € [Ty, T,] and

ia(t) € —Negy (z2()) + f1(t)  ae. t € [T1, T3]

l'z(Tl) = $1(T1).

Inductively, there exists a finite sequence of absolutely continuous map-
pings z; : [T;.1,T;] — H and a finite sequence of integrable mappings
fi o [Tio1,T;] = H with 1 <4 < N, such that z;(t) € C(t) for allt € [T;_1,T;],
fi(t) € T'(t,x;(t)) for almost all ¢t € [T;_1,T;] and

xz(t) € _NC(t) (l‘z(t)) + fz(t) a.e. t e [E—l;ﬂ]
(1.40)
zi(Tim1) = 21 (Tio1).

Now, let =, f be the mappings from I into H, defined by
x(t) :=x;(t) forall t € [T;_1, T},

and
f(t) = fi(t) forall t €]T; 1, T;]

where 1 < ¢ < N. Obviously, x is an absolutely continuous mapping such
that z(t) € C(t) for all t € I and f is integrable over I with f(t) € I'(¢, z(t))
for almost all ¢ € I. Therefore, by (1.40) we obtain

i(t) € =New (z(t)) + f(t) ae tel

hence
i(t) € =New (z(t)) + (¢, z(t) ae tel
l’(To) = ZL’l(T()) = Zg.
The proof is then complete. [

65



Theorem 1.2.2. Let real numbers Ty and T be fized with 0 < Ty < T.
Assume that the hypothesis (Ha) and the following assertions hold for the
interval I = [Ty, T):

Gy For each t € I, C(t) is a nonempty compact subset of H and for an
absolutely continuous function v : I — R sucht that, for any y € H
and s,t €

|d(y, C(t)) — d(y, C(s))] < [o(t) — v(s)l;

Gy For any bounded subset S of H, there are ag and Bs in Lﬂh(f) such
that

d(0,T(t,z)) < as(t) + Bs(t)||lz]| for all (t,z) € I x S.

Then, there exist an absolutely continuous mapping x : I — H which is a
solution on the whole interval I of the constrained differential inclusion (&)

Proof. On the one hand, by (Gs), for any bounded subset S of H, there
are some a, s € L, (I) such that for all (¢,2) € I x S, we have

(1.41) d(0,T(t,x)) < as(t) + Bs(t)[|z].-
On the other hand, by (G;) we have, for each ¢ € I,
[d(y, C(t) — d(y, C(To))| < v(t) — v(Tv)]
< 2max |v(s)].
sel
Fixing any t € I, we have, for all y € C(t),
<
d(y, C(Ty)) < 2max|v(s)],
which clearly implies that

< +2 :
Joll < max ol + 2maxos)

hence,

E( a + 2ma )JB%.
y € max lyofl +2maxv(s)]

Consequently, for every t € I,

o) < ( +2 )B.
(8) < (| Jmax llyoll +2max fu(s)]
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Let areal r > maxy,cc(ny) ||yl +2 maxges [v(s)|, and by (1.41) let () and
B(-) in Ly, (1) such that for all (¢,2) € I xrB d(0,T(t,z)) < as(t)+Bst)|z]|.
Then, for any t € I and x € C([Ty,t]) we have

d(0,0(t, ) < a(t) + B)]«]]-

We can apply Theorem 1.2.1 to obtain a solution of the constrained
differential inclusion (&). O

The results below are direct consequences of Theorem 1.2.1 and Theorem
1.2.2 respectively. Let two given set-valued mappings C' : [Ty, +0o[= H and
[': [Ty, +oo[x H = H, the latter being with nonempty closed convex values
which is £([T}, +oo[) ® B(H) — measurable and upper semicontinuous with
respect to x € H for almost all ¢ € [Ty, +00[. They are required to satisfy
the following assumptions:

(Hiso) For each t € [T, +oof, C(t) is a nonempty ball-compact subset of
H; there exists a nondecreasing locally absolutely continuous function
v 1 [Ty, +oo[— R, (that is, absolutely continuous on each compact
subinterval of [T, +oc[) such that, for any y € H and s,t € [Ty, +o0]
with s <¢
d(y,C(t)) < d(y,C(s)) +v(t) — v(s);

(Haoo) The family (C(t))

$€[To,+oo] is equi-uniformly subsmooth;

(Hsso) The set-valued mapping I' satisfies the growth condition
d(0,T(t,z)) < a(t)(1+ [l2])
for all ¢ € [Ty, +oo] and all z € C([To,t]) == | C(s), where « :
To<s<t

[Ty, +00]— R, is a locally integrable function on [Tp, +oo[ (that is,
integrable on each compact subinterval of [T, +00[).

Corollaire 1.2.1. Given a real number Ty > 0. Assume that Hise, Hooos Haoo
hold. Then, there exists a locally absolutely continuous mapping z(-) from
[Ty, +oo[ into H which is a solution on the whole interval [Ty, +oo[ of the
constrained differential inclusion

i(t) € =New (z(t)) + T(t,z(t)) a.et € [T, +o0]
() z(t) € C(t) Vit e [Ty, +oof

x(Ty) = o € C(Tp).
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Proof. We adapt the arguments of the part II in the proof of Theorem
1.2.1.

Put T, = Ty, + k for all & € N. From Theorem 1.2.1 there exists an
absolutely continuous mapping z° : [Ty, 71| — H and a integrable mapping
[ [Th,Th] — H such that z°(t) € C(¢) for all ¢ € [Ty, T3] and fO(t) €
['(t,2°(t)) for almost all t € [Ty, T] and

i%(t) € =Now (2°(t)) + fO(t)  ae. t € [Ty, T1]

ZL’O(T()) = Xy-

Suppose 2°, - - -, 2*~! have been constructed such that, forp =0,--- , k—

1, w? : [T,,T,+1] — H is an absolutely continuous, f? : [T),T).1] — H is
an integrable mapping with f? € I'(¢,2P(t)) for almost all ¢t € [T}, T},+1],
2P(T,) = 2P~ Y(T,), ¥ € C(t) for all ¢ € [T}, T11] and

i?(t) € —=Neg (2P(t)) + fP(t)  ace. t € [T, Tpia).

Likewise, according to Theorem 1.2.1 again, there are an absolutely con-
tinuous mapping 2% : [Ty, Tr41] — H and an integrable mapping f* :
[T, Tys1] — H such that 2*(t) € C(t) for all t € [Ty, Tyy1], f5(t) € T(t, 2%(t))
for almost all ¢t € [Ty, Tj+1] and

i*(t) € =New (a%(t)) + f5(t)  ae. t € [Tk, Tiii]
(1.42)

So, we obtain by induction x* for all k € {0} UN with the above properties.
Now, let x and f be two mappings from [Tj, +oo[ into H, defined by

w(t) == a"(t), f(t) = f5(t) for all t € [Ty, Typy1[ with k € {0} UN.

Obviously, the mapping z is locally absolutely continuous on [Tp, +oo[ such
that z(t) € C(t) for all t € [Ty, +oo[ and f is locally integrable on [T}, +00]
with f(t) € T'(t,z(t)) for almost all ¢ € [Ty, +00[. Therefore, from (1.42) we
obtain

i(t) € =New (z(t)) + f(t) ae. t € [Ty, 400

thus,
i(t) € =New (z(t)) + D(¢,z(t) ae. t € [Tp, +oo
x(t) € C(t) Vt € [Ty, +0]
ZE(T()) = JIO(T()) = Xy-
The proof is then complete. [
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Corollaire 1.2.2. Let real number Ty > 0 be fixed. Assume that the hypoth-
esis (Haso) and the following assertions hold:

e For each t € [Ty, +ool, C(t) is a nonempty compact subset of H and
for a locally absolutely continuous function v : [Ty, +oo[— R sucht that,
foranyy € H and s,t € 1

|d(y, C(t)) — d(y, C(s))] < [o(t) — v(s)l;

e For any bounded subset S of H, there are ag and Bs : [Ty, +oo[— Ry,
which are locally integrable on [T, +oo[ such that

d(0,T(t,z)) < as(t) + Bs(t)||z]| for all (t,z) € [Ty, +oo[xS.

Then, there exist a locally absolutely continuous mapping x : [Ty, +ool— H
which is a solution on the whole interval [Ty, +00| of the constrained differ-
ential inclusion (Ex)
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Abstract. Recently, D. Aussel, A. Daniilidis and L. Thibault
introduced a new class of sets, called subsmooth sets, in varia-
tional analysis (see, [1]). Subsmooth sets turn out to be naturally
situated between the class of prox-regular sets and the classes of
nearly radial sets and of weakly regular sets. The latter classes
have been introduced by Lewis in 2002 and by Jourani in 2006,
respectively. Motivated by the study of differential inclusions de-
fined by nonconvex and non prox-regular sweeping process, we
prove an existence of solutions, even in the presence of a delay,
for perturbed differential inclusions governed by subsmooth sets.
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Introduction

In this paper, our aim is the study of a nonconvex and non prox-regular
perturbed sweeping process with time delay in an infinite dimensional Hilbert
space, that is, the differential inclusion of the form

i(t) € =New (z(t)) + T(t, A(t)z) aet e [0,T]
(2.1) z(t) € C(t) forallt e [0,T],

x(s) = p(s) Vse[-r0],

where N (-) denotes a general normal cone to the set C(). Let us describe
the elements and concepts involved in (2.1). Let H be a real Hilbert space,
T > 0 be a real number, and C' be a set-valued mapping from [0, 7] into
H, with nonempty closed values moving in an absolutely continuous way.
Given a finite delay r > 0, we consider the spaces Cy := Cy(—r,0) and
Cr :=Cy(—r,T) endowed with the norm of the uniform convergence || - ||o0
and || - ||eor respectively. With any ¢ € [0, 7], we associate the mapping A(t)
from Cr into Cy defined, for all z € Cr, by

(2.2) At)x(s) :=x(t+s) forall s € [—r,0].

Let I' : [0,7] x Co =% H be a set-valued mapping with nonempty convex
compact values satisfying the linear growth condition

(2.3)  T(t,¢) C alt)(1+ [d]leo)B for all (t,¢) € [0,T] x Co,

where a € Ly (Th,T) and B is the closed unit ball of H, and let ¢ be a
fixed member of Cy such that ¢(0) € C'(0). A solution of (2.1) is a mapping
x : [-r,T] — H which is absolutely continuous on [0,7] with z|_.q = ¢
and which satisfies the first inclusion of (2.1) for almost every t € [0,7] and
the second inclusion for all ¢ € [0, 7.

Castaing and Monteiro Marques showed in [3] the existence of a solution of
the above differential inclusion (2.1), under some conditions. Among others,
[ in [3] has all its values included in a fixed bounded set and C' is Lipschitz
and takes on convex compact values. Thibault [17] proved that, in the finite
dimensional context, the problem above has always a solution for general
subsets C'(t) and for I' satisfying

L(t,¢) C a(t)B  for all (t,¢) € [0,T] x Co,

provided that Ne)(x(t)) is taken as the Clarke normal cone. Recently, in
[4] Castaing, Salvadori and Thibault showed, in finite dimensional, the exis-
tence of a solution of (2.1) when the sets C'(t) are bounded and r-prox-regular
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(r > 0), with I" satisfies (2.3). On the other hand, in the infinite dimensional
setting, Bounkhel and Yarou [2] showed the existence of a solution for this
differential inclusion when the set-valued mapping I' has all its values con-
tained in a fixed bounded set and the sets C'(t) are r-prox-regular and norm
compact. Later, this problem has been studied by Edmond [9] with the case
where C(t) is bounded and r-prox-regular and I' satisfies (2.3) with B re-
placed by a fixed compact set. In [10] and other existence result is proved
when the sets C(t) are r-prox-regular in an infinite dimensional Hilbert space
and I is a single -valued mapping Lipschitz with respect to ¢ and satisfying
(2.3).

The present paper provides an existence result for (2.1) in the infinite
dimensional Hilbert setting where the sets C(t) are supposed to be equi-
subsmooth. The class of such sets is strictly bigger than of prox-regular sets
(see [1]). It is also connected with the class of nearly radial sets of Lewis
[12] and with the class of weakly regular sets of Jourani [11] (see [8]). The
paper is structured as follows. In section 1, we give notation which will be
used throughout the paper and we recall some definitions and results, in
particular, on the Clarke (respectively, Fréchet) normal cone. In section 2,
we prove the main theorem of the paper, that is, existence of solution of the
differential inclusion (2.1) under the subsmoothness property of the sets C(t)
and under a relaxation of the assumption (2.3).

2.1 Preliminaries

Throughout the paper H is a real separable Hilbert space whose inner prod-
uct is denoted by (-, ) and the associated norm by | - ||. The closed unit ball
of H with center 0 will be denoted by B and B(u,n) (respectively, Blu,n])
denotes the open (respectively, closed) ball of center u € H and radius > 0.
Given two reals ;7" > 0, we will denote by Cr := Cy(—r,T) (respectively,
Co := Cy(—r,0)) the space of all continuous mappings from [—r,T] into
H (respectively, [—r,0] into H). The norm of uniform convergence on Cr
(respectively, Cy) will be denoted by || - ||z (respectively, || - [|oc0), ~a.€”
denotes "for almost every” and z is the derivative of z.

Let C, C" be two subsets of H and let v be a vector in H, the real d(v, C')
or do(v) :=inf{|lv — ul| : uw € C} is the distance of the point v from the set
C. We denote by

Haus(C,C") = max { sup d(u, C"), sup d(v, C)}

ueC veC!

the Hausdorff distance between C' and C”. For v € H the projection of v into
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C C H is the set
Projc(v) :={u e C:dc(v) = |jv—ul}.

This set is nonempty when C' is ball-compact. Recall that a subset S of
(H,|| - ||) is ball-compact provided that S N rB is compact in (H, | -||) for
every real r > 0. Obviously any ball-compact set is norm closed, and in finite
dimensions S is ball-compact if and only if it is closed. When h € Proj ¢(v),
then we have v — h € N£(h) where NZ(-) denotes the proximal normal cone
of C (see, [6]).

For a nonempty interval J of R, we recall that a set-valued mapping
F : J = H is called Lebesgue measurable if for each open set U C H the
set 71 U):={te J:F{t)nU # 0} is Lebesgue measurable. When the
values of F' are closed subsets of H, we know (see [5]) that the Lebesgue
measurability of F' is equivalent to the measurability of the graph of F', that
is,

gph F' € L(J) © B(H),

where £(J) denotes the Lebesgue o-field of 7, B(H) the Borel o-field of H,
and
gph F = {(t,u) € I x H :u € F(t)}.

For any subset C' of H, co C stands for the closed convex hull of C', and
o(+,C) represents the support function of C', that is, for all £ € H,

o(&,C) :=sup(, u).

ueC

If C'is a nonempty subset of H, the Clarke normal cone N(C;u) or Ng(u)
of C' at u € C is defined by

Ne(u)={& € H: (£v) <0,Vv e Te(u)},
where the Clarke tangent cone T'(C'; u) or T (u) (see [7]) is defined as follows:
Ve > 0,30 > 0 such that
v e To(u) &

Vu' € B(u,d) NC, vVt €]0,0[, (v +tB(v,e)) N C # 0.

Equivalently, v € T¢(u) if and only if for any sequence (u,),, of C' converging
to w and any sequence of positive reals (t,), converging to 0, there exists a
sequence (v, ), in H converging to v such that

Uy, + t,v, € C for all n € N.
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We put N¢(u) = (0, whenever u ¢ C. For any n > 0 we denote by N/ (u) the
truncated Clarke normal cone, that is,

Ng(u) = Ne(u) NnB.

We typically denote by f: H — RU {400} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential 0 f(u) of f at a point
u (where f is finite) is defined by

Of(u) = {€ € H 1 (&, ~1) € Nepiy ((w, f(w)) ) },
where epi f denotes the epigraph of f, that is,
epif ={(u,r) € HxR: f(u) <r}.

We also put df(u) = 0 if f is not finite at u € H. If ¢)c denotes the indicator
function of the set C, that is, Yo (u) = 0if u € C' and ¢ (u) = +00 otherwise,
then

0Ye(u) = Ne(u) for all u € H.

The Clarke subdifferential df(u) of a locally Lipschitz function f at w has
also the other useful description

Of(w) ={¢€ H : (&) < fOu,v),Vve HY,

where
fo(u v) ;= limsup S +tv) - f(u’)

(u’ )= (u,0F) 14

The above function f°(u;-) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([7]) to be related to the Clarke
subdifferential of the distance function through the equality

Ne(u) = cly (R 0de(u)) for all uw € C,

where Ry := [0,00[ and cl,, denotes the closure with respect to the weak
topology of H. Further

ddc(u) C No(u)NB for all u € C.

The concept of Fréchet subdifferential will be also needed. A vector £ € H
is said to be in the Fréchet subdifferential Op f(u) of f at u (see [14, 16])
provided that for every ¢ > 0 there exists 6 > 0 such that for all v’ € B(u, 0)
we have

(€ u' —u) < f(u) = flu) +ellu’ —ul|.
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It is known that we always have the inclusion
Or f(u) C Of (u).
The Fréchet normal cone of C' at u € C' is given by
Ng(u) = Ortpc(u),
so the following inclusion always holds true
N&(u) € Ne(u) for all w € C.

On the other hand, the Fréchet normal cone is also related to the Fréchet
subdifferential of the distance function since the following relations hold true
for all u € C

N¢ (u) = Ry Opde(u)

and

(2.4) Opdc(u) = N&(u) NB.

Another important property is

(2.5) v—u € N5(u) hence also v —u € Ng(u)

whenever u € Proj ¢(v), since NE(u) C NE& (u).

2.2 Subsmoothness and variational inequal-
ity

This section is devoted to the study of a perturbed sweeping process whose

perturbation is a set-valued mapping involving a delay. We first recall the

definition of subsmooth sets in [1]. In this way we define the equi-uniformly
subsmooth property for a family of closed sets of H.

Definition 2.2.1. A closed set C' C H is called subsmooth at uy € C', if for
every € > 0 there exists 6 > 0 such that for all uy,us € B(ug,d) NC and all
& € Ne(u;) NB, i = 1,2 we have

(2.6) (€1 = &2y ur —uz) = —¢llur — ugl|.

