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THÈSE
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A travers ces quelques lignes, j’exprime mes plus sincères remerciements
aux diverses personnes qui ont joué un rôle durant ces années.
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Abstract

This dissertation is devoted to the study of the existence of solutions for
some evolution problems. The study is concerned with perturbed sweeping
process associated on the one hand with prox-regular sets and on the other
hand with subsmooth sets. It is assumed that the sets move either in a
Lipschitz way or in an absolutely continuous way.

Cette thèse est consacrée à l’étude d’existence de solutions pour certains
problèmes d’évolution. Il s’agit de processus de rafle perturbés associés d’une
part à des ensembles prox-réguliers et d’autre part à des ensembles sous-lisses.
Les ensembles sont supposés évoluer de façon Lipschitzienne ou absolument
continue.
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Introduction générale

La thèse est constituée d’un chapitre préliminaire puis de cinq chapitres
traitant des inclusions différentielles d’évolution régies par des cônes nor-
maux et des perturbations multivoques. Le chapitre préliminaire rappelle
divers concepts et résultats d’analyse variationnelle non lisse utilisés dans le
développement de la thèse. Nous allons ci-dessous résumer brièvement les
résultats principaux de chacun des cinq autres articles.

Chapitre I: Ensemble sous-lisse et processus de

rafle.

Ce premier chapitre de la thèse est consacré à l’étude de processus de rafle
régi par des ensembles sous-lisses. Ces ensembles correspondent à une pro-
priété de sous-monotonie du cône normal; cette propriété est dans la ligne
de l’hypomonotonie du cône normal des ensembles prox-réguliers.

Un sous-ensemble C d’un espace de HilbertH est dit être prox-régulier en
u0 ∈ C, quand il existe r > 0 et δ > 0 tels que pour tous u1, u2 ∈ B(u0, δ)∩C
et ξi ∈ NC(ui) ∩ B avec i = 1, 2, on a

〈ξ1 − ξ2, u1 − u2〉 ≥ −
1

r
‖u1 − u2‖

2,

où NC(ui) désigne le cône normal de Clarke à C en ui et B la boule unité
fermée de l’espace de Hilbert H centrée à l’origine.

Plusieurs exemples, propriétés et caractérisations d’ensembles prox-
réguliers ont été donnés dans [2, 3, 4, 5, 11, 12].

Récemment, dans leur article ”Subsmooth sets: functional characteriza-
tions and related concepts” publié en 2005 dans Transactions of American
Mathematical Society (voir, [1]), D. Aussel, A Daniilidis et L. Thibault ont
considéré comme une extension du concept de prox-régularité, les ensembles
sous-lisses.
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Ensemble sous-liss.

On dit qu’un sous-ensemble non vide C de H est sous-lisse en u0 ∈ C, si
pour chaque ε > 0 il existe δ > 0 tel que pour tous u1, u2 ∈ B(u0, δ) ∩ C et
ξi ∈ NC(ui) ∩ B avec i = 1, 2, on a

(1) 〈ξ1 − ξ2, u1 − u2〉 ≥ −ε‖u1 − u2‖.

Ceci nous a amené à introduire le concept de famille équi-uniformément
sous-lisse d’ensembles.

Définition 0.0.1. Soit E un ensemble non vide et (C(t))t∈E une famille
de sous-ensembles non vides de H. On dit que cette famille est équi-
uniformément sous-lisse, si pour chaque ε > 0 il existe δ > 0 tel que (1)
ait lieu pour tout t ∈ E et tous u1, u2 ∈ C(t) avec ‖u1 − u2‖ ≤ δ et tous
ξi ∈ NC(ui) ∩ B avec i = 1, 2.

Les deux lemmes suivants ont été utilisés dans la démonstration du
Théorème 0.0.1 ci-dessous. Le premier lemme est un résultat bien connu
pour les ensembles sous-lisses, voir [1]. Il nous dit que les sous-différentiels
(resp. les cônes normaux) de Clarke et de Fréchet ∂dC(u) et ∂FdC(u) (resp.
NC(u) et N

F
C (u)) coincident quand C est sous-lisse en u ∈ C et fermé autour

de u. De facon précise:

Lemme 0.0.1. Si C est un sous-ensemble de H qui est sous-lisse en u0 ∈ C
et fermé autour de u0, alors les assertions suivantes ont lieu:

(a) ∂dC(u0) = ∂FdC(u0).

(b) NC(u0) = NF
C (u0).

Le second lemme apporte un résultat nouveau. Il correspond à une pro-
priété de fermeture du sous-différentiel de la fonction distance à des ensembles
sous-lisses. Dans son énoncé et par la suite, pour une multi-application M
entre deux ensembles non vides X et Y , nous notons gphM son graphe,
c’est-à-dire

gphM := {(x, y) ∈ X × Y : y ∈M(x)}.

Lemme 0.0.2. Soient E un espace métrique, (C(t))t∈E une famille de sous-
ensembles non vides de H, η > 0 un réel strictement positif, Q ⊂ E et
s0 ∈ adhQ, où adhQ désigne l’adhérence de Q dans E. On suppose que
la famille (C(t))t∈E est équi-uniformément sous-lisse. Alors, les assertions
suivantes ont lieu:

(a) Pour tout (s, u) ∈ gphC, on a η∂dC(s)(u) ⊂ ηB.
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(b) Pour toutes suites généralisées (sj)j∈J ∈ Q, (uj)j∈J ∈ H et (ζj)j∈J ∈
H telles que sj → s0 dans E, uj → u ∈ C(s0) dans (H, ‖ · ‖) avec
uj ∈ C(sj) et dC(sj)(y) → 0 pour chaque y ∈ C(s0) et ζj → ζ dans
(H,w(H,H)) avec ζj ∈ η∂dC(sj)(uj), on a ζ ∈ η∂dC(s0)(u).

De ce qui précède on a déduit la proposition suivante:

Proposition 0.0.1. Soient I un intervalle de R et (C(t))t∈I une famille de
sous-ensembles non vides de H et η > 0 un réel strictement positif. On
suppose que (C(t))t∈I est équi-uniformément sous-lisse et qu’il existe une
fonction continue ϑ : I → R+ tel que, pour tous y ∈ H et s, t ∈ I avec s ≤ t,

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ ϑ(t)− ϑ(s).

Alors, les assertions suivantes ont lieu:

(a) Pour tout (s, u) ∈ gphC, on a η∂dC(s)(u) ⊂ ηB.

(b) Pour toutes suites (sn)n ∈ I, (un)n ∈ H telles que sn → s avec sn ≥ s,
un → u ∈ C(s) avec un ∈ C(sn) et pour chaque ξ ∈ H, on a

lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

≤ σ
(

ξ, η∂dC(s)(u)
)

,

où σ
(

·, η∂dC(s)(u)
)

désigne la fonction d’appuie de l’ensemble
η∂dC(s)(u).