The set C' is called subsmooth, if it is subsmooth at every uy € C.
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We further say that C' is uniformly subsmooth, if for every ¢ > 0 there
exists § > 0, such that (2.6) holds for all uy,us € C satistying [|u; — us|| < 6
and all & € Ne(u;) NB.

The class of subsmooth sets strictly contains that of prox-regular sets
introduced in [16] and is connected with the class of nearly radial sets of [12]
and with the class of weakly regular sets of [11], see [8].

Definition 2.2.2. Let E be a nonempty set. We say that a family (C(t))icr
of closed sets of H is equi-uniformly subsmooth, if for everye > 0, there exists
d > 0 such that (2.6) holds for any t € E and all uy,us € C(t) satisfying
|1 — ual| <0 and all & € Ney(u;) NB.

Given two set-valued mappings C': [0,7] = H and I" : [0,T] x Cy = H,
we shall deal with the differential inclusion defined as follows:

t(t) € =New(x(t)) + T(t, A(t)x) aete|0,T];
(&) x(t) € C(t) Vte [0,T];

2(-) = () i [=r0],

where A(t) is the mapping from Cr into Cy defined, for all x € Cr, by
A(t)xz(s) := x(t + s) for all s € [—r,0] and ¢ is a member of Cy such that

©(0) € C(0).

We are going to investigate the existence of solutions for the above differ-
ential inclusion. We call solution of (&,) any mapping = : [—r,T] — H such
that

1. for any s € [—r,0], we have z(s) = ¢(s);
2. z(t) € C(t) for all t € [0, T;

3. the restriction x|[07T] of x is absolutely continuous and its derivative
satisfies the inclusion

i(t) € =New (z(t)) + T(t,A(t)z) aete[0,T].
The hypotheses concerning the set C'(¢) and the set-valued mapping I’
with which we shall work are the following:

(H1) For each t € [0,7], C(t) is a nonempty ball-compact subset of H; the
set C'(t) moves in an absolutely continuous way, that is, there exists a
nondecreasing absolutely continuous function v(-) : [0,7] — R, such
that, for any y € H and s,t € [0, 7]

|d(y, C(t)) — d(y, C(s))] < [o(t) — v(s)l;
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(H2) The family (C(t))ejo,r] is equi-uniformly subsmooth;

(H3) The set-valued mapping I', with nonempty convex closed values, is
L([0,T]) ® B(Cy) — measurable and upper semicontinuous with respect
to ¢ € Cy for almost all ¢ € [0, T] and, for some integrable nonnegative
function «(-) over [0, 7] such that.

d(0,T(t,0)) < a(t)(1+ [|¢]lwo) forall ¢ €[0,7] and all ¢ € C,.
Theorem 2.2.1. Assume that (Hi1),(H2) and (Hs) hold. Then, for any ¢
in Cy with (0) € C(0), the differential inclusion (E,.) has a solution.

The following results will be used in the proof of Theorem 2.2.1.

Lemma 2.2.1. [13] If a closed set C' of H is subsmooth at ug € C, then
8dc(u0) = 8ch(u0)

and
NC(UO) = Ng(uo)

Lemma 2.2.2. [13] Let E be a metric space and let (C(t))ier be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
n>0. Let Q C FE and sy € clQ. Then the following hold:

(a) For all (s,u) € gph C we have nddcs)(u) C nB;

(b) For any net (s;)jes in QQ converging to sy, any net (u;)jes converging
tou € C(so) in (H,| -[]) with u; € C(s;) and de(s,)(y) = 0 for every
je

y € C(so) , and any net ((;)jes converging weakly to ¢ in (H,w(H, H))
with ¢ € ndde(s,)(u;), we have ¢ € ndde sy (u).

From Lemma 2.2.2 we easily deduce, thanks to properties of upper semi-
continuous set-valued mappings (see [5]), the following proposition.

Proposition 2.2.1. [13] Let I be a nonempty interval of R and let (C(t))ier
be a family of nonempty closed sets of H which is equi-uniformly subsmooth
and let a real n > 0. Assume that there exists a continuous function v : I —
R, such that, for anyy € H and s,t € 1 with s <t,

d(y,C(t)) < d(y,C(s)) +v(t) —v(s).
Then the following assertions hold:

(a) For all (s,u) € gph C we have nddcs)(u) C nB;
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(b) For any sequence (S,), in I converging to s with s, > s, any sequence
(Un)n converging tou € C(s) with u,, € C(s,), and any & € H, we have

lim sup o (€, n9do(s,) (un)) < 0 (€, 1ddes(u)).

n—0o0

Proof of Theorem 2.2.1.
I. We suppose that

(2.7) /0 a(s)ds < i

We are going to construct a sequence of mappings (x,) in Cr which ad-
mits a subsequence which converges uniformly on [—r, 7] to a solution of (&,).

Step 1. Construction of the sequence (z,). X
For any t € 0,71, consider the single-valued mapping A(t) : C; — Cy defined,
for all £ € C; := Cy(—r,t) by

~

A(t)E(s) :==&(t+s) Vs e [—r,0].

Observe first by (3) that there is some o € L (Tp,T') such that for all
(t,¢) € [0,T] x Cy, we have

(2.8) 4(0.0(t.6)) < a(t)(1+ [6]en)-

We will introduce a discretization, inspired by the one used in [3]. We define
the mapping ug : [-r,0] — H by

ug(s) = p(s) Vse|-r0l.

For any integer n > 1, consider the partition of [0, 7] defined by the points
no_ T (i _ —
th =g (j=0,---,n). Fort e [0,T] and J := {1,--- ,n}, we define the
mappings

thy it telth 1], 5 € J,
(2.9 0 (1) =

0 if t=0,

thoif te[th 17,5 € J,
(2.10) 0,(t) =
T if t=T.
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Observe that for each ¢ € [0,77], choosing j such that ¢t € [t} ,,#7[if t < T
and j =nif t =T, we have

N n n T
|‘9n(t) - t| < ’tj - tjfll = E

and similarly, we have |0, (t) — t| < £, then

~

(2.11) O.(t) = t, 0,(t) =t

Put ug (7)) = ¢(t5) =: py € C(t5). Let fI' be the mapping from [t7, 7]
into H given by f['(t) as the element of minimal norm of I'(¢, A(¢f)uf), that
is,

f1(t) = Proj (A (0) for all t € [t;,t]].

The mapping f{* is measurable according to the measurability of the set-

~

valued mapping I'(-, A(t§)ug). Thanks to (2.8) we get

L@ < (14 A g |so)a(t)  forall ¢ € [t 1],
Since [[A(tg)f oo = elloos: we obtain
(2.12) IO < (X4 [l@lloco)(t) for all £ € [tg, 7]

So, fi* is bounded by a function in Ly (0,7), hence fi* € Ly (tf,17).
The ball-compactness of C'(¢) ensures that

t’f
Proj cum(pg +/ ff‘(S)d8> # 0.
t

Then, we can choose a point p} in Proj C(t?)(pg -+ L’:ll [ (s)ds), hence p} €
0
C(t7) and

o= (e [ )| = o+ [ st cu),
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So, according to (H;) and the inclusion pj € C(ty), we have
¢
o= (o + [ i)
tg

< d(ph+ / F1(8)ds, C(85) ) + (1) = o(t)

< d(pp.CH) + | / Fr()ds| + () = v(t)

< [ [ i

to tg

By (2.12), it follows that

For all ¢ € [ty,t]], we define

- (p8+/t:? ff(s)ds)H g/ ((1+HSOHoo,o)Oz(s)—i—@(s)>ds.

¢y
tg

IR (t) — Iy (ty & !
=10 =+ g (== [ 0as) + [ o,

where

t
910 = [ ((@+ lelea)als) + i) ds.
t
Note that 27 (ty) = ¢(t) = py and 27 (t}) = p}. Let us consider the mapping
up(:) : [=r, 7] — H defined by

ur(t) =
Aat) it te i,

and let us observe that u} is continuous on [—r, 7] since 2] (tf) = ¢(t{) and
21 is obviously continuous.

Similarly as above, we choose a measurable mapping f3' from [¢7, 5] into
H such that fI'(t) € I'(¢, A(t7)u}) for all t € [t],t5]. By (2.8), we have

5@ < 1+ JAE)u |so)alt)  forall ¢ € 17, 13],
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and we observe that

AT ) ut s = sup [uf(s+t7)[[ = sup [luf(s)]
s€[—r,0] SE[—r+t7,t7]
< sup luf (s)]] = [luf oy
se[frvt?}

Thus, for all ¢ € [t}, 5] we have

(2.13) 15 (O < (14 [[uflloop)ax(?),

and this says in particular that fJ' is integrable on [t7, 5]
Again, due to the ball-compactness of C(t), we have

3
Pl”Oj c(ty) (p? + / f;(s)ds> 7é @
tr

Then, there exists a point p§ in Proj ¢ (p’f+ftfl§ f3(s)ds), hence pj € C(t3)

and . "
s =+ [ )| =a(o+ [ sas.ca).

So, according to (H;) and the inclusion p} € C(}), we have
t3
’ Dy — / f;(s)ds)
¢

< alpr+ [ s 000) +ol15) o)

< do. o) + | [ s+ ) - ot

ty ty
< [T+ [ oas
tn tn

1

Taking (2.13) into account, it follows that

2.14) o - (o7 + / fi(s)ds) | < / (0 ety )a(s) + 0(s) ) ds.

As previously, for each t € [t],t5] we put

nipy —on o V2 = ﬁ”(t”
Z2(t)_p1 +193(tn) ’lgn(tn / f2 dS / f2
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where

(1) = /tt (1t loosp)as) + ils) ) ds ¥t € [t 23],

0
so that 25 (t7) = 27(t}) = p}. We consider the mapping uf : [—r,t5] — H by

o(t) it te[-r0]
uy(t) =
27(t) it telth,,th, (i=1,2).

7

We observe that the restriction of v} to [—r,t}] coincides with w7 and z% is
the restriction of u} on [t7,t5]. Further, we have 23 (¢}) = uf(t}), thus u} is
continuous on [—r, t5].

By repeating the process, we obtain the sequences (p}), (zj(:)), (J7(-)),
mappings (uf(-)) continuous on [—r,#}] and mappings (f7'(-)) integrable on
7,17, ], satisfying for j € J the following properties :

(2.15) 0 € TA® ) Ve .8
G
(216) b € Proicp (i + [ 11(6)ds )

9 (E) — 9t £
30 =+ g (- [ )
! ! 19j(tj)_19j(tj—1) ! - tn_ !

(2.17) + t fi'(s)ds Yt e[t} |, t]]

Jj—1 %5
oy

and Z;‘L@;‘LA) = Z;Lfl(t?fl) = p;tp Zjn(t?) = P?;

(2.18)  0%(t) ;:/0 ((1+ ||u;?,1||oo,t;;_1)a(s)+Ivb(s)|>ds vt € [0,7];

o(t) if te[-r0
(219)  wj(t) =
27 (t) if tety 7], (1<i<))

i i—17 "

(2.20) JAE) U o0 < [0l

(2.21) 1A O < (14 ufllooin, ) e(t);
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(2.22)

p?_p?_l_/t:? ff(s)dSH S/ ((1+||u;-‘_1||Oo7t;_z71)a(s)—|—|i)(s)|>ds.

n
t]’
n
t]. 1

Now, let us define z,, : [—r,T| — H and f, : [0,T[— H by

(2.23) zp(t) :=ul(t) forallte [—rT],
(2.24) falt) = fj(t)  forallt e[t | t7[,jeJ

By construction x,, is continuous on [—r,T|. Let us establish that z,, is
absolutely continuous on [0, 7). It clearly suffices to show that z; is absolutely
continuous on [t ;,¢7],j € J. Indeed, for any 7,t € [t} 7], and 7 < t, we
have

50500 = gt (- [ ) + [ s

which ensures that

97 (t) — V(T
I (7)) < G

t;} t
pi-va [ s el
t;‘_l T

By (2.22) and (2.18)

(2.25)

&
B pa [ | <o) - o).
-
It results from (2.18) and (2.21), that

150 = < [ (204 1y o) + 1565} ) ds.

This last inequality above holds for all 7.t € [t;?_l,

hence the mappings 27 are absolutely continuous.

th,j € J with 7 < ¢,

According to (2.9), (2.15) and (2.24), we have, by construction,
Fut) € T(t, A0, (t))ur_y) ¥t €[0,T].

Using the mapping A(t) : Cr — Cy defined in (2.2), it results that

(2.26) fa®) € T(t, A0, (t))z,) VE€[0,T).
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Thanks to (2.26), (2.8) and (2.20), we obtain
(2.27) [N < (14 l[zn]loor)alt) Ve € [0, T].

For any t € [t} ,,t}],j € J, we have

. V() — 0t ,) . . ¢} .
Talt) = piy + ﬂ;(tn) _ 19]”(;71 11) (pj BRCN /tn /3 <S)d8)

t
+ / [ (s)ds,
t?—l

hence for almost all ¢t € [t7 ,,17], j € J, we get

g t
229 5alt) = e (= [ 50s) + 10,

For each j € J, taking (2.25) and (2.24) into account, it follows that for

almost every ¢ € [t}_,,t7]

() = fa(t)]] < 97 (2),

and thanks to the equality 19;1(15) = (1+ [Juj_y[[oo,en, Ja(t) +[0(E)] (see (2.18)),
we obtain for almost every t € [t} |, 7]
[0 (E) = fa(OI < (1 + lluf_1llooy, J(t) + [0(2)].

Since u} ; is the restriction of x, to [-r,t7 ;] we deduce that for almost
every t € [t7_4,t"]

J=17]
[0 (t) = fu(DI < (14 flznllocr)a(t) + [0(2)].

Consequently, for almost every ¢ € [0, 7] we have

(2.30) [0 () = fa(OI] < (1 + [[2nllocr)a(t) + [0(2)].

Referring to (2.27), it results that

[Zn @I < 2(1 + [l2n [0, )e(t) + [0(2)].

As z,, is absolutely continuous on [0, T, it follows that, for any ¢ € [0, T,

la(t) = 2a(0)]] < / (201 + llznlloor)as) + o(s)] ) ds
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hence

lea(®)ll < llp(0) ] + / (201 + llzalloor)ats) + [0(5)] ) ds

and thus

T
@nlloesr < Il + / (201 + lzalloor)ats) + [0(5)] ) ds.

Referring to (2.7), we have
(2.31) |lznllor < L —1

where

L= <1—Q/OTa(s)ds)_1<Hg0Hoo,o—i—/OTMJ(s)]ds—l—%) +1.

Then, (2.27) entails

(2.32) 12O < Laft).

Note that, by (2.30) and (2.31), for almost all ¢ € [0, 77,
(2.33) [0 (2) = fu(O < La(t) + [0(2)]-
We have also

(2.34) [En (@) < 2La(t) + [0(2)].

We observe by (2.5) and (2.16) that
t
B = pia— [ (6 € ~Nowy o))
)

hence, by (2.28) and (2.29) we have i,(t) — f/'(t) € —Nc(t?)(xn(t?)). It
results from (2.10) and (2.24) that, by construction, for almost all ¢ € [0, T
and for any n,

(2.35) talt) = fult) € =N, ) (:cn (én(t))>.

Step 2. Now, we proceed to prove that the sequence (z,), admits a
subsequence, which converges uniformly to a solution of (&,).
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Denote by y,, the restriction of x,, to [0, T7], that is, y,, := @y |j0,7]. Observe
first by (H1) and (2.34) that for every t € [0, 7T

do) (yn(t)) = do@ (@n(t)) < lzn(t) = 2o ()] + deg (@a(E]))

< / ln(s)llds + [u(t) — v(e2)|

< Q/t (La(s) + |o(s)] ) ds,

n

so by (2.10) t
deo (yn(t)) < 2 /9 , (1) i))as

It results from (2.11) and this last inequality above that

de (yn(t)) — 0.

n—oo

This combined with (2.31) yields y,,(t) € C(t) N rB and ensures that the set
{yn(t), n € N} is relatively compact in H, in view of hypothesis (#;). Since
x,, is absolutely continuous on [0,7] we may write according to (2.34), for
any t,7 € [0,7] with 7 < ¢,

236)  un®) ~ walr)] = llu(® — u(D] < [ (2La(s) +10(5) ) ds.
Observe that
/S (2La(s) + |o(s)))ds =+ 0 as  A(S) =0,

where A denotes the Lebesgue measure. This is equivalent to saying that for
all € > 0 there exists § > 0 such that / (2La(s) + [0(s)])ds < e whenever

A(S) < 4. It is then obvious to see through the latter inequality and through
(2.36) that the sequence (y,), is equi-continuous on [0,7]. Then it follows
from Arzela-Ascoli theorem that the sequence (y,), admits a subsequence,
still denoted by (y,,), for simplicity, converging uniformly in C (0, 7T") to some
mapping y € Cy(0,T). Define = € Cr by putting

x(t) =y(t) forall t € [0,T],
{ z(t) = p(t) forall t € [—r,0],
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we also see the sequence (z,,),, converges uniformly on [—r, T'] to . Moreover,
thanks to (2.34) and (2.32), the sequences (yn), and (f,), are bounded by

a function in Lﬂh (0, 7). By extracting subsequences we may suppose that

fn — f and 9, — u, both convergences being obtained weakly in L}, (0, 7).
Thus, for any t € [0, T,

z,(t) = p(0) + /0 Un(8)ds = p(0) + /0 Un(s)Lp 4 (s)ds.

Since the sequence (z,(t)) converges in H to z(t), we may pass to the limit
to obtain

z(t) = »(0) —{—/0 u(s) Lo (s)ds = p(0) + /0 u(s)ds.

Consequently z is absolutely continuous on [0, 7], with &(¢) = u(t) for almost
all t € [0,T] and hence y is absolutely continuous on [0, 7] and

(2.37) Un — ¥ weakly in L, (0, 7).

Thanks to (2.11) and the uniform convergence of (x,), to x, we get
2, (0,(t)) converges to x(t) for each t € [0,T]. Note also that, due to the fact
that de)(z,(t)) converges to 0 on [0, T, we have x(t) € C(t) for all t € [0,T7.