Résultats principaux

Soient T0, T deux nombres réels positifs avec 0 ≤ T0 < T . Soient C :
[T0, T ] ⇒ H et Γ : [T0, T ] × H ⇒ H deux multi-applications, la première
étant à valeurs fermées non vides et la seconde prenant des valeurs convexes
fermées non vides et vérifiant l’hypothèse de croissance suivante:

d
(

0,Γ(t, x)
)

≤ α(t)(1 + ‖x‖)

pour tout t ∈ [T0, T ] et tout x ∈ C([T0, t]) :=
⋃

T0≤s≤t

C(s), où α est une

fonction Lebesgue intégrable sur [T0, T ] à valeurs réelles positives. On a
établi notre théorème d’existence sous les hypothèses suivantes:

(H1,1) Pour chaque t ∈ [T0, T ], C(t) est un sous-ensemble boule-compact deH;
il existe une fonction absolument continue croissante ϑ : [T0, T ] → R+

telle que, pour tous y ∈ H et s, t ∈ [T0, T ] avec s ≤ t

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ ϑ(t)− ϑ(s);
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(H2,1) La famille (C(t))t∈[T0,T ] est équi-uniformément sous-lisse;

(H3,1) La multi-application Γ est L([T0, T ])⊗B(H)-mesurable et semi-continue
supérieurement par rapport à la seconde variable, où L([T0, T ]) désigne
la tribu de Lebesgue de [T0, T ] et B(H) la tribu de Borel de H.

Théorème 0.0.1. On suppose que les hypothèses H1,1,H2,1,H3,1 ci-dessus
sont satisfaites pour l’intervalle I = [T0, T ]. Alors, il existe une application
absolument continue x : I → H solution de l’inclusion différentielle

(E)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

p.p. t ∈ I

x(t) ∈ C(t) ∀t ∈ I

x(T0) = x0 ∈ C(T0).

Pour faciliter la lecture, rappelons qu’un sous-ensemble S de H est boule-
compact quand l’ensemble S ∩ rB est compact dans (H, ‖ · ‖) pour chaque
r > 0, où B désigne comme ci-dessus la boule unité fermée de H. Rappelons
aussi, étant donné un espace mesurable (Ω, T ), qu’une multi-applicationM :
Ω ⇒ H est T −mesurable quand pour tout ouvert U de H nous avons

M−1(U) ∈ T , oùM−1(U) := {ω ∈ Ω :M(ω) ∩ U 6= ∅}.

Le résultat suivant est une conséquence directe du Théorème 0.0.1.

Corollaire 0.0.1. Soit Γ : [T0,+∞[×H ⇒ H une multi-application
L([T0, T ])⊗ B(H)-mesurable et semi-continue supérieurement par rapport à
la seconde variable. On suppose que les hypothèses suivantes sont satisfaites:

- Il existe une fonction positive β(·) ∈ L∞
loc(R+) telle que

d
(

0,Γ(t, x)
)

≤ β(t)(1 + ‖x‖)

pour tous t ∈ [T0,+∞[ et x ∈ C([T0, t]);

- La famille (C(t))t∈[T0,+∞[ est équi-uniformément sous-lisse;

- Pour chaque t ∈ [T0,+∞[, C(t) est un sous-ensemble boule-compact
de H; il existe une fonction localement absolument continue croissante
ϑ : [T0,+∞[→ R+ telle que, pour tous y ∈ H et s, t ∈ [T0,+∞[ avec
s ≤ t

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ ϑ(t)− ϑ(s).
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Alors, pour chaque x0 donné dans H avec x0 ∈ C(T0), il existe une applica-
tion localement absolument continue x : [T0,+∞[→ H solution du problème
suivant:

(E∞)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

p.p. t ∈ [T0,+∞[

x(t) ∈ C(t) ∀t ∈ [T0,+∞[

x(T0) = x0 ∈ C(T0).

Théorème 0.0.2. Supposons que H2,1 et les hypothèses suivantes soient sat-
isfaites:

(a) Pour chaque t ∈ I, C(t) est un sous-ensemble non vide compact de H
et il existe une fonction absolument continue ϑ : I → R+ telle que,
pour tous y ∈ H et s, t ∈ I avec s ≤ t,

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |ϑ(t)− ϑ(s)|;

(b) Pour chaque sous-ensemble borné S de H, il existe deux fonctions αS

et βS dans L1
R+

(I) telles que

d
(

0,Γ(t, x)
)

≤ αS(t) + βS(t)‖x‖ pour tout (t, x) ∈ I × S.

Alors, il existe une application absolument continue x : I → H solu-
tion de l’inclusion différentielle (E)

Le prochain résultat est un corollaire du Théorème 0.0.2.

Corollaire 0.0.2. On suppose que les hypothèses suivantes sont vérifiées:

(a) Pour chaque t ∈ [T0,+∞[, C(t) est un sous-ensemble non vide boule-
compact de H; Il existe une fonction localement absolument continue
ϑ : [T0,+∞[→ R+ telle que, pour tous y ∈ H et s, t ∈ [T0,+∞[

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |ϑ(t)− ϑ(s)|;

(b) La famille (C(t))t∈[T0,+∞[ est équi-uniformément sous-lisse;

(c) La multi-application Γ est L([T0,+∞[) ⊗ B(H)-mesurable et semi-
continue supérieurement par rapport à la seconde variable et Γ satisfait
la condition de croissance: pour chaque sous-ensemble borné S de H,
il existe deux fonctions αS et βS dans L1

loc(R+) telles que

d
(

0,Γ(t, x)
)

≤ αS(t) + βS(t)‖x‖ pour tout (t, x) ∈ [T0,+∞[×S.

Alors, il existe une application localement absolument continue x :
[T0,+∞[→ H solution de l’inclusion différentielle (E∞).
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Chapitre II: Perturbation avec mémoire de

processus de rafle gouverné par des ensembles

sous-lisses.

Le chapitre II étudie l’inclusion différentielle (E) du chapitre I dans le cas où
intervient un retard dans la multi-application Γ.

Soient H un espace de Hilbert et r > 0 un réel strictement positif. Soient
aussi C : [0, T ] ⇒ H et Γ : [0, T ] × CH(−r, 0) ⇒ H deux multi-applications
données. L’inclusion différentielle du chapitre I en présence de retard se
présente alors sous la forme suivante:

(Er)























ẋ(t) ∈ −NC(t)(x(t)) + Γ(t,Λ(t)x) p.p. t ∈ [0, T ];

x(t) ∈ C(t) ∀t ∈ [0, T ];

x(·) = ϕ(·) in [−r, 0],

où Λ(t) est l’application de CH(−r, T ) dans CH(−r, 0) définie, pour tout x ∈
CH(−r, T ), par Λ(t)x(s) := x(t+s) pour tout s ∈ [−r, 0], et ϕ est un élément
de CH(−r, 0) tel que ϕ(0) ∈ C(0). Ici nous notons CH(−r, T ) l’espace des
applications continues de [−r, T ] dans H.

Nous avons étudié l’existence de solutions pour l’inclusion différentielle
(Er). Nous appelons solution de (Er) toute application x : [−r, T ] → H telle
que

1. pour chaque s ∈ [−r, 0], nous avons x(s) = ϕ(s);

2. x(t) ∈ C(t) pour tout t ∈ [0, T ];

3. la restriction x|[0,T ] de x à [0, T ] est absolument continue et sa dérivée
satisfait presque partout l’inclusion

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t,Λ(t)x
)

p.p. t ∈ [0, T ].