Claim: A(0,(t))z, converges to A(t)x.
First, let us denote the modulus of continuity of a function ¢ defined on
an interval I of R by

w(g, I,e) :=sup{||g(t) — g(s)| : s,t € J, [t —s| < e}.
Then

A (8)2n = A(D)2nllcc0 = S [0 (O (t) +7) = 2a(t + 7]

IN

w(xnv [—7’, T]v %)

< w(p, [-1,0], L) + w(z,, [0,T], L).

t

Considering o(t) = / (2La(s)+0(s)|)ds we deduce from the latter inequal-
0
ity and (2.36) that

A ()20 — At)2nlloco < wlep, [-1,0], ) +w(e, 0,71, 7)
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Since ¢ and p are uniformly continuous on [—r,0] and [0, 7] respectively,
then,
A0 (t))zn — A(t)Tn |0 o 0;

and since the uniform convergence of x, to x on [—r, T| implies A(t)z, con-
verges uniformly to A(t)x on [—r, 0], we deduce that

(2.38) A0 (1)) — A(D)z in Co.

Step 3. Now, it remains to prove that x is a solution of (&,).

Due to the fact that (f,), and (¢,), converge both weakly in L1 (0,T)
to f and y respectively, according to Mazur’s lemma, there is a sequence
(20, @n)n which converges strongly in Lk ;(0,T) to (y — f, f) with

zn € co{Ur — fr: k >n} and ¢, € co{fy : k > n},

for each n > 1. Extract a subsequence (that we dot not relabel) (z,, ¢,)n
converging to (y — f, f) a.e, that is, there exists some fixed Lebesgue negli-
gible set N C [0, 7] such that for each t € [0,T]\N we have (z,(t), dn(t))n
converges to (y(t)— f(t), f(t)) or equivalently to (&(t)— f(t), f(¢)). Therefore,
for each t € [0, T]\ NV,

(2.39) i(t) — £(t) € (o {anlt) — fult) : k> n}

(2.40) ft)y € (@ {fr(t) : k = n}.

Fix t € [0,T]\N and for all n € N, using (2.33), (2.35) and putting 7 :=
La(t) + |0(t)|, we get by (2.4) and Lemma 2.2.1

oy (2000 = =m0, ) (000,

Hence, by (2.39) and for all £ € H we have

a(t) = falt) € <N,

n

(€ 2(t) = (1) < sup(&,ax(t) — fiu(t)) < supo(f, =194, (5, ) (2 (ék(w)))

k>n k>n

(&.#(t) = f(1)) < lim igga(g, —nadc(ék(t)) (xk (t%(ﬁ)))

thus

(€,&(t) - f()) < lim supa(f, 0, ) (2 (én(t))))

n—oo
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or equivalently

(=&, —a(t) + f(t)) <lim Supa( —&, n@dc(én(t)) (xn (én(t))>)

n—00

Since x;, (én(t)) € C(én(t)) and z(t) € C(t), the latter inequality entails by
Proposition 2.2.1 that

(~€=i(t) + f(1)) < o (= &ndde (+(1)) )

or equivalently

(&,4(t) = £(1)) < o (& —nddew (+(0))).
Since Adey ((t)) is convex and closed for each t € [0, 7]\ N, we deduce that
(241) #(t) = £(t) € —ndde(a(t) € —Neg(a(t)).

It is not difficult to see that f(t) € I'(¢, A(t)x). Indeed, it result from
(2.40) and (2.26) that for all £ € H

(€.1(0) < swple. £ < supa (€T (£ AB0)a) ).

k>n k>n

thus

n—oo

(&, f(t) < limsupa(f,F(t,A(@n(t))xn>>,

Due to (2.38) and to the upper semicontinuity of ¢ — a(f, I'(¢, gzb)), we have,
for all t € [0, 7]\ N, for any £ € H,

(€ £1) < o (6T (L AW0))).
As T'(t, A(t)z) is closed and convex, we conclude that, for all ¢ € [0, 7]\ N,
f(t) e T(t, Alt)x).
This, along with (2.41), implies for all ¢t € [0, 7] \ N
i(t) € =New (z(t)) + (¢, Alt)x),

and hence z is a solution of the constrained differential inclusion (&, ).
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IT. Case where

g 1
> —.
/0 a(s)ds > 1

Taking ¢ = }l there exists 6 > 0 such that for any Lebesgue measurable

subset S C [0,7] with A\(S) < & we have [ja(s)ds < ;. Choose some

integer N > 1 such that & < § and consider a subdivision of [0, 7] given by
0=Ty<Ty <---<Ty =T with T; :i% where ¢ € {0,---, N}. Of course,
for any ¢ € {0,--- , N — 1}, we have

Ty 1
(2.42) / a(s)ds < —.
7 4
We have f;ol a(s)ds < 1, in view of (2.42). The part I ensures the exis-
tence of a mapping zy : [—r, 71| — H absolutely continuous on [0, 73] such
that

x1(8) = p(s) for all s € [—r,0],
(2.43) z1(t) € C(t) forall t € [0,TY],
i1(t) € =Negy (z1(t)) + T (¢, A(t)z1) ae. t € [0,T7].
Let us define the function a; from [0, %] into R, by

ai(t) = alt + Tv),

so by (2.42), we have

T

N 1
/0 aq(s)ds < 7
Consider the set-valued mappings I'; [O, %} xCy = H and C} : [0, %} =
H defined respectively by
(2.44) Ty(t,0) =T(t+T1,v¢), Ci(t):=Ct+T).

Obviously, by (H3) for any (¢,1) € [O 2} x Cy we have

’' N

4(0,81(t,9) < @)1+ [¢lleo)-
Consider also the single-valued mapping ¢, : [—r,0] — H defined by
(245) @1(8) = £C1<S + TI)
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and note that ¢, € Cp along with ¢,(0) = x1(T1) € C(T1), so $1(0) € C1(0)
by definition of ;. Likewise, according to the part I, there is a mapping

T [— T, %} — H which is absolutely continuous on [O, % and such that

T1(8) = p1(s) for all s € [—r, 0]

(2.46)
T(t) € él(t) for all ¢t € [0, %}

(2.47) Z(t) € =Ne, ¢ (#1(1)) + T (8, A()E1) ae. te {0, %]

Putting
l’l(t) if te [—’l“, Tl],
,Ig(t) =
T1(t —T7) it te[h,Ty,

it results from (2.44) and (2.47) that
(2.48) ia(t) € —=Neogy (z2(t)) + T (6, A(t — T1)E1)  ace. t € [T1,To).

Claim: A(t —T1)Z; = A(t)xq for every t € [T}, T).
Fix t € [T}, T]. For any s € [—r,0], we observe: if s <T; — ¢, we obtain

i’l(t — T1 + S) = @1@ — T1 + S),

@1@ — T1 + 8) = Ig(t+ 8)7

where the first equality follows from (2.46) and the second equality follows
from (2.45) and by the definition of z5. On the other hand if 7} — ¢ < s <0
it follows from the definition of xo that Z;(t — 11 + s) = xa(t + s). So, for
any s € [—r,0], we see that

zo(t + s) it s<Ty—t,
A(t — Tl)i'l(S) = i’l(t — T1 + S) ==
Ig(t+8) if Tl—tSSSO,

thus
A(t —T1)Z1(s) = A(t)za(s).

This assures that

A(t — Tl)[i'l = A(t)!)ﬁg,

and justifies the claim.
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The equality of the claim combined with (2.48) yields
ia(t) € =Neqy (22(t)) + T (8, A(t)zs)  ae. t € [T1, Th).
According to (2.43) and to the latter inclusion, we obtain
1o(s) = ¢(s) for all s € [—r,0],
(2.49) zo(t) € C(t) for all t € [0, T3],
ia(t) € =Ny (z2(t)) + T (¢, A(t)z2)  ae. t € [0, T3).

Now, suppose that (2.49) holds for 2,3,--- i with i < N — 1. As above,
define @; : [0, %] — R, by

@;(t) = at + 1)),

and note by (2.42) that

zl~5

1
v,(s)d —.
/0 a;(s) s <7

Take the set-valued mappings I; : [0, %] x Cy =% H and C; : [0, ]Zv} = H
with

(2.50) Ti(t,¢) =T (t + Tp,%), Ci(t):=Ct+T).

The assumption (Hs) gives, for all t € [O, %] and 1 € Cy,

a(0,Ti(t, 9)) < () (1+ ¥lloeo).

Define the mapping @; : [—7,0] — H by

(2.51) Gi(s) = xi(s + Ti),
and observe that ¢; € Cy and ¢;(0) = z;(T;) € C(T;), that is, $;(0) € éz(o)
It results from part I again that there exists a mapping ;(-) : [— , %} —

H which is absolutely continuous on [O, %] and such that
Zi(s) = @i(s) for all s € [—r, 0],

(2.52) .

z;(t) € Ci(t) for all t € {0, %}
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(2.53) () € —Ng, (F:(1)) + Li(t, A(1)F;)  ae. t € {0, %}

In an analogous way as above, put
x;(t) if tel[-rT)],

Tiy1(t) =
F—T) if teT, Tl

From (2.50) and (2.52), it follows that
(2.54) zip1(t) € C(t) forall t € [T}, T4
It follows also from (2.50) and (2.53) that
(2.55)  @i1(t) € —=No) (21 (8)) + T (6, A — T3)3;)  ace. t € [T, Ty
Claim: At — T;)x; = A(t)z;4q for every t € [T}, Ti44].
Fix t € [T;,T;+1]. For any s € [—r,0] we observe : if s < T; — t, then from
(2.52), Z;(t — T; + s) = ¢i(t — T; + s) and from (2.51) and by the definition
of wir1, ¢i(t —T; + ) = xi11(t + s). On the other hand, if T; — ¢t < s <0,
Zi(t = T; + s) = x;41(t + s), thanks to the definition of x;;. So, for any
s € [—r,0], we see that
i1 (t+8) it s<T,—t,
At —T)ai(s) =2t —T; +s) =
Tip1(t+s) if T, —t<s<0,
thus
At —T)zi(s) = A(t)xip1(s).
Consequently,
as stated in the claim.
It follows from (2.55) that

.I"H_l(t) S _NC(t) (IZ+1(t)) + F(t,A(t)l’H_l) a.e. t € [E,T‘H_l],

and this combined with the induction property (2.49) at the step ¢ and with
(2.54)

zi11(8) = p(s) for all s € [—r,0]
(256) xi+1(t> € C(t) for all t € [0, Ti+1]

Zti+1(t) € _NC(t) (Iz—i—l(t)) + F(t, A(t)ZEH_l) a.e. t € [O, T;‘_H].

Therefore, this ensures that (2.56) holds by induction for 0,1,--- , N. Con-
sequently, we obtain a solution x := xx on the whole interval [—r, T]. The
proof is then complete. O
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Introduction

The general class of differential inclusion known as the sweeping process, has
been introduced and thoroughly studied in the 70s period by J. J. Moreau
in a series of seminal papers [25, 26, 27, 28]. That differential inclusion can
be expressed in the form

u(t) € =New (u(t)) ae t€[0,T],

(Z)
u(0) = uy € C(0),

where C(t) is a closed convex set moving in an absolutely continuous way
(or with a bounded variation) in an infinite dimensional Hilbert space H and
Ne) () denotes the usual normal cone. This evolution differential inclusion
corresponds to several important mechanical problems (see [23, 28]). In the
context of nonconvex sets C(t), new techniques have been found from which
one can derive several results; in particular, Castaing showed in finite di-
mensions the existence of a solution when C(t) is the form C(t) = S + 9(¢),
where S is any fixed closed subset of H and ¢ is a mapping with finite vari-
ation. Valadier’s method in [33] yields, but still in the finite dimensional
setting, the existence of a solution whenever the graph of the multimapping
(t,u) = New(uw) NB is closed and N (+) is the Clarke normal cone. An
important example in [33] with such a closedness property corresponds to the
complement of the interior of a convex set moving in an absolutely continuous
way. For some other contributions see also [5, 18, 34]. Recently Benabdellah
2], Colombo and Goncharov [12], and Thibault [32] have proved that, in
the finite dimensional context, the problem (Z) above has always a solution
when N¢()(+) is the Clarke normal cone. For the case where the sets C(t)
are (uniformly) prox-regular and move with a bounded variation we refer the
reader to the paper [16] by J. F. Edmond and L. Thibault.

In the same 70s period, Henry [20] introduced for the study of planning
procedures in mathematical economy the differential inclusion

u(t) € Proj 7o (u(t) (G(u(t))) a.e t€[0,7T]

u(0) = up € C,

where G(-) is an upper semicontinuous multimapping with nonempty com-
pact convex values, C'is a (nonmoving) nonempty closed convex set, T () is
the tangent cone to C' and Proj () denotes the metric projection mapping
onto the closed convex set T (-). Later, Cornet (see [14] and [15]), as in
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Henry [20], reduced the last inclusion above to the existence of a solution for
the following problem

u(t) € —=Nc(u(t)) + G(t,u(t)) ae te€0,T]
u(0) = ug € C,

which is a particular case of the differential inclusion (Z) perturbed by a
multimapping G : [0,7] x H = H, that is, the differential inclusion

u(t) € —New (u)) + G(tut)) aete0,T)
(Z7)
u(0) = uy € C(0).

Significant progress concerning the differential inclusion (ZZ) has been made
in the finite dimensional setting by Castaing, Duc Ha, and Valadier [7] and
by Castaing and Monteiro Marques [5] (see also the references therein), un-
der the assumption of convexity of C(t) or of its complement. The case of
general closed sets C'(t) moving in an absolutely continuous way in a finite di-
mensional setting has been studied for (ZZ) by Thibault [32]. Several other
works can also be found in the references in [7]. Recently in the infinite
dimensional Hilbert space H, Bounkhel and Thibault [4] and Edmond and
Thibault [17] showed the existence of a solution of (ZZ) when the sets C(t)
are r-prox-regular (r > 0) and move in an absolutely continuous way. The
mapping G(-, -) was required to have all its values included in a fixed compact
subset. For the study of (Z) with r-prox-regular subsets C(t) of the infinite
dimensional Hilbert space H, we refer to [12].

In all the aforementioned works, the sets C'(t) do not depend on the state
u(t). The first work dealing with a moving set C(t,z) depending on the
time and the state has been made in [22] under the convexity assumption
for C(t,x). Recently, N. Chemetov and M. D. P. Monteiro Marques [9],
established the first results concerning the situation where the moving set
C(t,x), depending both on the time and on the state, is nonconvex. Given
a single valued mapping G : [0,7] x H — H of Carathéodory type (that is,
measurable in ¢ and continuous in x), they studied the differential inclusion

u(t) € _NC(t,u(t)) (u(?)) + G(t,u(t)) aetel0,T]
(ZT')
u(0) = up € C(0,up),

for a constraint multimapping C' : [0,7] x H = H with nonconvex prox-
regular values which are ball-compact. Associating with each absolutely
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continuous mapping vy : [0,7] — H, with y(0) = wug, the unique solution
¢(y) of the time-dependent sweeping process (with unknown mapping u)

u(t) € _NC(t,y(t)) (u(t)) + G(t,y(t)) with u(0) =uo € C(0,y(0)),

the solution of (ZZ') is obtained in [9] by applying the Schauder fixed point
theorem to an appropriate compact convex subset of the space of continuous
mappings from [0, 7] into H. In [8], by means of a generalized version of the
Schauder fixed point theorem from [21, 29], C. Castaing, A. G Ibrahim and
M. Yarou provided another approach allowing them to prove, the existence
of a solution when G = {0} and C(t,z) is prox-regular and ball-compact;
with the same approach they also obtained an existence result (even in the
presence of a delay) when G is a convex-valued multimapping bounded on
[0,7] x Cy(—r,0) (Cx(—r,0) denotes the space of all continuous mappings
from [—r,0] to H), and C(t,z) is convex and ball-compact. D. Azzam, S.
Izza and L. Thibault [1] obtained, in finite dimensions, a solution for (ZZ'),
with a multimapping G, via a reduction to an unconstrained differential
inclusion. In [19], assuming that the prox-regular sets C'(¢,z) are contained
in a fixed compact set of H and using (without a fixed point theorem) the
scheme uf = g, ully; = Proj cgn_ um(u — Fg) with g7 € G(t7,u}') (where

i+1° (3
= Z'Q%, i=0,---,2"—1), T. Haddad established the existence of solution
of (ZZ') with a multimapping G with compact convex values.

Our main purpose in this paper is to study, in the same setting of infinite
dimensional Hilbert space H, the perturbed sweeping process (ZZ'), and
to show how the approach in [8] can be adapted to yield the existence of
solution for (ZZ') with prox-regular sets C'(t,z) and a multimapping G with
(unnecessarily bounded) closed convex values. For that adaption, a result on
the Holder continuity (with respect to the Hausdorff distance) of the metric
projection to prox-regular set is required. The paper is organized as follows:
in the next section, we introduce notation which will be used and recall
several concepts of nonsmooth and variational analysis which are involved
throughout the paper. The second section gives the behaviour of the metric
projection mapping onto prox-regular set. The last section is devoted to the
proof of the theorem of existence of a solution of the differential inclusion
(ZZ") with a nonconvex prox-regular set C(¢, x).

3.1 Preliminaries and Notation

Throughout the paper H is a Hilbert space whose inner product is denoted
by (-,-) and the associated norm by || - ||. The closed unit ball of H with
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center 0 will be denoted by B and B(u,n) (respectively, Blu,n]) denotes the
open (respectively, closed) ball of center u € H and radius n > 0. Given a
real T'> 0, we will denote by Cy(0,7T") the space of all continuous mappings
from [0,7] to H, "a.e” denotes "for almost all” and @ is the derivative of w.

Let C, C" be two subsets of H and let v be a vector in H, the real d(v, C')
or do(v) :=inf{|lv — ul| : uw € C} is the distance of the point v from the set
C. We denote by

Haus(C, C") = max { sup d(u, C"), sup d(v, C’)}

ueC veC!

the Hausdorff distance between C' and C’. Let us denote, for » > 0 and
v €]0, 1], by U} (C) (respectively, by E7(C')) the open tube around the set C
(respectively, the open enlargement of the set ('), that is,

UN(C):={ve H:0<dv,C)<n~r},

T

respectively,
ENC):={veH:dv,C) <n~r}.