Les hypothèses concernant l’ensemble C(t) et la multi-application Γ avec
lesquels nous avons travaillé sont les suivantes:

(H1,2) Pour tout t ∈ [0, T ], C(t) est un sous-ensemble boule-compact de H;
l’ensemble C(t) bouge de facon absolument continue, c’est-à-dire, il
existe une fonction absolument continue ϑ : [0, T ] → R telle que, pour
chaque y ∈ H et tous s, t ∈ [0, T ]

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |ϑ(t)− ϑ(s)|;
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(H2,2) La famille (C(t))t∈[0,T ] est équi-uniformément sous-lisse;

(H3,2) La multi-application Γ à valeurs non-vides convexes fermées, est
L([0, T ])⊗B(CH(−r, 0))-mesurable et semi-continue supérieurement par
rapport à φ ∈ CH(−r, 0) pour presque tout t ∈ [0, T ]. De plus

d
(

0,Γ(t, φ)
)

≤ α(t)(1 + ‖φ‖∞)

pour tout t ∈ [0, T ] et tout φ ∈ CH(−r, 0), où α est une fonction
intégrable sur [0, T ] à valeurs réelles positives.

Dans ce chapitre, nous avons appliqué le résultat du chapitre I concernant
la fermeture du sous-différentiel de la fonction distance, afin d’obtenir la
propriété de semi-continuité supérieure de la fonction d’appui σ

(

ξ, η∂dC(·)(·)
)

.
Nous avons ainsi démontré le théorème suivant d’existence de solution pour
l’inclusion diffèrentielle (Er).

Théorème 0.0.3. On suppose que les hypothèses H1,2,H2,2,H3,2 ci-dessus
sont satisfaites. Alors, pour chaque ϕ dans CH(−r, 0) avec ϕ(0) ∈ C(0),
l’inclusion différentielle (Er) admet au moins une solution.

Chapitre III: Processus de rafle non-convexe

avec un ensemble dépendant de l’état.

Dans le chapitre I l’évolution des ensembles C(t) intervenant dans l’inclusion
différentielle ne dépend que du temps. Le chapitre III est consacré au cas
où l’ensemble dépend à la fois du temps et de l’état, c’est-à-dire se présente
sous la forme C(t, u(t)).

Le théorème suivant démontre que la projection métrique sur des ensem-
bles prox-réguliers est Hölderienne par rapport à la distance de Hausdorff.
C’est une propriété importante qui a son propre intérêt en analyse variation-
nelle. Dans l’énoncé du théorème, pour C ⊂ H, γ ∈]0, 1[ et r > 0 nous
utilisons la notation

Uγ
r (C) := {v ∈ H : 0 < d(v, C) < γr},

désignant le tube ouvert autour de C.

Théorème 0.0.4. Soient deux ensembles C et C ′ d’un espace de Hilbert H
qui sont r-prox-réguliers pour une constante r > 0 et soit γ ∈]0, 1[. Alors
pour tous u ∈ Uγ

r (C) et v ∈ Uγ
r (C

′) on a

‖PC(u)− PC′(v)‖ ≤ (1− γ)−1‖u− v‖+

√

2γr

1− γ

(

Haus (C,C ′)
)1/2

,
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où Haus (C,C ′) désigne la distance de Hausdorff entre les ensembles C et C ′.

Le corollaire suivant en est une conséquence immédiate.

Corollaire 0.0.3. Soit C(t, u) un ensemble r-prox-régulier de H pour une
constante r > 0 et soit γ ∈]0, 1[. On suppose qu’il existe un réel constant
L > 0 tel que pour tous t ∈ [0, T ] et , u, v ∈ H, on ait

Haus (C(t, u), C(t, v)) ≤ L‖u− v‖.

Alors, pour tous u, v ∈ H et x ∈ Uγ
r (C(t, u)) ∩ U

γ
r (C(t, v)), on a

‖PC(t,u)(x)− PC(t,v)(x)‖ ≤

√

2γrL

1− γ
‖u− v‖1/2.

Cette propriété et l’extension du théorème de point fixe de Schauder de
[7] ou [10] font partie des résultats cruciaux utilisés dans la démonstration
du Théoréme 0.0.5 ci-dessous.

Résultats principaux

Soient C : [0, T ] ⇒ H et G : [0, T ]×H ⇒ H deux multi-applications données,
qui sont à valeurs non vides fermées et à valeurs non vides convexes fermées
respectivement. Les hypothèses suivantes vont intervenir dans le prochain
théorème:

(G1,3) La multi-application G est scalairement semi-continue supérieurement
par rapport aux deux variables et il existe un certain α > 0 tel que

d
(

0, G(t, u)
)

≤ α

pour tous t ∈ [0, T ] et u ∈ H avec u ∈ C(t, u);

(G2,3) Pour chaque t ∈ [0, T ] et chaque u ∈ H, les ensembles C(t, u) sont
r-prox-reguliers pour une constante r > 0;

(G3,3) Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ [0, T ] et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

(G4,3) Pour chaque sous-ensemble borné A ⊂ H, l’ensemble C([0, T ]×A) est
relativement boule-compact, c’est-à-dire, l’intersection de C([0, T ]×A)
avec chaque boule fermée de H est un ensemble relativement compact
dans H.

16



Théorème 0.0.5. Supposons que les hypothèses G1,3, · · · ,G4,3 soient satis-
faitess. Alors, pour chaque u0 ∈ H avec u0 ∈ C(0, u0), il existe une applica-
tion Lipschitzienne u : [0, T ] → H telle que

(D)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

p.p. t ∈ [0, T ],

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ],

u(t) = u0 +
∫ t

0
u̇(s)ds ∀t ∈ [0, T ],

c’est-à-dire, u est une solution Lipschitzienne de l’inclusion différentielle (D)
avec ‖u̇(t)‖ ≤ L1+2α

1−L2
p.p. t ∈ [0, T ].

Le prochain résultat est une extension du Théorème 0.0.5.

Théorème 0.0.6. Soit G : R+×H ⇒ H une multi-application scalairement
semi-continue supérieurement par rapport aux deux variables. On suppose
que les hypothèses suivantes sont satisfaites:

- Il existe une fonction positive β(·) ∈ L∞
loc(R+) tel que

d
(

0, G(t, u)
)

≤ β(t)

pour tous t ∈ R+ et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ R+ et chaque u ∈ H, les ensembles C(t, u) sont
r-prox-reguliers pour une constante r > 0;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ R+ et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)
∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

- Pour chaque sous-ensemble borné A ⊂ H, l’ensemble C([0, T ]×A) est
relativement boule-compact.

Alors, pour chaque u0 donné dans H avec u0 ∈ C(0, u0), il existe une appli-
cation localement Lipschitzienne u : R+ → H solution du problème suivant:

(DR+
)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

p.p. t ∈ R+,

u(t) ∈ C
(

t, u(t)
)

∀t ∈ R+,

u(t) = u0 +
∫ t

0
u̇(s)ds ∀t ∈ R+.
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Les deux corollaires suivants sont des conséquences directes du Théorème
0.0.5 et du Théorème 0.0.6 respectivement.

Corollaire 0.0.4. Soit G : [0, T ] × H ⇒ H une multi-application scalaire-
ment semi-continue supérieurement par rapport aux deux variables. On sup-
pose que H est un espace Euclidien de dimension finie et que les hypothèses
suivantes sont satisfaites:

- Il existe un nombre réel positif α tel que

d
(

0, G(t, u)
)

≤ α

pour tous t ∈ [0, T ] et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ [0, T ] et chaque u ∈ H, les ensembles C(t, u) sont
r-prox-reguliers pour une constante r > 0;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ [0, T ] et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Alors, pour chaque u0 donné dans H avec u0 ∈ C(0, u0), il existe une appli-
cation Lipschitzienne u : [0, T ] → H solution du problème (D). De plus, on
a ‖u̇(t)‖ ≤ L1+2α

1−L2
p.p. t ∈ [0, T ].