We need first to recall some notation and definitions that will be used in
all the paper. For any subset C' of H, co C' stands for the closed convex hull
of C, and o(-, C') represents the support function of C, that is, for all £ € H,

o(&,C) = sup(§, u).
ueC

If C'is a nonempty subset of H, the Clarke normal cone N(C;u) or Ne(u)
of C'at u € C' is defined by

Ne(u) ={{ € H:(&v) <0,Yv e Te(u)},
where the Clarke tangent cone T'(C'; u) or T (u) (see [10]) is defined as follows:

Ve > 0,36 > 0 such that
veETo(u) &
Vo' € B(u,0) N C,Vt €]0,6], (v + tB(v,e)) NC # 0.

Equivalently, v € T (u) if and only if for any sequence (u,), of C' converging
to u and any sequence of positive reals (t,), converging to 0, there exists a
sequence (v, ), in H converging to v such that

Uy, + t,v, € C for all n € N.

We put N¢(u) = (), whenever u ¢ C.

103



We typically denote by f: H — RU {400} a proper function (that is,
f is finite at least at one point). The Clarke subdifferential 0f(u) of f at a
point u (where f is finite) is defined by

of () = {€ € H: (& -1) € Nupi((w, f(w)) }.
where epi f denotes the epigraph of f, that is,
epif ={(u,r) € HxR: f(u) <r}.

We also put df(u) = 0 if f is not finite at u € H. If ¢)c denotes the indicator
function of the set C', that is, ¢ (u) = 0 if u € C' and ¥ (u) = 400 otherwise,
then

0Ye(u) = Neo(u) for all u € H.

The Clarke subdifferential 0f(u) of a locally Lipschitz function f at u has
also the other useful description

Of(u) ={¢€ H:(v) < fu,v),Yv e H},

where

/ t _ /
f(u,v) ;== limsup UCRED) f(u)
(W' #) = (u,0%) t

The above function fO(u;-) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

Ne(u) = cly(Rydde(u)) for all u € C,

where Ry := [0,00[ and cl,, denotes the closure with respect to the weak
topology of H. Further

ddc(u) C No(u)NB for all u € C.

We will also need the concept of proximal subgradient. A vector £ € H
is a proximal subgradient of f at w (see, [11, 24, 31]) if there exist some
constant real number ¢ > 0 and some 6 > 0 such that

(&v—u) < fv) — f(u) + ollv —ul? for all v € B(u, ).

The set 0, f(u) of all proximal subgradients of f at  is the proximal subdif-
ferential of f at w. If f(u) is not finite we put d,f(u) = 0. It is known that
we always have the inclusion

Opf(u) C Of(u).
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The proximal normal cone of C' at u € C' is given by
Ne(u) = Optpe (u),
so the following inclusion always holds true
N{(u) C Ne(u) for all u € C.

On the other hand, the proximal normal cone enjoys a geometrical charac-
terization (see, [11]) given by the equality

Ne(u)={§ € H:3p>0s.t. uecProjc(u+ pg)},

where

Projc(v) :=={u € C:d(v,C) = [[v —ull}

is the set of nearest points of v in C. When this set has a unique point, we
will use the notation Po(v). For u € C, the proximal cone is also related to
the distance function to C' via the equalities (see, [11, 3])

N2 (1) = R0y (u)

and
N&(u) NB = 0pde(u).

3.2 Metric projection onto prox-regular set

First we begin by recalling that, for a given r €]0, +oc], a subset C' of the
Hilbert space H is (uniformly) r-prox-regular (see, [30]) if for any u € C
and for any £ € Ng(u) with ||£]] < 1, then u is the unique nearest point of
u+rtin C.

The following Theorem provides some properties of the proximal and
Clarke subdifferentials of the function distance do(-) when the set C' is
r-prox-regular. It also summarizes some important consequences of the prox-
regularity property which will be needed in the sequel of the paper. For the
proof of these results we refer the reader to [30, 4].

Theorem 3.2.1. Let C' be a nonempty closed subset in the Hilbert space H
and let r > 0. If the subset C' is r-proz-reqular, then the following hold:

a) For any point v in the open enlargement E)(C), the mapping Pc(v)
exists and is continuous;

b) For anyv € U)(c) and y = Pc(v) we have y € Proj C(y + Tﬁ);
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¢) The Clarke and the proximal subdifferentials of do(-) coincide at all
points v € EY(C);

d) The Clarke and the prozimal normal cone to C' coincide at all points
ueC.

We will also need the following lemma from [4].

Lemma 3.2.1. Let r > 0. Assume that C(t) is r-proz-reqular for all t €
[0,T] and that there exists an absolutely continuous function ¥ : [0,T] — R
such that

Then, for any given 0 < & < r, the following holds:

For any s € [0,T], any sequence (uy), converging tou € C(s)+(r—49)B
in (H, || -||) ((un)n is not necessarily in C(sy)), any sequence (Sy,)n in
[0, T] converging to s and any sequence ((,), converging weakly to ¢ in

(H,w(H, H)) with ¢, € 8dc(8n)(un), we have ¢ € 3dc(s)(u).

For several other important geometric concepts of regularity in nons-
mooth analysis, we refer to [3, 10, 13]. Consider now the behaviour of
Pco(u) with respect to the r-prox-regular set C' when we endow the space
of r-prox-regular sets with the Hausdorff distance.

Theorem 3.2.2. Let C' and C' be r-prox-reqular sets of the Hilbert space H
for a constantr > 0 and let vy €]0,1[. Then for allu € UY(C) andv € U (C")
we have

IPe(uw) — Per(w)] < (1 =)= of /72 (Haus (€,0))

Proof. Let u € UY(C), v € UY(C') be fixed. Put 2 := Pe(u) and
y = Pe/(v) (note that the projections exist according to Theorem 3.2.1).
Put also h := Haus (C,C") and observe that d(y,C') < h because y € C".
Suppose for a moment that = # u and y # v. By that Theorem 3.2.1 we
obtain x € Proj¢(z + r||Z:£H) and y € Proj o (y + rﬁ), which entails for
all z € C

u—= u—2x
o+ =g =2l < e+ =y
RE] Ju =l
=
u—x
e =yl < o+t = 2| - 2 -y
Ju =<l
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thus,

r—h<r—dy,C)< H:c—l—ru
Ju — |l

u—2x

—zH—Hz—yHSHx—i—r —yH
[ — ]

We deduce that

2r 9
— 4Ly - +T )
e~ oY

and the inequality between the first and the third member is equivalent to

r? —2rh <r* —2rh + h* < ||z — y||* +

lu— 2| (lz = ylI* + 2rh) > 2r{u — =,y — ).
This gives without the restriction x # u that
yr(||z — y||* +2rh) > 2r{u — z,y — ).
Likewise we have
yr(le = ylI* +2rh) > 2r(v — y,x — y).
Adding both inequalities we obtain

Ve = yll* +2rh) > (v — w2 —y) + [|lz — y|*

=
29rh + (u—v,x —y) = (1= 9)|z — y|
thus _— .
2+ e vllle =yl > e = ul?
This yields
1 2vyrh 1

IN

e —ol) < 722 (Gl l)

2
2vrh 1
<224 lu—ol |
I—v 2(1-7)

(e =l = 37—

hence
1 2yrh 1
=yl - sm——=llu—vl| < + lu — o],
| | 2(1=7) 1=y 2(1-9)
and this translates the desired inequality of the theorem. O
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The result can be applied to r-prox-regular moving set C(t,u) satisfying
(3.1) |d(x,C(t,u)) — d(z,C(t,v))| < L|ju — v

whenever ¢t € [0,7] and x,u,v € H where L is some real constant with
L € [0,1[; indeed the latter inequality is equivalent to

Haus (C(t,u), C(t,v)) < L|ju — v||.
This application has as an immediate consequence the following result.

Corollaire 3.2.1. Let C(t,u) be r-proxz-reqular moving sets of the Hilbert
space H for a constant r > 0 which satisfy (3.1), and let ~y €]0,1[. Then, for
all u,v € H and x € UY(C(t,u)) NUY(C(t,v)), we have

IPeu (@) = Pogw (@) <

Consider now for each (t,z) € [0,7] x H fixed, the mapping ¢ from
Dom P¢ () defined by w — Peu) (). Thus, Corollary 3.2.1 above establishes
the local Holder continuity of ¢ on UJY(C(t,u)) whenever the variable set
C(t,u) is r-prox-regular.

3.3 Existence of solution of the general per-
turbed sweeping process differential in-
clusion

We shall deal with two multimappings C' : [0,7] x H = H with nonempty
closed values and G : [0,7] x H = H with nonempty closed convex values.
They are required to satisfy the following assumptions:

(H1) The multimapping G is scalarly upper semicontinuous with respect
to both variables (that is, for each y € H the function (¢,u) —
o(y,G(t,u)) is upper semicontinuous) and, for some real a > 0

d(0,G(t,u) <a
for all t € [0, 7] and u € H with u € C(t,u);

(Hsz) For each t € [0,7] and each u € H, the sets C(t,u) are r-prox-regular
for some constant r > 0;
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(H3) There are real constants Ly > 0, Ly €]0, 1 such that, for all ¢, s € [0, T]
and z,y,u,v € H

[d (e, C(t,u) — d(y, C(s,v))| < e = yll + Lalt — | + Ll — o]

(H4) For any bounded subset A C H, the set C'([0, 7] x A) is relatively ball-
compact, that is, the intersection of C'([0,T] x A) with any closed ball
of H is relatively compact in H.

Remark 3.3.1. Note that the multimapping is scalarly upper semicontinuous
whenever it is || - || X weak upper semicontinuous in the usual sense, that is,
for every (to,xo) € [0,T] x H and every weak open set W O G(to, xo) there
exists some || - ||-neighbohood V' of (ty,x¢) such that

W D G(t,z) for all (t,z) € V.

Theorem 3.3.1. Assume that H is a Hilbert space, that (Hy — H4) hold.
Then, for any ug € H with ug € C(0,ug), there exists a Lipschitz continuous
mapping u : [0,T] — H such that

[ u(t) € _Nc(t,u(t)) (u(t)) + G(t,u(t)) aetel0,T],

(D) u(t) € C(t,u(t)) vt € [0,T),

L u(t) = up + fOt u(s)ds Vt € [0,T7,

that is, u(-) is a Lipschitz solution of the differential inclusion (D) with
[a(t)]] < 5422 a.e. t € [0,T].

Proof. We will construct a sequence of absolutely continuous mappings
(un(+)) which has a subsequence converging pointwise to a solution of (D).

Consider some integer p > 1 such that

T_ r(1— Ly)
2(a(1+3Ly) + Li(1+ Ly))

(3.2)

p
For each integer n > 1, we consider the partition of [0,7] by the points
ty = k:p—j;, k=0,1,---,p" For each (t,x) € [0,7] x H denote by g(-,-) the
element of minimal norm of the closed convex set G(t,x) of H, that is,

g(ta x) = PG(t,r) (O)

109



Put zff := uy € C(t§, uo).

Step 1. We construct xg,z7, - ,x;. in H such that for each k =

0,1,---,p"™ — 1, the following inclusions hold

(3.3) Ty € Ctyr, Thy)

n T n n n n
(3.4) Ty + Eg(tlmxk) — Tpy € NC(tZH,xZH)(ka)a

along with the inequality

Ll—f—QOZT

(35) o =l < S5

Observe first by (#Hi) that [|g(tf,uo)| < «. Then, for any v €

B(uy, 2%1—2220‘1%), we have

T
d<u0 + _ng<tg7 U’O)a C(t?a U))
p
T
< d(uo + Eg(tg, up), C(tg,uo)> + Ly |t? — t5] + La||v — o]

T T Li+2aT
< ||—gqg(t? Li— +2L —
< ||pn9( 0 o)l + Lo + 2Ls 1L, p

Li+2a\ T
§<a+L1+2L2 Lt a)—
L—Ly /p»

a(l4+3Ly) + Li(1+Ly) T

1 — Lo "

1
<3r according to (3.2).

Since C(t},v) is r-prox-regular, Theorem 3.2.1 guarantees, for every v €
B(ug, 25522 1) that

T
(3.6) ¢1(v) := Py ) (Uo + ﬁg(tg, Uo))

is well defined. Taking into account Corollary 3.2.1, (Hs) and (H3) we see

that the mapping ¢, : B(UO,ZLII_—?;‘%) — H is locally Holder continuous.

Further, for all v € Blug, §422 %], we have ¢1(v) € Blug, 54227, Indeed,
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for any such v it follows from the definition of ¢1(v) and from (H3) (as above)
that

T n T n
91(0) = wol] < 161(0) = (o + gt wo)) | + 55, o)
T T
— (o + —g(t5,u0), C(t,v) ) + gt wo)
p p
T
T n
+ Lollo = woll + gt wo)]
T n n n T n
< ollg(ag, wo) |+ Lilf} = 651+ Lallo = woll + g5, wo)l

Li+2a\T L;+2aT
S@a+h+Lrii£) bt

1—Ly Jp* 1—1Ly p*
Consequently, for all v € Bluy, Lfff;‘}%]
Ll + 20& T L1 -+ 204 T
(11,8 2T (g, B2 ]
¢1(v) (1 to 1L, p )ﬂ oo T 1— Ly po
then by (#H4), the set ¢1( [ug, Llff;"g;]) is relatively compact. So, the map-
ping ¢ is continuous from the closed convex set Bluy, L11+L2°‘ 1:[] into itself and

the range of Bluo, Lf*fj‘f] by ¢, is relatively compact. We may then apply

to the mapping ¢; the extended Schauder fixed point theorem established in
[21] or [29] to obtain some 2} € Bluy, Lff“;] such that 7 = ¢ (7). This
ensures in particular

L1+20[T

and by (3.6)
T
o + I;g(tg, uo) — @Y € Negyap)(27)-

Now, suppose that, for 0,1,--- ,k + 1, with £ + 1 < p"™ — 1 the points
xf,xf, - o}, have been constructed so that properties (3.3), (3.4) and
(3.5) hold true. By construction

n n n
Ty € Ot Tpy)

and hence according to (H;)
lg(t s Tl < o
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Lit2a T) ' we have
Ly p™

Further, as above for any v € B(x},,2

n T n n n
d($k+1 + ﬁg( k41> xk—f—l)v C(tk+2, U))

n T n n n n n n n
< d<9‘3k+1 + ﬁg(tk—&-l?xk—&-l)? C<tk+1>xk+1)) + Lty e =ty | + Laflv — 2, ||

T T Li+2aT
< ty Ly—+2Ly———
< oo abo)l + Lo+ 2L 20
L1—|—2Oé T CY<1+3L2>+L1(1+L2) T
Ly +2L —)— = —
<Oé+ 1+ 21—L2 pn 1—L2 P
1
< 5T according to (3.2).

The r-prox-regularity of C(t},,,v) ensures by Theorem 3.2.1 that

n T n n

(3.7 Ora(v) = e o (7har + 20 (1, 07))
is well defined. @ Thus, in an analogous way as above, ¢pio from
B(z} +1,2L117+L22"‘]%) into H is locally Holder continuous and for all v €
Bl L11_+L22°‘ pln] we have

Ll + 2& T Ll + 20[ T
3.8 o ,B[ o ] B[ ,
(3.8)  drr2(v) € (k+2 Lhy1 1-1, P )m Thi1 1-1, P
Indeed,

[fr12(v) — 2 || < llPpra(v) — (wfp + EQ( e T )+ 2;Hg( R i)l
= d($k+1 + ﬁg(tk—i—la 1), Otk o, U)) + ]?Hg(tkﬂa el

n T n n n n n n
< d<37k+1 + ﬁg<tk+17 Tri1), C (s, karl)) + Lty s =t

n T n n
 Laoflo = 2|l 4 2l 2|

T
o 19 (Chs1s Do) | + Laltiis — tipa| + Laflo — 2|l

p
T n n
_nHQ( k+1axk+1)H

L1+20é)T _L1+20éT
1—Ly /Jp» 1—Ly p*

<

+

p
S <204+L1—|—L2
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This justifies the inclusion (3.8), then by (H4), the set

Gt ( Bl 4, Lf_fj}%]) is relatively compact. So, the mapping ¢p.o is

continuous from the closed convex set Bla},, Lfff;‘%] into itself and the
range of B[z}, L11_+L22°‘ pln] by ¢rio is relatively compact. We may then
apply to the mapping ¢po the extended Schauder fixed point theorem

established in [21] or [29] to obtain some z},, € B[z}, , 2422 L] such that

1-Lo p»
T}y = Grt2(x},,). This ensures in particular
L1 + 200 T
n n n n n
Tiro € Othy2 Thys) and [y, — ai || < T L,

and by (3.7)

n n n n n
Ty + ﬁg( hal> Thy1) — Ty € NC(tz+2,:cZ+2)($k+2)~

Therefore, the construction of zg,z7, -,z is achieved by induction such
that properties (3.3), (3.4) and (3.5) for £ =0,1,--- ,p" — 1 are satisfied.

Step 2. Construction of u,/(+).
For any t € [t} t), ;] with k =0,1,--- ,p" — 1, put

un(t) = 1 T E7 b
Thus, for almost all ¢ € [t} ¢}, ],
. Ty Thy p"
n( ) tz+1 _ tz tZH — tz T( k kJrl)

By construction, (3.3), (3.4), (3.5) and the latter equalities give

(3.9) Un(thy1) € C(tZH?Un(tZH))

(3.10) —in(t) €N

c (t2+1 U (E 4

)) (un( Z+1>) - g( Z,un(t@) a.et € [ty Z+1[

with
3 pn n n Ll + 2@
(3.11) [in ()] = Tka —zpal < T, M.
Put

J— Z if ZfE[Z, Z-}—l[

113



and [ [
i tepp,,
bull) = { T i =T

Observe that for each ¢ € [0,7], choosing k such that ¢ € [tp,t;, [if t <T
and k=p" —1if t =T, we have

T
10,(t) —t| < |thyq —ti] = g 50 0 (t) — t as n — 400,

and similarly 0,(t) — ¢t as n — 4o00. Further, for each t € [{},1}, ], the
definitions of d,(-) and 6,(-) combined with (3.9) and (3.10) yield

(3.12) t (0u(1)) € C(6a(0), 10, (00(1)) )

(3.13)

—u,(t) € N

C<9n(t),un (Gn(t))> (u" (9"(t>)> - g<5n(t)a Un (5n(t))> a.ete 0,7

Step 3. Convergence of a subsequence of (u,(-)) to some absolutely
continuous mapping u(-).
For each k =0,1,--- ,p" — 1, it results from (3.5) that

L1+206T
1—L2 pn’

[k 1 = woll < lwgy — 2l + - + ot —agll < (k+1)

SO
L1 —|— 20&

1-— L2

Fix any ¢ € [0, 7] and consider, for any infinite subset N C N, the sequence
(un(t))nen. It follows from (3.12) that w,(0,(t)) € C(0,(t), u,(6,(t))) N LB,
which implies that w,(0,(t)) € C([0,T] x 56B) N B. By (H4) the sequence
(un(6,(1))) is relatively compact, so there is an infinite subset Ny C N such
that (u,(0,(t)))nen, converges to some vector [(t) € H. Putting h,(t) :=
U (0,,(t)) — un(t) for all n € Ny, by (3.11), we obtain

[ 4[] < Jluol| +

T:=p.