Corollaire 0.0.5. Soit G : R+×H ⇒ H une multi-application scalairement
semi-continue supérieurement par rapport aux deux variables. On suppose
que H est un espace Euclidien de dimension finie et que les hypothèses suiv-
antes sont satisfaites:

- Il existe une fonction positive β(·) ∈ L∞
loc(R+) telle que

d
(

0, G(t, u)
)

≤ β(t)

pour tous t ∈ R+ et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ R+ et chaque u ∈ H, les ensembles C(t, u) sont
r-prox-reguliers pour une constante r > 0;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ R+ et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Alors, pour chaque u0 donné dans H avec u0 ∈ C(0, u0), il existe une appli-
cation localement Lipschitzienne u : R+ → H solution du problème (DR+

).
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Chapitre IV: Perturbation avec mémoire de

processus de rafle gouverné par des ensembles

prox-réguliers dépendant de l’état.

Le chapitre IV traite le problème d’évolution (D) du chapitre III dans le cas
où intervient un retard dans la multi-application G.

Soient H un espace de Hilbert et r > 0 un réel strictement positif. Soient
aussi C : [0, T ] ⇒ H et G : [0, T ] × CH(−r, 0) ⇒ H deux multi-applications
données. L’inclusion différentielle du chapitre III en présence de retard se
présente alors sous la forme suivante:

(Dr)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t,Λ(t)u
)

a.e t ∈ [0, T ],

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ],

u = ϕ in [−r, 0],

où l’application Λ(t) et l’espace CH(−r, T ) sont définis comme dans le
chapitre II ci-dessus. Les hypothèses suivantes vont intervenir dans le
prochain énoncé:

(G1,4) La multi-application G est à valeurs non vides convexes fermées et
est scalairement semi-continue supérieurement par rapport aux deux
variables et il existe un certain α > 0 tel que

d
(

0, G(t, ϕ)
)

≤ α

pour tous t ∈ [0, T ] et ϕ ∈ CH(−r, 0);

(G2,4) Pour chaque t ∈ [0, T ] et chaque u ∈ H, les ensembles C(t, u) sont
ρ-prox-réguliers pour une constante ρ > 0;

(G3,4) Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ [0, T ] et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)
∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

(G4,4) Pour chaque sous-ensemble borné A ⊂ H, l’ensemble C([0, T ]×A) est
relativement boule-compact.

Théorème 0.0.7. On suppose que les hypothèses G1,4, · · · ,G4,4 sont satis-
faites. Alors, pour chaque ϕ ∈ CH(−r, 0) et pour chaque u0 ∈ H avec
ϕ(0) = u0 ∈ C(0, u0), le problème d’évolution (Dr) admet au moins une
solution u : [−r, T ] → H, qui est continue sur [−r, T ] et Lipschitzienne sur
[0, T ] avec ‖u̇(t)‖ ≤ L1+2α

1−L2
p.p. t ∈ [0, T ].
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Chapitre V: Processus de rafle perturbé régi

par des ensembles sous-lisses dépendant de

l’état.

Ce chapitre considère le problème d’évolution (D) du chapitre III dans le
cadre d’ensembles sous-lisses. Il s’agit d’une classe d’ensembles beaucoup
plus large que celle des ensembles prox-réguliers.

La proposition suivante est une adaptation de la proposition 0.0.1 quand
les ensembles dépendent à la fois du temps et de l’état. Elle a été utilisée
dans la démonstration du théorème 0.0.8 ci-dessous.

Proposition 0.0.2. Soit {C(t, v) : (t, v) ∈ [0, T ] × H} une famille
d’ensembles non vides fermés de H et η > 0 un réel strictement positif.
On suppose que (C(t, v))(t,v)∈[0,T ]×H est équi-uniformément sous-lisse et qu’il
existe deux constantes L1 > 0 et L2 > 0 tel que, pour tous x, y, u, v ∈ H et
s, t ∈ [0, T ]

|d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)

| ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Alors, les assertions suivantes ont lieu:

(a) Pour tout (s, v, y) ∈ gphC, on a η∂dC(s,v)(y) ⊂ ηB;

(b) Pour toutes suites (sn)n ∈ [0, T ], (vn)n ∈ H et (yn)n ∈ H telles que
sn → s, vn → v et yn → y ∈ C(s, v) avec yn ∈ C(sn, vn) et pour chaque
ξ ∈ H, on a

lim sup
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

≤ σ
(

ξ, η∂dC(s,v)(y)
)

.

En utilisant des idées de [6, 9] on a établi une démonstration du théorème
suivant sous les mêmes hypothèses (G1,3,G3,3,G4,3) utilisées dans le chapitre
III, sauf que l’hypothèse (G2,3) est remplacée par:

(G ′
2,3) pour tous t ∈ [0, T ] et u ∈ H, les ensembles C(t, u) sont non-vides et

équi-uniformément sous-lisses.

Théorème 0.0.8. On suppose que les hypothèses G1,3,G
′
2,3,G3,3,G4,3 sont sat-

isfaites. Alors, pour chaque u0 ∈ H avec u0 ∈ C(0, u0), il existe une applica-
tion Lipschitzienne u : [0, T ] → H solution de (D) avec ‖u̇(t)‖ ≤ L1+2α

1−L2
p.p.

t ∈ [0, T ].

Avant d’énoncer les prochains résultats, il est important de mentionner
que ce sont des extensions de ceux obtenus dans le chapitre III, puisque la
classe d’ensembles utilisée, dans cette partie, contient celle du chapitre III.
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Théorème 0.0.9. Soit G : R+×H ⇒ H une multi-application scalairement
semi-continue supérieurement par rapport aux deux variables. On suppose
que les hypothèses suivantes sont satisfaites:

- Il existe une fonction positive β(·) ∈ L∞
loc(R+) telle que

d
(

0, G(t, u)
)

≤ β(t)

pour tous t ∈ R+ et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ R+ et chaque u ∈ H, les ensembles C(t, u) sont non-
vides et équi-uniformément sous-lisses;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ R+ et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)
∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

- Pour chaque sous-ensemble borné A ⊂ H, l’ensemble C([0, T ]×A) est
relativement boule-compact.

Alors, pour un u0 donné dans H avec u0 ∈ C(0, u0), il existe une application
localement Lipschitzienne u : R+ → H solution du problème (DR+

).

Comme conséquences directes du Théorème 0.0.8 et du Théorème 0.0.9
on obtient:

Corollaire 0.0.6. Soit G : [0, T ] × H ⇒ H une multi-application scalaire-
ment semi-continue supérieurement par rapport aux deux variables. On sup-
pose que H est un espace Euclidien de dimension finie et que les hypothèses
suivantes sont satisfaites:

- Il existe un nombre réel positif α tel que

d
(

0, G(t, u)
)

≤ α

pour tous t ∈ [0, T ] et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ [0, T ] et chaque u ∈ H, les ensembles C(t, u) sont
non-vides et équi-uniformément sous-lisses;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ [0, T ] et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)
∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.
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Alors, pour chaque u0 donné dans H avec u0 ∈ C(0, u0), il existe une appli-
cation Lipschitzienne u : [0, T ] → H solution du problème (D). De plus, on
a ‖u̇(t)‖ ≤ L1+2α

1−L2
p.p. t ∈ [0, T ].

Corollaire 0.0.7. Soit G : R+×H ⇒ H une multi-application scalairement
semi-continue supérieurement par rapport aux deux variables. On suppose
que H est un espace Euclidien de dimension finie et que les hypothèses suiv-
antes sont satisfaites:

- Il existe une fonction positive β(·) ∈ L∞
loc(R+) telle que

d
(

0, G(t, u)
)

≤ β(t)

pour tous t ∈ R+ et u ∈ H avec u ∈ C(t, u);

- Pour chaque t ∈ R+ et chaque u ∈ H, les ensembles C(t, u) sont non-
vides et équi-uniformément sous-lisses;

- Il existe deux constantes réelles L1 > 0, L2 ∈]0, 1[ telles que, pour tous
t, s ∈ R+ et x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Alors, pour chaque u0 donné dans H avec u0 ∈ C(0, u0), il existe une appli-
cation localement Lipschitzienne u : R+ → H solution du problème (DR+

).
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Preliminary chapter

Throughout this chapter, we give some preliminary definitions and results
used in the dissertation. A great part will be focused on some useful proper-
ties both on prox-regular sets and on subsmooth sets.

Let us start with various concepts of normal cones in variational analysis.

Definition 0.0.1. Let C be a set of the normed space (X, ‖ · ‖) and x ∈ C.
The Clarke normal cone NCl

C (x) of C at x is the negative polar (TCl
C (x))0 of

the Clarke tangent cone, that is,

NCl
C (x) :=

{

x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ TCl
C (x)

}

,

where

TCl
C (x) := lim inf

t↓0,u→
C
x

C − u

t
,

and u →
C
x means u → x along with u ∈ C. Otherwise stated h ∈ TCl

C (x) if

and only if, for any sequence (tn)n tending to 0 with tn > 0 and any sequence
(xn)n in X converging to x with xn ∈ C, there exists a sequence (hn)n in X
converging to h such that

xn + tnhn ∈ C for all n ∈ N.

When x 6∈ C we define both tangent and normal cones to be empty.

Through the Clarke normal cone we introduce the Clarke subdifferential
as follows.

Definition 0.0.2. Let f : X → R ∪ {−∞,+∞} be an extended real-valued
function defined on the normed space X and x be a point where f is finite.
The Clarke subdifferential ∂Clf(x) of f at x is defined by

∂Clf(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ NCl
epi f (x, f(x))}.

We also put ∂Clf(x) = ∅ when f(x) is not finite.
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Above epi f denotes the epigraph of f , that is,

epi f = {(x, r) ∈ X × R : f(x) ≤ r}.

Definition 0.0.3. Let C be a set of the normed space (X, ‖ · ‖) and x ∈ C.
An element x∗ ∈ X∗ is a Fréchet normal of the set C at x ∈ X when for any
real ε > 0 there exists some neighborhood U of x such that

〈x∗, y − x〉 ≤ ε‖y − x‖ for all y ∈ C ∩ U,

that is,

lim sup
y→
C
x

〈x∗, y − x〉

‖y − x‖
≤ 0.

The set NF
C (x) of all Fréchet normals of C at x is the Fréchet normal cone

of C at x.
Similarly, the Fréchet subdifferential ∂Ff(x) of f at x is defined as follows:

∂Ff(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ NF
epi f (x, f(x))}.

We always have

NF
C (x) ⊂ NCl

C (x) and ∂Ff(x) ⊂ ∂Clf(x).

We recall that a Banach space X is called Asplund if every separable
subspace of X has a separable topological dual. In particular, every reflexive
Banach space is Asplund.

Definition 0.0.4. Let (X, ‖ · ‖) be an Asplund space. A continuous linear
functional x∗ ∈ X∗ is a Mordukhovich limiting subgradient of f at x if there
exists a sequence ((xn, f(xn)))n converging to (x, f(x)) and a sequence (x∗n)n
converging weakly star to x∗ such that x∗n ∈ ∂Ff(xn). The set ∂Lf(x) of all
limiting subgradients of f at x is the Mordukhovich limiting subdifferential of
f at x, that is,

∂Lf(x) =
seq lim sup

u→
f
x

∂Ff(x),

where seqlim sup
u→

f
x

denotes the weak star sequential limit superior when u → x

and f(u) → f(x).
Thus, we define the limiting normal cone NL

C (x) as follows:

NL
C (x) =

seq lim sup
u→

C
x

NF
C (x).
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It is always true that

NF
C (x) ⊂ NL

C (x) ⊂ NCl
C (x) and ∂Ff(x) ⊂ ∂Lf(x) ⊂ ∂Clf(x).

It is known that x∗ ∈ ∂Ff(x) if and only if for any ε > 0 there exists some
neighborhood U of x such that

〈x∗, y − x〉 ≤ f(y)− f(x) + ε‖y − x‖ for all y ∈ U.

Definition 0.0.5. Let H be a Hilbert space, a vector ζ ∈ H is a proximal
normal vector to the set C at x ∈ C when there exist a real constant σ ≥ 0
and a neighborhood U of x such that

〈ζ, y − x〉 ≤ σ‖y − x‖2 for all y ∈ U ∩ C.

The set of such vectors is the proximal normal cone Np
C(x) of C at x.

Definition 0.0.6. Let H be a Hilbert space and f : H → R∪ {−∞,+∞} be
an extended real-valued function which is finite at x ∈ H. A vector ζ ∈ H
is a proximal subgradient of f at x provided that (ζ,−1) ∈ Np

epi f (x, f(x)).
The set ∂pf(x) of all vectors proximal subgradient of f at x is the proximal
subdifferential of f at x and we put ∂pf(x) = ∅ when f is not finite at x.

It is known that ζ ∈ ∂pf(x) if and only if there exist some real number
σ ≥ 0 and some neighborhood U of x such that

〈ζ, y − x〉 ≤ f(y)− f(x) + σ‖y − x‖2 for all y ∈ U ∩ C.

In the Hilbert setting, we always have the following inclusions

Np
C(x) ⊂ NF

C (x) ⊂ NL
C (x) ⊂ NCl

C (x),

∂pf(x) ⊂ ∂Ff(x) ⊂ ∂Lf(x) ⊂ ∂Clf(x).

0.1 Prox-regularity in Hilbert space

We start with the definition of prox-regular sets. Let C be a closed subset of
H. The set C is known to be prox-regular at u0 ∈ C, when there exist r > 0
and δ > 0 such that for all u ∈ B(u0, δ) ∩ C and all ξ ∈ Np

C(u) ∩ B, we have

(2) u ∈ Proj C(u+ rξ).

In the latter inclusion, for any v ∈ H,

Proj C(v) := {u ∈ C : d(v, C) = ‖v − u‖}

is the set of nearest points of v in C. When this set has a unique point, we
will use the notation PC(v).
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Figure 1: The set C is r-prox-regular.
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Figure 2: The set C ′ is not r-prox-regular at u0.