On(t)
IOl < [ lins)llds < M6a()~ ) = 0.
Then, (u,(t))nen, converges to [(t), thus the set {u,(t) : n € N} is relatively
compact in H. The sequence (u,),eny being in addition equicontinuous ac-
cording to (3.11), this sequence (u,)nen is relatively compact in Cy(0,7),
so we can extract a subsequence of (uy,),en (that we do not relabel) which
converges uniformly to u on [0,7]. By the inequality (3.11) again there is a
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subsequence of (1, )nen (that we do not relabel) which converges w(Ly;, L3})
in LL(0,7) to a mapping w € L(0,7) with ||w(t)|| < M ae. t € [0,T].
Fixing ¢ € [0,7] and taking any ¢ € H, the above weak convergence in
L} (0,7) yields

T

lim i (]1[07t](s)§,un(s)>ds:/0 (Ljo,q(s)€, w(s))ds

n—oo

or equivalently

nli_)n;()(&,uo + /Ot Un(8)ds) = (§,ug + /Otw(s)ds>.

This means, for each t € [0, 7], that u,(t) —7 Uo + fo s)ds weakly in H.

Since the sequence (un(t))neN also converges strongly to u(t) in H, it ensures
that u(t) = uo + fo s)ds, so the mapping u(-) is absolutely continuous on
[0, 7] with & = w. The mapping u(-) is even Lipschitz on [0, 7] with M as a
Lipschitz constant therein.

Step 4. We show now that u(-) is a solution of (D).
Put
2n(t) := g(0n(t), un(8,(¢))) for all t € [0,T7,

and observe that z, is a step mapping. Since ||g(0,(t), un(0,(2)))]] < « for
all n € N and t € [0,7], we may suppose (taking a subsequence if necessary)
that the sequence (2,(+)), converges w(Lj;, L37) in L (0,7) to a mapping
z(-) € LL(0,T) with ||z()]] < v a.e t € [0,T].

For all t € [0,7] we have u(t) € C(t,u(t)). Indeed, by (H3) and (3.11)

d(un(t),C(t u(t)))
< Nlun(t) = wa (0a(t)) | + Loft = 0(8)] + Lallu(t) — ua (0a(2))
< (M + Ly)[t = 0n(8)] + L2M|0n(t) — t] + Loflu(t) — ua(t)]
then,
d(u,(t),C(t,u(t))) — 0, so d(u(t),C(t,u(t))) =0 and u(t) € C(t,u(t)).

n—oo

Further, from the inequality ||, () — z,(t)|| < M 4+« =: v a.e. and from the
inclusion (3.13) it follows for a.e. ¢ € [0, 7] that

() + za(t) € N (e 0) (un(6n(1)) ) () 1B

C
(3.14)

— vﬁdc <0n(t),un (Qn(t))> (un (en(t))>7
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(3.15) 2a(t) € G((Sn(t),un(én(t))>.

Since (=1, + 2n, 2n)n converges weakly in LL. . (0,7) to (—u + z,2), by
Mazur theorem, there are

(3.16) &n € co{—ty+2,:q>n}and ¢, € co{z,: ¢ >n}

such that (&,, (), converges strongly in Ll (0, T) to (=i + z,z). Extract-
ing a subsequence if necessary we suppose that (£,(-), (,(+))n converges a.e.
to (—u(-) + 2(+), 2(+)), then there is a Lebesgue negligible set S C [0, 7] such
that for every ¢t € [0,7]\S on one hand (&,(t), (.(t)) — (—u(t) + z(t), 2(t))
strongly in H and on the other hand the inclusions (3.14) and (3.15) hold
true for every integer n as well as the inclusions

)€ ﬂco{ (t)+24(t) 1 q > n} and z(t mco {zq tq > n}

It results from (3.14) and (3.15) that for any n € N, any ¢ € [0,T]\S, and
for any y € H

(3.17) <ya _un(t) + Zn<t>> <o (ya '78dc <0n(t),un <9n(t)>> (un (QN(t>)>)

and

(3.18) (y, 2n(t)) < a(y, G(én(t), n (5n(t))>).
Further, for each n € N and any ¢ € [0,7]\S, from (3.16) we have

(y, &l(t ><SUp<y, o(t) + z4(t)) for all k > n

and
(y,Gr(t)) < Sup (y,24(t)) for all k > n

q n

and taking the limit in both inequalities as k — +oo gives through (3.17)
and (3.18)

(y, —u(t) + 2(t)) < sup (y, —iq(t) + z4(t))

q=>n

< igg o (y7 Vﬁdc (eq(t),uq (9q(t))> (Uq (%(ﬂ)) )
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and

(10(0) < 50 0. 2(0)) < sup (.G (5,00, (5,00)) ).

q>n

which ensures that

n—-+00

(y,—u(t) + 2(t)) <lim supa(y, 78dc<9n(t)7un (Gn(t)>> (un (Hn(t)))>

and

n—-+00

(y,2(t)) <limsupo (y, G(cSn(t), Un, (Mt)))) .

According to (H3) and Lemma 3.2.1, the multimapping (¢, u, ) = 0dcq . ()
takes on weakly compact convex values and is upper semicontinuous from
0,7] x H x H into (H,w(H, H)), hence for each y € H the real-valued
function o(y, y0dc(..)(+)) is upper semicontinuous on [0, 7] x H x H. Further,
o(y,G(-,-)) is also upper semicontinuous on [0,7] x H by assumption (H;).
It follows that, for every ¢ € [0, T]\\S and every y € H,

<y, —u(t) + z(t)> < a(y, Vadc(t,u(t)) (u(t))>
and
<y, z(t)> < a(y, G(t,u(t))),

which ensures that —u(t) + 2(t) € Y0deuuw)(u(t)) and 2(t) € G(t, u(t)),
consequently
u(t) € —NC(M(t)) (u(t)) + 2(t) a.e.

2(t) € G(t,u(t)) ae.

with
[a(t) = 2] < -
The proof is complete. m
The next theorem proves on the whole interval R, := [0, 4+00[, the exis-

tence of solution to the above evolution problem . In the result of Theorem
3.3.1, the solution is Lipschitz on the interval [0, 7], but in the theorem below,
the solution is locally Lipschitz on R,.

Theorem 3.3.2. Let G : R, x H = H be a multimapping which is scalarly
upper semicontinuous with respect to both wvariables. Assume that H is a
Hilbert space and that (G — G4) below hold:
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(G1) There exists a non-negative function B(-) € LS. (Ry) such that
a(0,G(t,w)) < A1)
forallt e Ry and uw € H with uw € C(t,u);

(Ga) For eacht € Ry and each u € H, the sets C(t,u) are nonempty closed
in H and r-prox-reqular for some constant r > 0;

(G3) There are real constants Ly > 0, Ly €]0, 1] such that, for all t,s € R,
and x,y,u,v € H

[d(z,C(t, ) — d(y. C(s.0))| < llz =yl + Lalt — | + Lallu— o]}

(G4) For any real T > 0 and any bounded subset A C H, the set C([0,T]x A)
is ball-compact, that is, the intersection of C([0,T]| x A) with any closed
ball of H s relatively compact in H.

Then, given ug € H with ug € C(0,ug), there exists a mapping u : Ry — H
which is locally Lipschitz continuous on Ry and satisfies

( u(t) S _NC(t,u(t)) (U(t)) + G(t, U(t)) aet e Ry,

(D) u(t) € C(t,u(t)) VteRy,

| u(t) =uo+ [, i(s)ds Vt€R;.

Proof. Put T, = k for all £ € {0} UN. It will suffice to prove that
Theorem 3.3.1 applies on each interval [Ty, Tjy1].

According to assumptions Gy, Gs, G, G4 we have Hi, Ho, Hs, H4 hold on
the interval [Ty, T1]. Since uy € C(Tp,up), by Theorem 3.3.1 there exists a
Lipschitz continuous mapping u° : [Ty, Ty] — H such that

[ W0(t) € _NC(t,uo(t)) (W) + G(t,u’(t)) ae t e [Ty, T,

u(t) € C(t,u’(t)) Vt € [To, Th),

L UO<T0) = Ug.

Suppose 1, - -+, u*~! have been constructed such that, for [ =0,--- , k —
1, u' : [T}, Ti11] — H is Lipschitz continuous, u!(T;) = u'~Y(T}), u'(t) €
C(t,ul(t)) for all t € [T}, Ti41) and

ul(t) € —NC( )(ul(t)) +G(t,d(t) ae te [T, Tl

tul(t)
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In an analogous way as above, the hypotheses Gi,Gs,G3, Gy ensure that
Hi1, Ho, Hsz, Hs hold on the interval [Ty, Ty.1] and we have u*~1(T}) €
C(Ty, u*1(Ty)). Tt follows from Theorem 3.3.1 that there is a Lipschitz
continuous mapping u* : [Ty, Ty41] — H such that

( k(L) € _No( )(uk(t)) +G(tuk(t) ae t € [Ty, Tl

tuk(t)

(3.19) uk(t) € C(t,uk(t)) Vt € [Th, Ths1),

L Uk(Tk) = ukfl(Tk).

So, we obtain by induction u* for all k € {0} UN with the above properties.
Let u: Ry — H be the mapping defined by

u(t) :=u*(t) for all t € [Ty, Tyyy[ with k € {0} UN.

It is easily seen that w is locally Lipschitz continuous on R,. Therefore, it
results from (3.19) that

(a(t) € _NC(t,u(t)) (u(t)) +G(t,u(t)) ae teRy,

u(t) € C(t,u(t)) Vvt € Ry,

w(0) = u(Tp) = up.

\

This proves the theorem. O

The corollaries below are direct consquences of Theorem 3.3.1 and The-
orem 3.3.2 respectively.

Corollaire 3.3.1. Let G : [0,T] x H = H be a multimapping which is
scalarly upper semicontinuous with respect to both variables. Assume that H
s a finite dimensional Fuclidean space and that the assumptions below hold:

e There exists a positive real number o such that
d(0,G(t,u)) < a
for allt € [0,T) and v € H with v € C(t,u);

e For each t € [0,T] and each u € H, the sets C(t,u) are nonempty
closed in H and r-prox-reqular for some constant r > 0;
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e There are real constants L1 > 0, Ly €]0, 1] such that, for allt,s € [0,T]
and x,y,u,v € H

[d(w, C(tw)) — d(y, C(s,0))| < 1w =yl + Lt — 5| + Lalu — vl

Then, given ug € H with ug € C(0,ug), there exists a mapping u : [0,T] — H
which is Lipschitz continuous on [0,T] and satisfies (D). Further, we have
a0l < B2 ae. t € [0,T)

Corollaire 3.3.2. Let G : Ry x H = H be a multimapping which is scalarly
upper semicontinuous with respect to both wvariables. Assume that H is a
finite dimensional Fuclidean space and that the following assumptions hold:

o There exists a non-negative function B(-) € LS (Ry) such that

loc
4(0,G(t,w)) < A1)
forallt e Ry and u € H with uw € C(t,u);

e foreacht € Ry and each uw € H, the sets C(t,u) are nonempty closed
i H and r-prozx-reqular for some constant r > 0;

e There are real constants Ly > 0, Ly €]0, 1] such that, for allt,s € R,
and x,y,u,v € H

[d(z, C(t, ) — d(y,C(s,0))| < =yl + Lalt — | + Laflu— o]

Then, given ug € H with uy € C(0,uq), there exists a mapping u : Ry — H
which is locally Lipschitz continuous on Ry and satisfies (D, )
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Introduction

In this article we consider the evolution problem in a Hilbert space H

/

u(t) € _NC(t,u(t)) (u(t)) + G(t,A(t)u) aete|0,T]

(Dr) u(t) € C(tult)) vtelo,T)

| u(s) = ¢(s) Vs € [-7,0]; u(0) = up € C(0,up),

where 7 > 0 is a finite delay, G : [0,7] x Cp = H is a set-valued mapping
taking closed convex values, C' : [0,7] x H = H is a set-valued mapping
with nonempty closed values and ¢ is an element of Cy with ¢(0) = uy €
C(0,up). Here NC(t,u(t)) () denotes a normal cone to the set C'(t,u(t)) and

Co := Cy(—r,0) is the Banach space of all continuous mappings from [—r, 0] to
H equipped with the norm of uniform convergence || - ||oc 0. For any ¢t € [0, T7,
the mapping A(t) from Cr := Cy(—r,T') into Cy is given by A(t)u(s) = u(t+s)
for all s € [-r,0] and u € Cr. By a solution of (D,) we mean a mapping
w : [=r,T] — H such that its restriction on [—r,0] is equal to ¢ and its
restriction to [0,77] is absolutely continuous, that is, u(t) = ug + fot u(s)ds,
for all ¢ € [0, 7] with @ € L};(0,7), and such that the conditions in (D,) are
satisfied. Such perturbed both time-dependent and state-dependent sweeping
processes with delay have been studied in the paper of C. Castaing, A. G
Ibrahim and M. Yarou [8]; their approach strongly uses the convexity and
ball-compactness assumption for C(¢,z) and G is bounded on [0,7] x Cp.
We refer to [1, 8, 9, 22| for other works related to both time-dependent
and state-dependent sweeping processes but without delay. We must also
say that non perturbed sweeping processes have been introduced by J. J.
Moreau [25, 26, 28]

Our main purpose in this paper is to prove existence result for (D,) when
C' has prox-regular values. The paper is organized as follows. In section 1,
we give notation which will be used throughout the paper and we recall some
definitions and results. Section 2 is devoted to prove the existence of solution

for (D,).
4.1 Preliminaries and fundamental results

Throughout the paper H is a Hilbert space whose inner product is denoted
by (-, ) and the associated norm by ||-||. The closed unit ball of H with center
0 will be denoted by B and B(u,n) (respectively, Blu,n]) denotes the open
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(respectively, closed) ball of center v € H and radius n > 0. Given a real
T > 0, we will denote by Cy(0,T") the space of all continuous mappings from
[0,7] to H, "a.e” denotes "for almost every where” and 4 is the derivative
of w.

Let C, C" be two subsets of H and let v be a vector in H, the real d(v, C')
or do(v) :=inf{|lv — ul| : w € C} is the distance of the point v from the set
C. We denote by

Haus(C, C") = max { sup d(u, C"), sup d(v, C’)}

ueC veC!

the Hausdorff distance between C' and C’. Let us denote, for p > 0 and
v €]0, 1], by UJ(C) (respectively, by E7(C)) the open tube around the set C'
(respectively, the open enlargement of the set ('), that is,

UN(C):={ve H:0<dv,C)<~yp},

p

respectively,
E(C):={ve H :dv,C) <p}.

We need first to recall some notation and definitions that will be used in
all the paper. For any subset C' of H, c¢o C' stands for the closed convex hull
of C, and o(-, C') represents the support function of C, that is, for all £ € H,

o(&,C) = sup(§, u).
ueC

If C'is a nonempty subset of H, the Clarke normal cone N(C;u) or Ne(u)
of C'at u € C' is defined by

Ne(u) ={{ € H:(&v) <0,Yv e Te(u)},
where the Clarke tangent cone T'(C'; u) or T (u) (see [10]) is defined as follows:

Ve > 0,36 > 0 such that
veETo(u) &
Vo' € B(u,0) N C,Vt €]0,6], (v + tB(v,e)) NC # 0.

Equivalently, v € T (u) if and only if for any sequence (u,), of C' converging
to u and any sequence of positive reals (t,), converging to 0, there exists a
sequence (v, ), in H converging to v such that

Uy, + t,v, € C for all n € N.

We put N¢(u) = (), whenever u ¢ C.
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We typically denote by f: H — RU {400} a proper function (that is,
f is finite at least at one point). The Clarke subdifferential 0f(u) of f at a
point u (where f is finite) is defined by

of () = {€ € H: (& -1) € Nupi((w, f(w)) }.
where epi f denotes the epigraph of f, that is,

epi f = {(u,p) € H xR : f(u) < p}.

We also put df(u) = 0 if f is not finite at u € H. If ¢)c denotes the indicator
function of the set C', that is, ¢ (u) = 0 if u € C' and ¥ (u) = 400 otherwise,
then

0Ye(u) = Neo(u) for all u € H.

The Clarke subdifferential 0f(u) of a locally Lipschitz function f at u has
also the other useful description

Of(u) ={¢€ H:(v) < fu,v),Yv e H},

where

/ t _ /
f(u,v) ;== limsup UCRED) f(u)
(W' #) = (u,0%) t

The above function fO(u;-) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

Ne(u) = cly(Rydde(u)) for all u € C,

where Ry := [0,00[ and cl,, denotes the closure with respect to the weak
topology of H. Further

ddc(u) C No(u)NB for all u € C.

We will also need the concept of proximal subgradient. A vector £ € H
is a proximal subgradient of f at w (see, [11, 24, 32]) if there exist some
constant real number ¢ > 0 and some 6 > 0 such that

(&v—u) < fv) — f(u) + ollv —ul? for all v € B(u, ).

The set 0, f(u) of all proximal subgradients of f at  is the proximal subdif-
ferential of f at w. If f(u) is not finite we put d,f(u) = 0. It is known that
we always have the inclusion

Opf(u) C Of(u).
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The proximal normal cone of C' at u € C' is given by
N2 () = dytoc(u),
so the following inclusion always holds true
N?(u) C Ne(u) for all u € C.