Further, C is called prox-regular if it is prox-regular at every u0 ∈ C. The
set C is uniformly prox-regular or r-prox-regular if there exists r > 0 such
that (2) holds for all u ∈ C and ξ ∈ Np

C(u). Figure 1 provides an example of
a prox-regular set C and Figure 2 an example of a non prox-regular set C ′

(non prox-regular at u0).
Certain characterizations below are formulated as either the hypomono-

tocity property or the cocoercivity of a set-valued mapping involving a trun-
cated normal cone. For a normed space X and an extended real r ∈]0,+∞],
a set-valued mappingM : X ⇒ X∗ is said to be r-hypomonotone on a subset
U of X provided

〈x∗1 − x∗2, x1 − x2〉 ≥ −
1

r
‖x1 − x2‖

2 for all xi ∈ U ⊂ Dom M, x∗i ∈M(xi).

When U = X one just says that M is r-hypomonotone. The r-
hypomonotonicity for r = +∞ amounts to the monotonicity of the set-valued
mapping M .

Th set-valued mapping M is c-coercive on U for some real c > 0 when

〈x∗1 − x∗2, x1 − x2〉 ≥ c‖x1 − x2‖
2 for all xi ∈ U ⊂ Dom M, x∗i ∈M(xi),

It instead

〈x∗1 − x∗2, x1 − x2〉 ≥ c‖x∗1 − x∗2‖
2 for all xi ∈ U ⊂ Dom M, x∗i ∈M(xi),

one says that M is c-cocoercive on U .

Theorem 0.1.1. [2, 3, 5] Let C be a closed subset of H and r ∈]0,+∞].
Then the following assertions are equivalent.
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(a) The set C is r-prox-regular.

(b) For any x, x′ ∈ C and v ∈ Np
C(x) one has

〈v, x′ − x〉 ≤
1

2r
‖v‖‖x′ − x‖2.

(c) For any x ∈ C, any v ∈ Np
C(x) ∩ B, and any nonnegative real number

t < r one has x = PC(x+ tv).

(d) For any xi ∈ C, vi ∈ Np
C(xi) ∩ B with i = 1, 2 one has

〈v1 − v2, x1 − x2〉 ≥ −
1

r
‖x1 − x2‖

2,

that is, the set-valued mapping Np
C(·) ∩ B is 1/r-hypomonotone.

(e) For any positive γ < 1, for ui ∈ Uγ
r (C) := {v ∈ H : 0 < d(v, C) < γr},

and for yi ∈ (I + γrB ∩Np
C(·))

−1(ui) with i = 1, 2, one has

〈y1 − y2, u1 − u2〉 ≥ (1− γ)‖y1 − y2‖
2,

that is, the set-valued operator (I+γrB∩Np
C(·))

−1 is (1−γ)-cocoercive
on the set Uγ

r (C).

(f) For any positive γ < 1 the mapping PC is well-defined on Uγ
r (C) and

Lipschitz continuous on Uγ
r (C) with (1− γ)−1 as a Lipschitz constant,

that is,

‖PC(u1)− PC(u2)‖ ≤ (1− γ)−1‖u1 − u2‖ for all u1, u2 ∈ Uγ
r (C).

(g) For any positive γ < 1 the mapping PC is well-defined on Uγ
r (C) and

PC(u) = (I + γrB ∩Np
C(·))

−1(u) for all u ∈ Uγ
r (C).

(h) The mapping PC is well-defined on Ur(C) := {v ∈ H : 0 < d(v, C) < r}
and locally Lipschitz continuous there.

(i) The function d2C is of class C1,1 on Ur(C) and ∇d2C(u) = 2(u− PC(u))
for all u ∈ Ur(C).

(j) The function d2C is of class C1 on Ur(C).

(k) The function d2C is Fréchet differentiable on Ur(C).
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(l) ∂pdC(u) 6= ∅ for all u ∈ Ur(C).

(m) ∂FdC(u) 6= ∅ for all u ∈ Ur(C).

If C is weakly closed (which holds whenever H is finite dimensional), then
one can add the following the list of equivalences:

(n) The mapping PC is well-defined on Ur(C).

The next theorem concerns the local prox-regularity.

Theorem 0.1.2. [3] Let C be a closed subset of H and let x̄ ∈ C. Then the
following assertions are equivalent.

(a) The set C is prox-regular at x̄.

(b) There exist a neighborhood U of x̄ and a real number r > 0 such that
for all x ∈ C ∩ U and v ∈ Np

C(x) ∩ B one has

〈v, x′ − x〉 ≤
1

2r
‖x′ − x‖2 for all x′ ∈ C ∩ U.

(c) There exist a neighborhood U of x̄ and a real number r > 0 such that
for all x ∈ C ∩ U and v ∈ Np

C(x) one has

〈v, x′ − x〉 ≤
1

2r
‖v‖‖x′ − x‖2 for all x′ ∈ C ∩ U.

(d) There exist a neighborhood U of x̄ and a real number r > 0 such that for
any x ∈ C ∩ U , any v ∈ Np

C(x) ∩ B, and any nonnegative real number
t < r one has x = PC(x+ tv).

(e) There exist a neighborhood U of x̄ and a real number r > 0 such that
for all xi ∈ C ∩ U, vi ∈ Np

C(xi) ∩ B with i = 1, 2 one has

〈v1 − v2, x1 − x2〉 ≥ −
1

r
‖x1 − x2‖

2,

that is, the set-valued mapping Np
C(·) ∩ B is 1/r-hypomonotone on U .

(f) There exist a neighborhood U of x̄ and a real number β > 0 such that
PC is well defined on U and β-cocoercive (hence monotone) there, that
is,

〈PC(u1)−PC(u2), u1 − u2〉 ≥ β‖PC(u1)−PC(u2)‖
2 for all u1, u2 ∈ U.
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(g) There exist a neighborhood U of x̄ and a real number β > 0 such that
PC is well defined on U and Lipschitz continuous on U with PC =
(I + γrB ∩Np

C(·))
−1 there.

(h) The function d2C is of class C1,1 on some neighborhood U of x̄.

(i) The function d2C is of class C1 on some neighborhood U of x̄.

(j) The function d2C is Fréchet differentiable on some neighborhood U of x̄.

(k) There exist a neighborhood U of x̄ such that ∂pdC(u) 6= ∅ for all u ∈ U .

(l) There exist a neighborhood U of x̄ such that ∂FdC(u) 6= ∅ for all u ∈ U .

If C is weakly closed (which holds whenever H is finite dimensional), then
one can add the following the list of equivalences:

(m) The mapping PC is well-defined on U of x̄.

Prox-regular sets are proximally normally regular as stated in the follow-
ing proposition.

Proposition 0.1.1. Let C be a closed subset of H. If C is prox-regular at
ū ∈ C, then for some neighborhood U of ū one has the normal regularity

Np
C(u) = NF

C (u) = NL
C (u) = NCl

C (u) for all u ∈ C ∩ U.

0.1.1 Preservation of prox-regularity under operations

This section is related to the study of the preservation of prox-regularity
under certain operations on sets.

To provide general sufficient conditions under which the prox-regularity
of intersection or inverse image is preserved, we have to introduce the concept
of normal cone property for intersection of finitely many sets or for inverse
image set. Following [3], we say that a finite family of closed sets (Ck)

m
k=1

of H has the normal cone intersection property near a point x̄ ∈
m
∩
k=1

Ck with

respect to a normal cone N(·)(·) if there exist some real β > 0 and some
neighborhood U of x̄ such that for all x ∈ U ∩ C1 ∩ · · · ∩ Cm we have

(3) N m
∩

k=1
Ck

(x) ∩ B ⊂ NC1
(x) ∩ βB+ · · ·+NCm

(x) ∩ βB.

Let now F : H → Y be a mapping from H into another Hilbert space Y
and let D be a subset of Y and x̄ ∈ F−1(D). In the same way, we say that
the inverse image set F−1(D) has the normal cone inverse image property at

32



x̄ ∈ F−1(D) with respect to the normal cone N(·)(·) if there exist some real
β > 0 and some neighborhood U of x̄ such that for all x ∈ U ∩ F−1(D)

(4) NF−1(D)(x) ∩ B ⊂ DF (x)∗
(

ND

(

F (x)
)

∩ βB
)

.

Theorem 0.1.3. [3] Let (Ck)
m
k=1 be a finite family of closed sets of H and

let D be a closed set of Y .

(a) If all the sets Ck are prox-regular at a point x̄ of their intersection and
if they have the normal cone intersection property near x̄ with respect

to the Fréchet normal cone, then their intersection set
m
∩
k=1

Ck is prox-

regular at x̄.

(b) If a mapping F : H → Y is of class C1,1 around a point x̄ ∈ F−1(D)
and if the inverse image set F−1(D) has the normal cone inverse image
property at x̄ with respect to the Fréchet normal cone, then the inverse
image set F−1(D) is prox-regular at x̄.

As a consequence we have the useful corollary

Corollaire 0.1.1. [3] Let C be a closed set of H which is prox-regular at
x̄ ∈ C and let h : H → R

m be a mapping of class C1,1 near x̄ ∈ M :=
{x ∈ H : h(x) = 0} and such that Dh(x̄) onto. Assume that the only vector
λ = (λ1, · · · , λm) in R

m such that

m
∑

i=1

λi∇hi(x̄) ∈ NF
C (x̄)

is the null vector λ = (0, · · · , 0). Then C ∩M is prox-regular at x̄.

The case of a real-valued function h (that is, m = 1) is of particular
importance.

Corollaire 0.1.2. [3] Let C be a closed set of H which is prox-regular at
x̄ ∈ C and let h : H → R be a real-valued function of class C1,1 near x̄ ∈
M := {x ∈ H : h(x) = 0}. If

∇h(x̄) 6∈ NF
C (x̄) ∪ (−NF

C (x̄)),

then C ∩M is prox-regular at x̄.
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The next proposition consider the complement of the sublevel set of a
semiconvex function. Recall that a function f : X → R ∪ {+∞} is σ-
semiconvex on an open convex set U of the normed space X whenever

f
(

tx+ (1− t)y
)

≤ tf(x) + (1− t)f(y) +
1

2
σt(1− t)‖x− y‖2

for all t ∈]0, 1[, x, y ∈ U .

Proposition 0.1.2. [3] Let g : H → R be a continuous function, C = {x ∈
H : g(x) ≥ 0}, and x̄ ∈ C with g(x̄) = 0. Assume that g is C1,1 near x̄ and
semiconvex near x̄. Assume also that Dg(x̄) is non-null. Then the set C is
prox-regular at x̄. More precisely, if on open convex set U , with x̄ ∈ U , the
function g is σ-semiconvex and Dg is γ-Lipschitz continuous, and if there is
some real α > 0 such that ‖Dg(x)‖ ≥ α for all x ∈ U ∩ g−1(0), then C is
α−1(σ + 2γ)-prox-regular at every point x ∈ U ∩ C.

The next result is concerned with direct images of prox-regular sets. In
this result Or′(C) denotes the set Or′(C) := {x ∈ H : dC(x) < r′}.

Corollaire 0.1.3. [3] Let H and Y be Hilbert spaces, C ⊂ H be a closed
r-prox-regular set. Let 0 < r′ < r and f : Or′(C) → Y be a C1-mapping
such that Df is Lipschitz continuous on Or′(C) with constant M , and
sup{‖Df(x)‖ : x ∈ C} ≤ N . Assume that f is one to one over C and such
that f−1 (the inverse of the restriction fC : C → f(C) with fC(x) = f(x)
for all x ∈ C) is Lipschitz continuous over C with L as a Lipschitz constant.
Set

r1 = min

{

r

M
,L−2

(

M +
N

r

)−1}

.

Then f(C) is closed and r1-prox-regular.

0.2 Subsmooth sets

In this section, C will be a closed subset of the Banach space X.
First we begin by recalling that a subset C is subsmooth at u0 ∈ C, if for

every ε > 0 there exists δ > 0 such that for all u1, u2 ∈ B(u0, δ) ∩ C and all
u∗i ∈ NCl

C (ui) ∩ BX∗ , i = 1, 2 we have

〈u∗1 − u∗2, u1 − u2〉 ≥ −ε‖u1 − u2‖.(5)

The set C is called subsmooth, if it is subsmooth at every u0 ∈ C. Further, C
is called uniformly subsmooth, if for every ε > 0 there exists δ > 0, such that
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(5) holds for all u1, u2 ∈ C satisfying ‖u1−u2‖ < δ and all u∗i ∈ NCl
C (ui)∩BX∗ ,

i = 1, 2.
Inspired by the notion of subsmoothness recalled above, we introduce the

notions of uniform subsmoothness.

Definition 0.2.1. Let E be a nonempty set. We say that a family (C(t))t∈E
of closed sets of X is equi-uniformly subsmooth, if for every ε > 0, there
exists δ > 0 such that (5) holds for any t ∈ E and all u1, u2 ∈ C(t) satisfying
‖u1 − u2‖ < δ and all u∗i ∈ NCl

C(t)(ui) ∩ BX∗, i ∈ {1, 2}.

Another concept in the line of (5) is related to the Clarke subdifferential of
the distance function to the set C. The Clarke subdifferential recalled above
takes a simpler from for a locally Lipschitz function. Indeed, it is known that
the Clarke subdifferential of a locally Lipschitz continuous function f : X →
R at a point u ∈ X is reduced the set

∂Clf(u) :=
{

u∗ ∈ X∗ : 〈u∗, v〉 ≤ f 0(u; v) ∀v ∈ X
}

,

where

f 0(u; v) := lim sup
t↓0,y→u

f(y + tv)− f(y)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f at
u. Recall that for any u ∈ C we have

∂CldC(u) ⊂ NC(u) ∩ BX∗ and NC(u) = clw∗

(

R+∂CldC(u)
)

,

where clw∗ denotes the closure with respect to the w(X∗, X)-topology. Using
the Clarke subdifferential of the distance function to the C in (5) intead of
the truncated of the Clarke normal cone with the closed unit ball, we consider
the following definition.

Definition 0.2.2. We say that the set C (closed near u0 ∈ C) is metrically
subsmooth at u0 when for every ε > 0 there exists some δ > 0 such that (5)
holds for all u1, u2 ∈ B(u0, δ) ∩ C and all u∗i ∈ ∂CldC(ui), i = 1, 2. When
the property holds at any u0 in a closed set C we say that C is metrically
subsmooth.

The following result makes the connection between subsmoothness and
other classical geometrical concepts.

Definition 0.2.3. A function f : X → R ∪ {+∞} is subsmooth at x0 ∈
dom f , if for every ε > 0 there exists δ > 0 such that for all x, y ∈ B(x0, δ)
with x ∈ dom ∂Cf , x

∗ ∈ ∂Cf(x)

f(y) ≥ f(x) + 〈x∗, y − x〉 − ε‖y − x‖.