On the other hand, the proximal normal cone enjoys a geometrical charac-
terization (see, [11]) given by the equality

Ni(u)={{£ € H:3p>0st. ueProje(u+p)},

where

Projc(v) :={u € C:d(v,C) = |v—ul}

is the set of nearest points of v in C'. When this set has a unique point, we
will use the notation Po(v). For u € C, the proximal cone is also related to
the distance function to C' via the equalities (see, [11, 3])

N2 () = R, Byde(u)
and
(4.1) NZ(u) NB = 0pdc(u).

Now, we begin by recalling that, for a given p €]0, +00], a subset C' of
the Hilbert space H is (uniformly) p-prox-regular (see [31]) if for any u € C
and for any £ € Neo(u) with ||£]| < 1, then w is the unique nearest point of
u+ptin C.

The following proposition summarize some important consequences of the
prox-regularity property which will be needed in the sequel of the paper. For
the proof of these results we refer the reader to [31].

Theorem 4.1.1. Let C' be a nonempty closed subset in the Hilbert space H
and let p > 0. If the subset C is p-proz-reqular, then the following hold:

a) For any point v in the open enlargement E}(C), the mapping Po(v)
exists and 1s continuous;

b) For any v € UJ(c) and y = Pc(v) we have y € Proj C(y + p\\z:Z\\>"

¢) The Clarke and the proximal subdifferentials of dc(-) coincide at all
points v € EJ(C);
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d) The Clarke and the proximal normal cone to C' coincide at all points
ueC.

We will also need the following lemma from [4].

Lemma 4.1.1. Let p > 0. Assume that C(t) is p-proz-regular for all t €
[0,T] and that there exists an absolutely continuous function ¥ : [0,T] — R
such that

A, C(1)) — d(z, C(O)| < [9(t) — 0(s)] for all 5,1 € [0, ).
Then, for any given 0 < 6 < p, the following holds:
For any s € [0,T], any sequence (uy,), converging tou € C(s)+(p—9)B
in (H,|| 1) ((un)n is not necessarily in C(sy)), any sequence (Sy)y in
[0, T] converging to s and any sequence ((,), converging weakly to ¢ in
(H,w(H, H)) with ¢, € 0d¢(s,)(u,), we have ¢ € Odes)(u).
The following results, recently established in [29], will play an important

role in the proof of our main result.

Theorem 4.1.2. Let C' and C" be p-prox-regular sets of the Hilbert space
H for a constant p > 0 and let v €]0,1]. Then for all u € U)(C) and
v e UJ(C") we have

1 29p n) 2
[Pe(w) = Per(w)l < (=) fu— vl 4+ /2 (Hans (€. €))
The result can be applied to p-prox-regular moving set C'(t,u) satisfying

whenever ¢t € [0,7] and x,u,v € H where L is some real constant with
L € |0, 1[; indeed the latter inequality is equivalent to

Haus (C(t,u), C(t,v)) < L|ju — v||.
This application has as an immediate consequence the following result.

Corollaire 4.1.1. Let C(t,u) be p-proz-reqular moving sets of the Hilbert
space H for a constant p > 0 which satisfy (4.2), and let v €]0,1[. Then, for
all u,v € H and v € UJ(C(t,u)) NUJ(C(t,v)), we have

IPctu (@) = Pogw (@)] < j”u —o||'/2.

Consider now for each (t,x) € [0,7] x H fixed, the mapping ¢ from
Dom P¢ ) defined by w — Peu) (). Thus, Corollary 4.1.1 above establishes
the local Holder continuity of ¢ on U)(C(t,u)) whenever the variable set
C(t,u) is p-prox-regular.
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4.2 Perturbed nonconvex sweeping process
with delay

Let two given set-valued mappings C' : [0, 7] x H = H with nonempty closed
values and G : [0, T] x Cy = H with nonempty closed convex values. Suppose
that they satisfy the following assumptions:

(H1) The set-valued mapping G is scalarly upper semicontinuous with re-
spect to both variables (that is, for each y € H the function (¢, ) —
o(y,G(t,¢)) is upper semicontinuous) and, for some real o > 0

d(0,G(t,p)) <«
for all t € [0, 7] and ¢ € Cy;

(Hz) For each t € [0,7] and each w € H, the sets C(t,u) are nonempty
closed in H and p-prox-regular for some constant p > 0;

(H3) There are real constants Ly > 0, Ly €]0, 1[ such that, for all ¢, s € [0, T]
and z,y,u,v € H

[d(a, C(tw)) — d(y, C(s,0))| < 1w = yll + Lalt — 5| + Lolu — vl

(H4) For any bounded subset A C H, the set C'([0, 7] x A) is relatively ball-
compact, that is, the intersection of C'([0,7] x A) with any closed ball
of H is relatively compact in H.

Theorem 4.2.1. Assume that H is a Hilbert space, that (H1 — Ha4) hold.
Then, for any ¢ € Cy and ug € H with ¢(0) = ug € C(0,up), the differential
inclusion

[ u(t) € _NC(t,u(t)) (u(t)) + G(t,At)u) aete[0,T],

(D) u(t) € O(t,ult)) Vtelo,T],

u = in [—r0],

\

has at least one solution u : [—r,T| — H, which is continuous on [—r,T] and
Lipschitz on [0, T] with ||u(t)] < Lf_—f;“ a.et e [0,7].

Proof. Fix an integer p > 1 and suppose, without loss of generality, that
-1
(4.3) T < pp(1 — Ly) (2a(1 +3L) + 2L, (1 + LQ)) .

131



We are going to construct a sequence of mappings (u,(-)) in Cy(—r,T)
which has a subsequence converging pointwise to a solution of (D,).

Step 1. Construction of the sequence (uy), A
For any t € [0,T1], consider the single-valued mapping A(t) : C; — Cy defined,
for all £ € C; :=Cy(—r,t) by

A(t)E(s) == E(t+s) Vs e [—r0).

For each integer n > 1, we partition [0, 7] by the points
T
ty=k—, k=0,1,--- ,p".
pn

For each (t,¢) € [0,7T] x Cy denote by g(t,¢) the element of minimal norm
of the closed convex set G(t,¢) of H, that is,

g(t,©) = Pa,4)(0).

Put zf 1= ug € C(ty,up) and ug(t) = p(t) for all t € [—r,tj]. For any
v € B(uy, 2L11_+L22az%), from (H;) and (Hz) we get

T n oA (4n\, n n
(o +—g(t5, Atg)), Ot v)

T A
< d(vo -+ (15, AE)), Ot w0)) + Ll — 151 + Lallo — o]

T A T Li+2aT

< ||—g(ty, A(ty)ug Li— + 2L —

_‘png(m (to)ug)|| + lpn7L 21—L2 P
Ly +2aN\ T 1+ 3L Li(1+Ly) T
S(O&—I—Ll—I—QLQ 1+ Oé)__Oé( +3Ly) + Li(1 + 2)_,
1— Ly /pm L — Lo "

and hence it results according to (4.3) that

T n oA [(4n),,n n 1
d<U0 + EQ(tOvA(to)uo)a C(tpv)) < §P-

By the p-prox-regularity assumption, Theorem 4.1.1 guarantees, for every

Li+2a T
v e B(uo,Qﬁﬁ), that

T R
(4.4) ¢1(v) := Por ) (Uo + ﬁg (t5, A(tg)ug))

is well defined. It results from Corollary 4.1.1, (H3) and (Hs3) that the

mapping ¢, : B(uo, 2L11_—+L22°‘pln) — H is locally Holder continuous. Further,
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for all v € B uy, Lﬂ%i“p%}, we have ¢;(v) € B|uo, %ﬁ;‘%] Indeed, for any

such v it follows from the definition of ¢;(v) and from (H3) (as above) that

lé1(v) - 23] < |

T ~ T .
Ou(v) = (o + ot AR))) | + llates, Al |
T N
= (i + (85, A, (8 0) + -t At |

n T noA[(4n),,n n o .n n
< (s + o5 A G), O18, ) + ot A
# Lallo =gl + Ll 5

<2—||g(t63 A(tg)ug) | + Loty — 5] + Lallv — a3

L1—|—2a>T  Li+2aT

< (2 L+ L — = —.
_<a+ 1+ 21—L2 o 1= 1y p

Since this holds for any v € Bug M%] we deduce

? 1—Lo
L1+2()éT L1+204T
C t”,B[ , —] B[ , —],
“iv) € <1 T p”)ﬂ A

and the set qbl( [uo, L11+L2apj;]) is relatively compact, in view of hypoth-

esis (Hy). So, the mapping ¢, is continuous from the closed convex set
B [uo, Lll_—Jf;]%] into itself and the range of B [uo, Lf_—fg}%] by ¢, is relatively
compact. The extended Schauder fixed point theorem (established in [21] or
[30]), applied to the mapping ¢;, implies that there exists 27 € Blug, 2422 ]

Uo, 1—Loy p"
such that =7 = ¢, (27). Consequently, we obtain

L1+2CYT

o1 € O(ty,a7) and ||zt —uoll < —— o o

and by (4.4)
T n oA (n n n n
up + ﬁg(tm/\(to)uo) — 27 € Newy ap) (@)

Define x7 : [tg,t'] — H by

and consider u} : [—r, t’f] — H given by
Xi(t) it e ftg, ]

o(t) if te]-r0].



As above, for any v € B(x1,2L1+22°‘pT) we observe by (#H;) and (#H3) that
n T noA (4, n n
d<x1 + ﬁg(tl ) A(tl )ul)a C(t2 ) U))

T N
< d(af + o, A), OO, ) + Lty — 8]+ Lollo — a4

2 omN. N L1+2C(T

(7, At )ut) + 2L, 1— L, E
Ly +2aN\ T 14+ 3L Ly(1+Ly) T
< (a+ L+ 2L, “F“)_:a<+ )+ L1+ L) T
].—LQ ]__L2 pn

which combined with (4.3) yields
n T n A n n n 1
(i + ottt Alyu). Ct5.v) ) < 5.

By the p-prox-regularity assumption, Theorem 4.1.1 ensures, for every v €
Bz, 25972 7)), that

T -«
(4.5) 62(0) = e (a1 + o (i1 Al)uf) )

is well defined. It results from Corollary 4.1.1, (H3) and (H3) that the

mapping ¢o : (x172L1+L2aan) — H is locally Holder continuous. Further,

for all v € Blaf, 422 L], we have ¢o(v) € B}, 5422 T]. Indeed, for any
pr p
such v it follows from the definition of ¢9(v), from (H;) and (H3) (as above)

that

T ~ T .
J62(0) = 1 < [[oa(0) = (o + Zo(ef, Alt)u) | + o, Atiyu)|

T ~
= (a7 + ot A (8, 0) + —llaler, At |
n T noA (4, N n ,.n n n
< (s} + gl A, CCE.a)) + ot A
*# Lallo = afl + Ll 6

< 2—\!9(75?’ AU+ Lilty — 8] + Loflv — 7|

L1+20[>T _L1+20[T

<(2a+Li+L _
—(O‘+ e

n 1Ly p

Since this holds for any v € B[z}, £722 ] we deduce

cbz(v)eC(tg,B[ L1+20‘T])ﬂ [nL1+2aT

=Ly AL )
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and the set ¢ (B[x’f, LllfL?;‘ 1%]) is relatively compact, in view of hypoth-
esis (H4). So, the mapping ¢ is continuous from the closed convex set
B [x?, Lll_—*ffl%] into itself and the range of B [:B?, L11+L2°‘ 5} by ¢, is relatively
compact. The extended Schauder fixed point theorem (established in [21] or
[30]), applied to the mapping ¢, implies that there exists 23 € B[, L1221

T 32, pr
such that 2% = ¢o(ah). Consequently, we obtain

ry € O(ty,z3) and |[lzy — 27| < 1L,

and by (4.5)
n r n oA (4n\, n n n
Ty + Eg(thA(tl)ul) — x5 € Newyap) (7).

Define x4 : [t} t5] — H by

iy —t t—1t7 ,
o(t) = —=——a7 + ——x, ift et} t;].
X3 (1) tg—t?l tg—t?2 [t1, 5]

and define also u} : [—r,t5] — H by
x5(t) it te iy, i)

uy(t) ==
up(t) if  t e [—rt7l.

By repeating the process, for £ = 0,1,--- ,p" — 1, we obtain (ZL‘Z)ZLO in
H, (X (4))jmy with xg e [67 g, 5] — H and (ug(+) fi—g with w < [=r,63] — H
such that the following properties hold:

(4.6) Ty € Oty wp) and ag,, — gl < —
1 L2 P
n T noA[(4n n
(4.7) Ty + ﬁg( i AR ug) — w1 € Nogp,,op, ) (@),

Xis1: [th tip] — H with

—1 t—ty
n k 1 n : n gn
Xk+l<t) = tn+ _ tn k n _ tnxk+1 if t € [tk7 tk+1]7
k+1 k+1
UZ+1 . [—7“, tk+1:| — H Wlth
X (t) if t e[t
Uy (1) =

up(t) if tel[-rt}].
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Now, let us define the sequence of mappings (uy,(+)), from [—r, T| into H
with u, : [-r,T] — H given by

Uy (t) := upa(t) for all t € [—r, T7.
Thus, for almost all ¢ € [{7, ¢}, ] and k =0,1,--- ,p" — 1,

n xn
- M = - o).

tk+1 - tk tk+1 - tk T

This combined with (4.6) and (4.7), by construction, yields
Un(tis1) € Ot un(tiny))

—i,(t) € N ) (un(t))) — g (G, A uY) ae t € [tr,

c (tZH’Un(tEH

with, according to (4.6),

. pn n n Ll + 204
(4.8) ln (@) = = llzk — 2kl < T, M.
Putting
_ )t it te [ty thyl
On(t) = { oy if t=T,
and ; [ [
A tz+1 1 le tZ7tZ+1
On(t) = { T i t=T
we obtain
(4.9) un (0,(1)) € C(@n(t),un (Qn(t))>
() €N ) (un (en(t)))—g(an(t),A(an(t))u;n_l) acte0,T].

c <9n(t),un (6.0)
Using the mapping A(t) : Cy([—r,T]) — Cu([—r,0]) defined in the introduc-
tion, it is easily seen that, for any £ € Cr and any t € [0, 77,

A)E = ALy

where |, denotes the restriction of { to [—r,]. The last inclusion above
can then be written as
(4.10)

~ia(t) € N ( ) (un (9n(t))>—g(én(t),A((Sn(t))un> aete0,T).

61 (8),n (8 (1) )
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Step 2. Convergence of a subsequence of (u,(-)) to some mapping u(-)
absolutely continuous on [0, 7.
For any t € [0,77], the sequences 6,(t) and d,(t) converge to t. Indeed, for
each t € [0,T7, choosing k such that ¢t € [t} ¢}, [if t <T and k = p" — 1 if
t =T, we have

T
0,(t) —t| < |thy —ti| = —, so 0,(t) =t as n — 400,
pTL

and similarly d,(t) — t as n — +o0.
For each kK =0,1,--- ,p" — 1, it results from the inequality in (4.6) that

L1+20./T
].-Lg pn’

[k 1 — woll < gy — 2l 4+ -+ + ot — gl < (R + 1)
S0
L1 + 2«
1— Lo
Consider vy, 1= up|jo,r], that is, v,(t) = u,(t) for all t € [0,T]. Fix any t €
[0, 7] and consider, for any infinite subset N C N, the sequence (v,,(t))nen. It
follows from (4.9) that v, (0, (t)) € C(0,(t), v, (0, (t)))NSB, which implies that
v (0,(t)) € C([0, T x fB)NGB. By (H4) the sequence (v,,(0,,(t))) is relatively
compact, so there is an infinite subset Ny C N such that (v,(0,(%)))nen,
converges to some vector [(t) € H. Putting h,(t) := v,(0,(t)) — v,(¢) for all
n € Ny, by (4.8), we obtain

[l < ol +

T:= 0.

n—o0

On (1)
Iha(t)] < / lin(s)llds < M(B,(t) — £) —> 0.

Then, (v,(t))nen, converges to [(t), thus the set {v,(t) : n € N} is relatively
compact in H. The sequence (v,(+)),en being in addition equicontinuous
according to (4.8), this sequence (v, (+))nen is relatively compact in Cy(0,7)
so we can extract a subsequence of (v,(+))nen (that we do not relabel) which
converges uniformly to some mapping v(-) on [0,7]. By the inequality (4.8)
again there is a subsequence of (0,,)nen (that we do not relabel) which con-
verges w(Ly, L3y) in LY (0, T) to a mapping w € L (0,T) with ||w(t)|| < M
a.e. t € [0,7]. Fixing t € [0,7] and taking any y € H, the above weak
convergence in L (0,7) yields

i [ (g 6)ytu(s))s = [ (o) w(s)ds,

n—oo 0

or equivalently
t t
h_}m (y, ug +/ Un(s)ds) = (y,up —|—/ w(s)ds).
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This means, for each ¢ € [0, 7], that v, (¢) — Uy + fgw(s)ds weakly in H.
Since the sequence (v, ())nen also converges strongly to v(t) in H, it ensures
that v(t) = uy + fg w(s)ds, so the mapping v(-) is absolutely continuous on
[0, 7] with © = w. The mapping v(-) is even Lipschitz on [0,7] with M as a
Lipschitz constant therein, since the convex set {¢ € LL(0,7T) : [|[C(t)|| < H}
is norm closed in LL(0,T), and hence weakly closed.

Further, since wu,(t) = ¢(t) for all ¢t € [—r,0], putting u(t) = p(t) if
t € [-r,0] and u(t) = v(t) if t € [0,T], we see that (u,(-)), converges
uniformly on [—r,T] to u(:) and wu(-) is continuous on [—r,T] and Lipschitz
on [0, 7.

Step 3. Let us prove that u(-) is a solution of (D,).
Claim: For any ¢ € [0, 7], (A(0,(t))u,)n converges uniformly to A(¢)u in Co.
Fix any ¢ € [0,7]. We can write, for every s € [—r, 0]

[[un (0n(t) + 5) — u(t + 5)]|

< n (6, (1) 4+ 8) — w(a(t) + 8) || + [|u(a(t) + s) — u(t + s)||

< sup lun(7) —u(r)|| + Mt — 0,(2)],
TE€[—r,T]

so we have
1A (0n(8)) s = At)ulley < Nlun — ulle, + Mt — 6, (2)].
Since wu,(+), converges uniformly to u(-) on [—r, T, we deduce

IA(Su(t))n = A(t)lle, — 0,

which justifies the claim.

According to (H1), we have ||g(6,(t), A(6,(t))un)|| < o for all n € N
and ¢ € [0,7), then putting z,(t) := g(8,(t), A(0,(t))u,) for all ¢ € 0,77,
we may assume (taking a subsequence if necessary) that the sequence
(2n(+)) converges w(L};, L) in L} (0,T) to a mapping z(-) € L} (0,T) with
lz()|| < @ aetel0,T].

For all t € [0,T] we have u(t) € C(t,u(t)). Indeed, since u,(0,(t)) €
C'(t,un,(0,(t))), the assumption (H3) ensures that

d(un(t), C(t, u(t))>
< Jun(t) — wn (0] + Lilt — On(t)] + Laflu(t) — un(n(t))]
< (M + Ly + M Ly) |t — 0,()] + La||u(t) — u,(t)]|
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then,

d(un(t), C(t,u(t))) — 0, so d(u(t), C(t,u(t))) =0 and u(t) € C(t,u(t)).

n—oo

Further, from the inequality ||, () — 2,(t)|| < M 4+« := v a.e. and from the
inclusion (4.10) it follows for a.e. ¢t € [0, 7] that

— Uy (t) + 2,(t) € N

(4 11) C(en(t)Vun (en(t))) (un (en(t))> m’YB
: - yadc <0n(t),un (On(t))> (Un (Qn(t))>, see (4.1)
(4.12) 2(t) € G(én(t),A(én(t))un>.

It follows from (—1, + 25, 2, )n converges weakly in LY, (0, T) to (—i+2z, 2)
and by Mazur theorem there are

(4.13) &n € co{—1uy+ 24 : ¢ >n} and (, € co{z,: ¢ > n}

such that (&,, (), converges strongly in Lk (0,T) to (—u+ z,z). Extract-
ing a subsequence if necessary we suppose that (&,(-), (.(+))n converges a.e.
to (—u(-) + z(+), z(+)), then there is a Lebesgue negligible set S C [0, 7] such
that, for every t € [0, T]\\S, on one hand (&,(t), u(t)) — (—u(t) + z(t), 2(t))
strongly in H and on the other hand the inclusions (4.11) and (4.12) hold
true for all integer n as well as the inclusions

—a(t)+2(t) € ﬂ@{—uq(t)+zq(t) g > n} and z(t) € ﬂm{zq(t) g > n}

It results from (4.11) and (4.12) that for any n € N, any ¢ € [0,T]\S, and
for any y € H

B T )

and

(4.15) (y,za(t)) < 0<y, G(én(t),A(5n(t))un>).
Further, for each n € N and any ¢ € [0, 7]\ 5, from (4.13) we have

(y,&(1)) < sup (y, —i1g(t) + z4(t)) for all k > n

139



and
(y,Cu(t)) <sup(y,z(t)) forall k >n
q=>n

and taking the limit in both inequalities as k — +oo gives through (4.14)
and (4.15)

(y, —u(t) + 2(t)) < sup (y, —iy(t) + 2(t))

q>n

= (y’ 704, (sat000 010 ) (v(n() )
and
{y,2(t)) < sup (y, 2(1)) < 31;50(3;, G(éq(t),A(dq(t))uq>>,

which ensures that

(y,—u(t) + 2(t)) <lim supa(y, 78dc<9n(t)7un (On(t))> (un (Hn(t)))>

n—-+00

and

(y,2(t)) <limsupo (y, G(én(t), A(5n(t))un)> ,

According to (#H3) and Lemma 4.1.1 the set-valued mapping (t,u,z) —
Odc (¢, (), taking on weakly compact convex values, is upper semicontinuous
from [0, 7] x H x H into (H,w(H, H)), hence for each y € H the real-valued
function o(y, y0dc(..)(+)) is upper semicontinuous on [0, 7] x H x H. Further,
o(y,G(-,-)) is also upper semicontinuous on [0, 7| x Cgx(—r,0) by assumption
(H1). It follows that, for every t € [0, T]\S and every y € H,

<y, —u(t) + z(t)> < 0<y, vﬁdc(m(t)) (u(t)))
and
<y, z(t)> < U(y, G(t, A(t)u)),

which ensures that —u(t) + 2(t) € v0dc(uw)(u(t)) and z(t) € G(t, A(t)u),
consequently

u(t) € _NC(t,u(t)) (u(t)) +2(t) ae t € [0,T]
2(t) € G(t,A(t)u) ae t € 0,7
with
[a(t) = z(¢)|| < v ae t €[0,T].
The proof is complete. O
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Introduction

In this paper, given a Hilbert space H, we discuss the existence of solution
of the evolution process differential inclusion of the form

(a(t) € —NC( )(u(t)) + G(t,u(t)) aetel0,T]

tu(t)

(D) u(t) € C(t,u(t)) vtel0,T]

u(0) = ug € C(0,uy).

\

In (D), C :[0,T] x H= H is a multimapping with nonempty closed values
and G : [0,T] x H = H is a multimapping with nonempty closed convex

values, and NC<tu(t)>(-) denotes a normal cone to the set C(t,u(t)). As

stated, the set C(t,z) depends both on the time ¢ and on the state z. Such
differential inclusions have been introduced, for a time-dependent set, in the

form
u(t) € =Nk (u(t)) aetel0,T]

(SP) u(t) € K(t) Vte[0,T]

w(0) = uy € K(0).

by J. J. Moreau [17, 18, 19] who called (SP) a sweeping procee because of
the mechanical interpretation (see, [17, 18, 19]).

The first work devoted to the inclusion (D) has been realized by M. Kunze
and M. D. P. Monteiro Marques [15] with G = {0} and C(¢, x) convex for all
t €[0,7] and all z € H. In [§], G is a (single-valued) mapping measurable
with respect to the first variable and continuous with respect to the second
one. Associating with each absolutely continuous mapping y : [0,7] — H,
with y(0) = wug, the unique solution ¢(y) of the time-dependent sweeping
process (with unknown mapping u)

u(t) € =N ) (u(t)) +G(t,y(t)) with u(0) =ue € C(0,y(0)),

¢ty
N. Chemetov and M. D. P. Monteiro Marques, by applying the classical
Schauder fixed point theorem, proved the existence of solution of (D), for
nonconvex prox-regular and ball-compact sets C(¢,x) moving in a Lipschitz
way. To be more precise, in [8], it is assumed that there exists an absolutely
continuous function ¥ : [0, T|H, which is monotone increasing, and a constant
Ly €]0, 1], such that

d(z, C(t,u)) —d(y,C(s,0))| < |l —y| + I(t)I(s) + Lao|ju — v|
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for all ¢, s € [0,T] with s < ¢ and x,y,u,v € H. Recently, in [6] C. Castaing,
A. G Ibrahim and M. Yarou obtained, under the prox-regularity and ball-
compactness assumption for C(¢,z), the existence of solution for (D) when
G = {0} via another method applying a generalized version of the Schauder
fixed point theorem from [14, 22]. On the other hand, with G # {0} and
C'(t,x) convex and ball-compact using a careful adaptation of their method,
they also showed in the same paper [6] an existence result for (D) with delay,
that is, G is an upper semicontinuous and bounded multimapping defined
on [0,7] x Cy(—r,0) and taking on weakly compact convex values of H; by
Cy(—r,0) we denote with » > 0 the space of all continuous mappings from
[—7,0] to H. We refer to D. Azzam-Laouir, S. Izza and L. Thibault [2] for
a reduction approach of (D) to an unconstrained differential inclusion when
C(t,x) is prox-regular, G is a multimapping, and H is finite dimensional.
J. Noel and L. Thibault proved the existence of a solution for (D) in the
Hilbert setting when C(t¢,x) is a ball-compact prox-regular set and G is
a multimapping; the method in [21] is based upon a result on the Holder
property of the metric projection to prox-regular set with respect to the
Hausdorff distance. With the sets C'(¢,z) prox-regular and contained in a
fixed compact set and through the scheme

T

ul = ug uj', = Proj C(t?+17u;z)(u? — Q—ngf)
T
with g' € G(tI',u}') where t' :==i—, i =0,---,2" — 1,

27L )
T. Haddad [13] gave another approach which yields to a proof of existence in
the Hilbert setting for (D) without application of any fixed point theorem.
In the present paper, using ideas from [13] and [21] we provided a new
constructive proof of existence of solution for (D) when the sets C(¢,x) are
ball-compact and subsmooth. The method also allows us to relax the growth
conditions on the multimapping G which are assumed in [6, 13, 8]. The class
of subsmooth sets introduced in [1] strictly contains the class of closed convex
sets and the class of prox-regular sets. In the first section, we recall some
preliminaries and we prove an upper semicontinuity result which will be used
in our developement. The second section is devoted to the aforementioned
constructive proof (using no fixed-point theorem) of the differential inclusion
(D) governed by subsmooth sets C(t, x).

5.1 Preliminaries

Throughout the paper H is a Hilbert space whose inner product is denoted
by (-, -) and the associated norm by ||-||. The closed unit ball of H with center
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0 will be denoted by B and B(u,n) (respectively, Blu,n]) denotes the open
(respectively, closed) ball of center u € H and radius n > 0. Given a real
T > 0, we will denote by Cy(0,7T") the space of all continuous mappings from
[0,7] to H, "a.e.” denotes "for almost every where” and 4 is the derivative of
u. Let C,C" be two subsets of H and let v be a vector in H, the real d(v, C)
or de(v) := inf{]jv — u|| : w € C} is the distance of the point v from the set
C. We denote by

Haus(C, C") = max { sup d(u, C"), sup d(v, C’)}

ueC veC’

the Hausdorff distance between C' and C’. For v € H the projection of v into
C C H is the set

Projc(v) :={u e C:dc(v) = ||jv—ul}.

This set is nonempty when C' is ball-compact. Recall that a subset S of
(H,|| - ||) is ball-compact provided that S N rB is compact in (H,| - ||) for
every real r > 0. Obviously any ball-compact set is norm closed, and in finite
dimensions S is ball-compact if and only if it is closed. When h € Proj ¢(v),
then we have v — h € Nf(h) where NZ(-) denotes the proximal normal cone
of C (see, [9]).

For a nonempty interval J of R, we recall that a multimapping F' :
J = H is called Lebesgue measurable if for each open set U C H the set
FYU):={t e J: F{t)nU # 0} is Lebesgue measurable. When the
values of F' are closed subsets of H, we know (see [5]) that the Lebesgue
measurability of F' is equivalent to the measurability of the graph of F', that
is,

gph F € L(J) ® B(H),

where £(J) denotes the Lebesgue o-field of 7, B(H) the Borel o-field of H,
and
gph F = {(t,u) € T x H :u € F(t)}.

For any subset C' of H, ¢o C stands for the closed convex hull of C, and
o(+,C) represents the support function of C, that is, for all £ € H,

o(&,C) = sup(, u).

ueC

If C'is a nonempty subset of H, the Clarke normal cone N(C;u) or Ne(u)
of C'"at u € C' is defined by

Ne(u)={& € H: (§v) <0,Vv e Te(u)},
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where the Clarke tangent cone T'(C; u) or T (u) (see [10]) is defined as follows:

Ve > 0,30 > 0 such that
vETo(u) &
Vu' € B(u,d) NC, vVt €]0,0[, (v + tB(v,e)) N C # 0.

Equivalently, v € T (u) if and only if for any sequence (u,,), of C' converging
to u and any sequence of positive reals (,), converging to 0, there exists a
sequence (v, ), in H converging to v such that

U, + t,v, € C for all n € N.

We put N¢(u) = (), whenever u ¢ C. For any n > 0 we denote by N/ (u) the
truncated Clarke normal cone, that is,

Nl(u) = Ne(u) NnB.

We typically denote by f: H — R U {+oco} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential 0 f(u) of f at a point
u (where f is finite) is defined by

Of(u) = {§ eEH:(&-1)¢€ Nepif<(u,f(u))>},
where epi f denotes the epigraph of f, that is,
epi f = {(u,r) € H xR : f(u) <r}.

We also put df (u) = 0 if f is not finite at u € H. If ¢)c denotes the indicator
function of the set C, that is, Yo (u) = 0if u € C' and ¥ (u) = +00 otherwise,
then

OYe(u) = Ne(u) for all u € H.

The Clarke subdifferential 0f(u) of a locally Lipschitz function f at u has
also the other useful description

Of(u) ={¢€ H: () < fu,v),Yv e HY,

where

/ t _ /
(u,v) ;== limsup SO+ ) f(u)
(u' £) = (u,0F) t

The above function f(u;-) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

Ne(u) = cly(Rydde(u)) for all u € C|
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where Ry := [0,00[ and cl,, denotes the closure with respect to the weak
topology of H. Further

(5.1) ddc(u) C Ne(u)NB for all uw € C.

The concept of Fréchet subdifferential will be also needed. A vector £ € H
is said to be in the Fréchet subdifferential Op f(u) of f at u (see [16]) provided
that for every € > 0 there exists § > 0 such that for all v € B(u,d) we have

(€ u' —u) < fu') = fu) +ellu’ —ul.
It is known that we always have the inclusion
Opf(u) C Of(u).
The Fréchet normal cone of C' at u € C' is given by
NE(u) = Optpe (u),
so the following inclusion always holds true
N&(u) € Ne(u) for all w € C.

On the other hand, the Fréchet normal cone is also related to the Fréchet
subdifferential of the distance function since the following relations hold true
for all u € C

N (u) = Ry Orde (u)

and
(5.2) Ordc(u) = N&(u) NB.
Another important property is
v—u € NE(u) hence also v —u € Ne(u)

whenever u € Proj ¢(v), since NZ(u) C N (u).

The next lemma 5.1.2; recently established in [20], will play an important
role in the proof of our main results.

We recall firstly the definition of subsmooth sets (see, [1]). Let C be a

closed subset of H. We say that C'is subsmooth at u € C, if for every € > 0
there exists 0 > 0 such that

(5.3) (&1 — &, ur — ug) > —¢l|uy — ug|.

whenever uy,us € B(u,d) N C and & € Ne(u;) NB, i = 1,2. The set C is
subsmooth, if it is subsmooth at each point of C. We further say that C' is
uniformly subsmooth, if for every ¢ > 0 there exists 6 > 0, such that (5.3)
holds for all uy, us € C satisfying ||u; — us|| < § and all & € No(u;) NB.
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Definition 5.1.1. Let {C(t,v) : (t,v) € [0,T] x H} be a family of closed
sets of H. This family is called equi-uniformly subsmooth, if for every e > 0,
there ezists § > 0 such that (5.3) holds for each (t,v) € [0,T] x H, and all
uy, up € C(t,v) satisfying ||uy — uz|| < 0 and all § € Ny (ui) NB.

Lemma 5.1.1. [20] If a closed set C' of H is subsmooth at ug € C, then

adc (UO) = 6ch (UO)

and
NC(UO) = Ng(uo)

Lemma 5.1.2. [20] Let E be a metric space and let (C(q))qer be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
n>0. Let Q C FE and qy € clQ. Then the following hold:

(a) For all (q,u) € gph C we have n0dcg)(u) C nB;

(b) For any net (g;)jes in Q converging to qo, any net (u;j);e; converging
tou € C(qo) in (H,| -||) with u; € C(q;) and deq,) () = 0 for every
j
y € C(qo) , and any net ((;)jes converging weakly to ¢ in (H,w(H, H))
with ¢ € ndde(y,)(u;), we have ¢ € nddc(qy)(u).

Through Lemma 5.1.2 we can, using some ideas in [20], establish the
following partial upper semicontinuity property.

Proposition 5.1.1. Let {C(t,v) : (t,v) € [0,T] x H} be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
n > 0. Assume that there exist real constants Ly > 0 and Ly > 0 such that,
for any x,y,u,v € H and s,t € [0,T]

d(, C(t,w)) — d(y, C(s,0))| < [l — yll + Lalt — s| + Laflu — v,
Then the following assertions hold:
(a) For all (s,v,y) € gph C we have n0dc (s (y) C nB;

(b) For any sequence (s,), in [0,T] converging to s, any sequence (vy),
converging to v, any sequence (Y,), converging to y € C(s,v) with
Yn € C(Sn,vp), and any £ € H, we have

lim sup o (ga nadC(sn,vn) (yn)) <o (57 nadC(s,v) (y)) :

n—oo
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Proof. The proof will be a careful adaptation of techniques of the proof
of Proposition 1.2.1 in [20]. We only have to prove (b). Let (s,)n, (vn), and
(Yn)n as in the statement. Extracting a subsequence if necessary, we may
suppose that

lim sup o (f, NOdc (s, v,) (yn)) = nh—>Holo o (5, NOdc (s, v0) (yn)) )

n—oo

For any n, the weak compactness of n0d¢ (s, v,)(yn) ensures the existence of
some G, € 19dc(s, v, (Yn) such that

<£7 Cn> = 0-(57 nadC(sn,vn)<yn))'

Since ||¢.|| < n by (a), a subsequence of ((,), (that we do not relabel)
converges weakly to some ( in H. It results that

(54) <§7 <> = lim sup 0-(57 nadC(sn,vn) (yn)) :

n—o0

Now, observe, for each z € C(s,v), that
0 < d(z,C(sp,vn)) <d(z,C(s,v)) + Li|s, — s| + Lalv, — 0.

Since (v,), and (s,), converge to v and s respectively, it follows that
d(z,C(sn,v,)) converge to 0. We then apply Lemma 5.1.2 to obtain
¢ € n0dc (s (y). The latter inclusion combined with (5.4) yields

lim sup o (57 UadC(sn,vn) (yn)) < 0'(57 773(10(3,1;) (y>)7

n—oo

This complete the proof. m

5.2 Subsmoothnes and variational inequality

We show in this section under reasonable assumptions that there always
exists a solution for variational evolution differential inclusion governed by
subsmooth set.

We shall be dealing with two multimappings G : [0,7] x H = H with
nonempty weakly compact convex values and C' : [0,7] x H = H with
nonempty values. They are required to satisfy the following assumptions:

(H1) The multimapping G is scalarly upper semicontinuous with respect
to both variables (that is, for each y € H the function (¢,u) —
o(y, G(t,u)) is upper semicontinuous) and, for some real o > 0

d(0,G(t,u) <a
for all t € [0, 7] and u € H with u € C(t,u);
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(Ho) For each t € [0,T] and each u € H, the sets C(t,u) are nonempty and
equi-uniformly subsmooth;

(H3) There are real constants L; > 0, Ly €]0, 1] such that, for all ¢, s € [0, T
and z,y,u,v € H

[d(w, C(tw)) — d(y, C(s,0))| < lw = yll + Llt — 5| + Lalu — vl

(H4) For any bounded subset A C H, the set C'([0,T] x A) is relatively ball-
compact, that is, the intersection of C'([0,7] x A) with any closed ball
of H is relatively compact in H.

Of course the inequality condition in (Hj3) is equivalent to
|d(z, C(t,u)) — d(z,C(s,v))| < Li|t — s| + La||u — v||
for all t,s € [0,7] and z,u,v € H.

Theorem 5.2.1. Assume that H is a Hilbert space, that Hq,--- ,Hs hold.
Then, for any ug € H with ug € C(0,uy), there exists a Lipschitz continuous
solution u : [0,T] — H of the differential inclusion

u(t) € _NC(t,u(t)) (u(t)) + G(t,u(t)) ae te[0,T),
(D)
u(t) € C(t,u(t)) vt € [0,T],
with [[a(t)]] < 5422 a.e t € [0,T].

Proof. For each integer n > 1, we consider the partition of [0, 7] by the
points

T
m=k=— k=01, ,n.
n

For each (t,x) € [0,T] x H denote by ¢(t, z) the element of minimal norm of
the closed convex set G(t,x) of H, that is,

9(t, x) = Proj g(2)(0).
Put zf = uy € C(ty,uo).

Step 1. We construct z{,z7,---, 2 in H such that for each £ =

rrn

0,1,---,n — 1, the following inclusions hold
(5.5) Tiy1 € Ctiyr, 1)
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(5.6 o+ (i 7) — 7l € Notwy ap) (Thin),
along with the inequality ||} — z|| < (L1 +20)L and for k=1,--- ,n—1
(5.7 s — ol < (L +20) 1+ Lollafy — 7.
The ball-compactness of C(t}, z}) ensures that we can choose
xy € Proj cm am) (xg + %g(tﬁ, xﬁ))

and hence
zy € C(tY, 7p)

n T n n n n
Ty + Eg(tmxo) — T € NC(t?,xg)(%)-

On the other hand, using ||g(t§,x7)|| < «, in view of hypothesis (H;) we
have

It = agl <||ot = (o8 + —gttg,ap) | + | ot at)

T T
= d(af + —g(th,ap), C(t1,a0)) + || gt at)

< d (@ + —g(ts,08), C(t5,28)) + Laltt — 2] + | (5, at)

T T
< 2H— e + 0, =
= ng( 0,20)| + 1
T
(5.8) < <L1 +2a)—.
n
Now, suppose that, for 0,1,--- , k, with & <n — 1 the points g, 27, -+, z}

have been constructed, so that properties (5.5), (5.6) and (5.7) hold true.
Since C(t}, 1, x7) is ball-compact, then we can find

n : n T n n
Tiy1 € Proj C(tr, ,ap) (xk + 59( k> xk)>7

and therefore,
Ty1 € Oy, 2h),

n T n n n n
xy, + Eg(tkaajk) —Tp € NC(tzH,xz)(iUkH)-
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By (H1) and (H3), we get

n n T n n T n
ot — ol <|oe — (@F + gt o) | + || otz o)
= d(xk + 59( kaxk)>0(tk+laxk)> + Hgg(tkaxk)

T T
< d(af + gt o), O a)) + | gt o)
+ Liltir — 8] + Lalle — aiy |

T T
< 200— + Li— + Lol — 27 ]l.
< an + 1 + Lo||xy — x4 ||

The finite sequence zf,x} --- a2 satisfying (5.5), (5.6) and (5.7) is then
contructed by induction.
Fix any k =1,--- ,n — 1. We observe that

[ — 2l < 20‘5 + Llﬁ + Loy — 2|
T T T T
< 20—+ L~ + LQ(za— L=+ Lofjal, — xZ?ZH)
n n n n
T r 21| .1 n
— 2055(1 ‘I’ L2) _|_ ng(l + LQ) + L2||$k—1 - zk_2||,
thus, we deduce
T T
lin =il < 20— (U Lo+ L34+ Ly )+ In (L4 Do+ Ly 4 L5
T - n n
+ Lyllat —agll = —(a+ Li)(1+ Lo + L3+ + Ly ™') + Lyl — ],
It follows from (5.8) that
T
|z —2ill < Qo+ Lo)(L+ Lo+ Ly + -+ L) —,
and since Ly < 1, we deduce
20é + L1 T

(5.9) 2y — 2l < 1 I, n

and the latter inequality still holds true for & = 0 according to (5.8). Further
fork=1,---,n—1,

[ ll < g = 2l + ek — 2ol + -+ oy = 25l + [l ]

20&+L1 T

< k4+1)—

< lluoll + Tk + 1)
20 + L

(5.10) < luol| + LT = 8.
1— 1Ly

155



Step 2. Construction of u,/(-).
For any t € [t},t;,,] with k =0,1,--- ,n —1, put

bo—t .t
k+1 k k+1 k

n

Thus, for almost all ¢ € [t} ), ],

n n
_ L Tet1 __2(1,71_1,71 )
T A
+1 +1

un(t) =

By construction, (5.5), (5.6), (5.7) and the latter equalities give

(5.11) U, Z-i-l) € C(tZH,un(tZ))

(5:12) =i(®) € Ny o) (0altin) = 9 ua(6) e t € [ 0]

with (by (5.9))

L1+2()é_

g n n n
(513) lin(®ll = 7k = | < S22 =2 0.

Put

L S R
Ont) ‘_{tg_l if t="T,

and
T if t=1T.

Observe that for each ¢ € [0,T], choosing k such that ¢ € [t} ¢} [ ift <T
and k =n—11if t =T, we have

Mw:{%lﬁtemwm

T
10,(t) —t| < |tpy — il = —, 50 6,(t) = t as n — +o0,
pn

and similarly 6,(t) — t as n — 4o00. Further, for each t € [{},t}, ], the
definitions of 0,,(-) and 6,(-) combined with (5.11) and (5.12) yield

(5.14) n(8a(1)) € € (6a(0),a (50(1)))
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—l,(t) € Nc ((Qn(t)’un (5n(t)>> (un (Qn(t))>

- 9<5n(t),un(5n(t))) a.e t €0,T].

Step 3. Convergence of a subsequence of (u,(-)) to some absolutely
continuous mapping u(-).
Fix any ¢ € [0, 7] and consider, for any infinite subset N C N, the sequence
(un(t))nen- It follows from (5.10) and (5.14) that

(5.15)

U (0n(1)) € C(Gn(t),un(én(t))) N 4B,

which implies that w,(6,(t)) € C([0,T] x 56B) N B. By (H4) the sequence
(un(6,(1))) is relatively compact, so there is an infinite subset Ny C N such
that (u,(0,(t)))nen, converges to some vector [(t) € H. Putting h,(t) :=
Un(0n(t)) — un(t) for all n € Ny, by (5.13), we obtain

n—o0

On ()
[P @] S/t [tn(s)l[ds < M(0n(t) — ) — 0.

Then, (u,(t))nen, converges to [(t), thus the set {u,(t) : n € N} is relatively
compact in H. The sequence (u,),en being in addition equicontinuous ac-
cording to (5.13), this sequence (uy,)nen is relatively compact in Cy(0,7),
so we can extract a subsequence of (u,),en (that we do not relabel) which
converges uniformly to u on [0,T]. By the inequality (5.13) again there is a
subsequence of (t, )nen (that we do not relabel) which converges w(Ly;, L37)
in LL(0,7) to a mapping w € L(0,7) with ||w(t)|| < M ae. t € [0,T].
Fixing ¢ € [0,7] and taking any ¢ € H, the above weak convergence in
LL(0,7T) yields

T

i [ (o ()6, in(9)ds = [ (g ()€, w(s))ds,

n—oo

or equivalently

n—oo

lim (€, uo + /Ot i ()ds) = (€, up + /Otw(s)dsy

This means, for each t € [0, T}, that u,(t) — uy + fotw(s)ds weakly in H.
n—o0

Since the sequence (u,(t)),en also converges strongly to u(t) in H, it ensures
that u(t) = uy + fot w(s)ds, so the mapping u(-) is absolutely continuous on
[0, 7] with & = w. The mapping u(-) is even Lipschitz on [0, 7] with M as a
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Lipschitz constant therein.

Step 4. We show now that u(-) is a solution of (D).
Let 2,(t) := g(0n(t), un(6,(t))) for all t € [0,T]. Since

|g(0, (1), un(0,(2)))]] < a foralln € Nand t € [0,T],

we may suppose (taking a subsequence if necessary) that the sequence
(2a(+)) converges w(Ly;, L37) in L} (0,7) to a mapping 2(-) € L} (0,T) with
|2(t)|| < v aet e[0T

For all t € [0,7] we have u(t) € C(t,u(t)). Indeed, by (H3) and (5.13)

d(un(t),C(t u(t)))
< un(t —un(n N+ La|t = 0,(¢)] + Lalu(t) — w, (6.(2)) ||
< (M + Ly)[t = 6a()] + L2 M[0n(t) — t] 4 Lollu(t) — un(t)|]
then,

d(u,(t), C(t,u(t))) — 0, so d(u(t),C(t,u(t))) =0 and u(t) € C(t,u(t)).

n—oo

Further, from the inequality ||, () — 2,(t)|] < M +a := v a.e. and from the
inclusion (5.15) it follows for a.e. ¢ € [0, 7] that

i (t) + 2n(t) €N (gnm,un (w)) (un (en(w)) MB

(5.16) :

=0 (e 0) (e (6.0))).

(5.17) 2a(t) € G(én(t),un(én(t))>.

Since (=1, + 2n, 2n)n converges weakly in LL. . (0,T) to (—u + z,2), by
Mazur theorem, there are

(5.18) &n € co{—ty+2,:qg>n}and ¢, € co{z,: ¢ >n}

such that (&,, (), converges strongly in Ll (0,T) to (=t + z,z). Extract-
ing a subsequence if necessary we suppose that (£,(-), (,(+))n converges a.e.
to (—u(-) + 2(+), 2(+)), then there is a Lebesgue negligible set S C [0, 7] such
that for every ¢ € [0,7]\S on one hand (&,(t), (.(t)) — (—u(t) + z(t), 2(t))
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strongly in H and on the other hand the inclusions (5.16) and (5.17) hold
true for every integer n as well as the inclusions

—a(t)+2(t) € ﬂm{—uq(t)+zq(t) g > n} and z(t) € ﬂm{zq(t) g > n}

It results from (5.16) and (5.17) that for any n € N, any ¢ € [0,T]\S, and
for any y € H

(5:19) (o m(t) 2 () < 0<y’78d0 <0n(t),un (an(w)) (w(%(t))))

and

(5.20) (y,2a(t)) < 0 (y G((Sn(t), n (5n(t))>).
Further, for each n € N and any t € [0, T]\ S, from (5.18) we have

(y,&(t)) < sup (y, —tq(t) + z4(t)) for all k > n

and
(y,Ce(t)) <sup(y,z(t)) for all k > n
q=zn

and taking the limit in both inequalities as k — +oo gives through (5.19)
and (5.20)

<y7 —u(t) + Z(t)> < sup <y, _uq(t> + Zq(t)>

q>n

< sup o (y vadc <9q . (w))) (Uq (64(1)) ))

and

(102(0)) < sup (0 20)) < s (1.6 (3,01, (4,(0) ) ).

q>n

which ensures that

n—-+o0o

(y,—u(t) + 2(t)) <lim supa(y, ”yadc (Hn(t),un ((Sn(t))> <un (Gn(t))>)

and

(y,2(t)) < 1im8up0<y,G’(én(t),un(én(t)))>.

n—-+00
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According to (H3) and Proposition 5.1.1, the multimapping Jdc ()
takes on weakly compact convex values and is upper semicontinuous from
0,7] x H x H into (H,w(H, H)), hence for each y € H the real-valued func-
tion o(y,v0dc(.(-)) is upper semicontinuous on [0,7] x H x H. Further,
o(y,G(+,-)) is also upper semicontinuous on [0,7] x H by assumption ().
It follows that, for every ¢ € [0, T]\\S and every y € H,

<y, —u(t) + z(t)> < a(y, Vﬁdc(m(t)) (u(t)))
and
(v.2(0) < o (1, Gt ul) ).

which ensures that —u(t) + 2(t) € Y0dewuw)(u(t)) and 2(t) € G(t, u(t)),
consequently

u(t) S _NC(t,u(t)> (u(t)) + Z(t) a.e.
2(t) € G(t,u(t)) ae.
with
[a(t) = z(B)]] <.
The proof is complete. O

It is worth mentioning that the next theorem proves the existence of
solution on the whole interval R, := [0, +oc[. Nevertheless, the assumptions
Hi,--- ,Hy are replaced by Gy, -, G4 when the time describes R, .

Theorem 5.2.2. Let G : R, x H = H be a multimapping which is scalarly
upper semicontinuous with respect to both wvariables. Assume that H is a
Hilbert space, that G, Go, G3, Gy below hold:

(G1) There exists a non-negative function B(-) € LiS.(Ry) such that
d(0,G(t,u)) < B(t)
forallt e Ry and u € H with uw € C(t,u);

(Ga) For eacht € Ry and each u € H, the sets C(t,u) are nonempty closed
in H and equi-uniformly subsmooth;

(G3) There are real constants Ly > 0, Ly €]0, 1] such that, for all t,s € R,
and x,y,u,v € H

[d(w, C(tw)) = d(y, C(s,0))| < 1w =yl + Lalt — 5| + Lalu — vl
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(Gs4) For any real 7 > 0 and any bounded subset A C H, the set C([0,7] x A)
1s relatively ball-compact.

Then, given ug € H with uy € C(0,ug), there exists a mapping u : Ry — H
which is locally Lipschitz continuous on Ry and satisfies

(u(t) € —N0<t7u(t)) (u(t)) + G(t,u(t)) aeteRy,

(D, ) u(t) € C(t,u(t)) vt € Ry,

| u(t) =uo + [ i(s)ds Vt € R,

Proof. Put T, = k for all £ € {0} UN. It will suffice to prove that
Theorem 5.2.1 applies on each interval [Ty, Tjy1].

According to assumptions Gy, Gs, G3, G4 we have Hq, Ho, Hs, H4 hold on
the interval [Ty, T3]. Since uy € C(Tp, up), by Theorem 5.2.1 there exists a
Lipschitz continuous mapping u : [Ty, T1] — H such that

[ 4O(t) € _NC(t,uo(t)) (u(t)) + G(t,u’(t)) ae te [Ty, T,

u(t) € C(t,u’(t)) Vt € [To, Th),

L UO<T0) = Ug.

Suppose 1, - - -, u*~! have been constructed such that, for { =0,--- , k —
1, u' : [T}, Tiz1] — H is Lipschitz continuous, v!(T;) = u'~(Ty), u'(t) €
C(t,ul(t)) for all t € [T}, T;.1] and

il (t) € —NC( )(ul(t)) +G(t,d(t) ae te[T, Tl

taul(t)

In an analogous way as above, the hypotheses Gi,Gs,G3, G, ensure that
Hi1,Ha, Hs, Hy hold on the interval [T}, Tyi1] and we have uf~1(T,) €
C(Ty,u*1(Ty)). Tt follows from Theorem 5.2.1 that there is a Lipschitz
continuous mapping u” : [Ty, Ty11] — H such that

( k(L) € _Nc(t,uk(t)) (u"(t)) + G(t, k() ae t € [Ty, Til,

(5.21) uF(t) € C(t,ub (1)) Yt € [Ty, Teral,

L uk(Tk) = uk_l(Tk).

So, we obtain by induction u* for all k € {0} UN with the above properties.
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Let u: Ry — H be the mapping defined by
u(t) :=uF(t) for all t € [Ty, Tyy1[ with k € {0} UN.

It is easily seen that w is locally Lipschitz continuous on R, . Therefore, it
results from (5.21) that
(

u(t) € =N

¢ (tu) (u(®) + G(tut)) ae teRy,

u(t) € C(t,u(t)) Vvt € Ry,

u(0) = u®(Ty) = up.

\

This proves the theorem. O

As a direct consequences of Theorem 5.2.1 and Theorem 5.2.2 we obtain:

Corollaire 5.2.1. Let G : [0,T] x H = H be a multimapping which is
scalarly upper semicontinuous with respect to both variables. Assume that H
1s a finite dimensional Fuclidean space and that the assumptions below hold:

e There exists a positive real number v such that
d(0,G(t,u)) < a
for allt € [0,T] and u € H with u € C(t,u);

e For each t € [0,T] and each u € H, the sets C(t,u) are nonempty
closed in H and equi-uniformly subsmooth;

e There are real constants Ly > 0, Ly €]0, 1] such that, for allt,s € [0,T]
and x,y,u,v € H

[d(z, C(t,w)) — d(y,C(s,0))| < =yl + Lalt — | + Laflu— o]

Then, given ug € H with ug € C(0,ug), there exists a mapping u : [0,T] — H
which is Lipschitz continuous on [0,T] and satisfies (D). Further, we have
|la(t)| < Lﬁ—fj a.e. t€[0,7T).

Corollaire 5.2.2. Let G : R, x H = H be a multimapping which is scalarly
upper semicontinuous with respect to both wvariables. Assume that H is a
finite dimensional Fuclidean space and that the following assumptions hold:
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e There exists a non-negative function B(-) € LS. (Ry) such that
d(0,G(t,u)) < B(t)
forallt € Ry and u € H with u € C(t,u);

e [foreacht € Ry and each uw € H, the sets C(t,u) are nonempty closed
m H and equi-uniformly subsmooth;

e There are real constants Ly > 0, Ly €]0, 1] such that, for allt,s € R,
and x,y,u,v € H

jd(x. C(t,w)) — d(y, C(s,0))| < lla =yl + Lalt — | + Lalu— o]

Then, given ug € H with uy € C(0,ug), there exists a mapping u : Ry — H
which is locally Lipschitz continuous on Ry and satisfies (Dg, ).
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