35



Remark 0.2.1. If f is of class C1 on an open set U ⊂ X, then it is subsmooth
at any point of U .

Proposition 0.2.1. A function locally Lipschitz f is subsmooth at x0 ∈
dom f if, and only if, the set epi f is subsmooth at u0 = (x0, f(x0)).

Proposition 0.2.2. [1] Let C be a closed subset of X. Then the following
assertions hold:

(a) Uniformly prox-regular sets are also uniformly subsmooth.

(b) Every prox-regular set C at u0 is subsmooth at u0.

(c) If C is subsmooth at u0, then it is normally Fréchet regular at u0, that
is

NF
C (u0) = NL

C (u0) = NCl
C (u0).

We consider the following functions:

f, g : R → R such that f(x) = −x5/3 and g(x) =

{

−x5/3 if x ≥ 0
∞ else.
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Figure 3: Two subsmooth sets C and C ′ which are not prox-regular.

Concerning the set C := epi f , for u0 = (0, 0), we have the equalities

Np
C(u0) = {(0, 0)} and NF

C (u0) = {0}×]−∞, 0], or Np
C(u0) 6= NF

C (u0),

hence C is not prox-regular at u0 according to Proposition 0.1.1. The non
prox-regular of the set C ′ := epi g can be seen throught the equalities

Np
C′(u0) = (]−∞, 0]×]−∞, 0[)∪ {(0, 0)} and NF

C′(u0) =]−∞, 0]×]−∞, 0],

so Np
C′(u0) 6= NF

C′(u0), hence C
′ is not prox-regular at u0.

Remark 0.2.2. The converse of property (b) in the above proposition fails
as shown by the following examples, in Figure 3, of sets C and C ′ which are
subsmooth at u0 = (0, 0) but not prox-regular at u0.

We now characterize subsmoothness in terms of the Fréchet normal cone
when X is a reflexive Banach space. In the following theorem we assume
that U is an open subset of X and C ∩ U 6= ∅.
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Theorem 0.2.1. [1] Let C be a closed subset of X. Then the following
assertions are equivalent:

(a) C is subsmooth on C ∩ U ;

(b) (5) holds at every point of C ∩U with NL
C (·)∩B in place of NCl

C (·)∩B;

(c) (5) holds at every point of C ∩U with NF
C (·)∩B in place of NCl

C (·)∩B;

(d) (5) holds at every point of C ∩ U with ∂CldC(·) in place of NCl
C (·) ∩ B.

Remark 0.2.3. By the theorem above, it is easily seen that C is subsmooth
on C ∩ U if and only if C is metrically subsmooth on C ∩ U .

We recall the concept of Lewis’ near radiality, C is called nearly radial at
u0 ∈ C if for every ε > 0 there exists δ > 0 such that for all u ∈ C ∩B(u0, δ)
we have

d(KC(u); u0 − u) ≤ ε‖u0 − u‖,

where KC(u) is the Bouligand tangent cone to the set C at u, that is,

v ∈ KC(u) ⇐⇒ ∀δ > 0, ∃t ∈]0, δ[ such that
(

u+ tB(v, δ)
)

∩ C 6= ∅.

Further, if TCl
C (u) = KC(u) for all u ∈ C, we say that C is tangentially

regular.
In the following result, we suppose that C is a closed set and U is an open

subset of X such that C ∩ U 6= ∅.

Theorem 0.2.2. [1] If C is subssmooth on C ∩ U , then it is tangentially
regular on C ∩ U and nearly radial on C ∩ U .

Figure 4: The sets which are epi-Lipschitzians at a certain boundary point.
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We recall that a closed set C is said to be epi-Lipschitz at u0 ∈ C with
respect to the direction d ∈ X if there exist σ > 0, δ > 0 such that for
all d′ ∈ B(d, σ), all u ∈ C ∩ B(u0, σ) and all t ∈]0, δ[ we have u + td′ ∈ C.
Therefore, every set C is epi-Lipschitz at every u0 ∈ intC (interior of C) with
respect to any d ∈ X and other hand, if u0 ∈ bdC (boundary of C), then C
is epi-Lipschitz at u0 with respect to some d 6= 0 if, and only if, the set C
can be represented in a neighbourhood of u0 as the epigraph of a Lipschitz
continuous function f , which is called a locally Lipschitz representation of C
at u0, see Figure 4. This means that there exists a topological complement
Xd of Rd := {td : t ∈ R} in X (that is, X = Xd ⊕ Rd), a neighbourhood U
of u0 and a locally Lipschitz function f : Xd → R such that

C ∩ U = {x⊕ sd : x ∈ Xd, f(x) ≤ s} ∩ U.

Here Xd is endowed with the norm induced by the norm of X. We denote
by π : X → Xd and ρ : X → R the continuous linear mappings satisfying
u = π(u)⊕ ρ(u)d for all u ∈ X.

Let us recall that a function f : X → R∪{+∞} is called approximatively
convex at u0 if for every ε > 0 there exists δ > 0 such that, for all u, v ∈
B(u0, δ) and t ∈]0, 1[, we have

f(tu+ (1− t)v) ≤ tf(u) + (1− t)f(v) + εt(1− t)‖u− v‖.

Theorem 0.2.3. [1] Let X be a Banach space, let C be an epi-Lipschitz
subset of X, and let u0 ∈ bdC. Then the following statements are equivalent;

(a) C is subsmooth at u0.

(b) Every locally Lipschitz representation f of C at u0 is approximately
convex at π(u0).

(c) Some locally Lipschitz representation f of C at u0 is approximately
convex at π(u0).

Below we provide some sufficient conditions for subsmoothness of set-
valued mapping.

Proposition 0.2.3. [6] Suppose that G is defined by G(u) = g(u) + C for
all u ∈ X, where g : X → Y is a C1 mapping and C is a closed subset of Y .
Let (u, v) ∈ gphG. If C is subsmooth at v − g(u), then gphG is subsmooth
at (u, v).
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0.2.1 Preservation of subsmoothness under operations

Let F : X → Y be a mapping between X and another Banach space Y and
let D be a subset of Y . Suppose that F is of class C1 near u0 ∈ C := F−1(D)
(here, F is assumed be of Class C1, while under the prox-regularity it is
required that F is of class C1,1). Extending (4), we say that the inverse
image of the set D by F , say C := F−1(D), has the truncated normal cone
inverse image property near u0 provided there are a positive constant β and
a neighborhood U of u0 sucht that

(6) NC(u) ∩ BX∗ ⊂ DF (u)∗
(

ND

(

F (u)
)

∩ βBY ∗

)

for all u ∈ C ∩ U,

where DF (u)∗ denotes the adjoint of the derivative mapping DF (u) of F at
u. Concerning the intersection of finitely many sets, we need, as for (3), to
translate the condition in the inclusion above. Let (Ci)

k
i=1 be a finite system

of sets of X and u0 ∈
k
∩
i=1
Ci. We say that this system of sets satisfies the

truncated normal cone intersection property near u0 if there are a positive
constant β and a neighborhood U of u0 sucht that for all u ∈ U∩C1∩· · ·∩Ck

we have

(7) N k
∩

i=1
Ci

(u) ∩ BX∗ ⊂ NC1
(u) ∩ (βBY ∗) + · · ·+NCk

(u) ∩ (βBY ∗).

Another important concept is related to the distance function to the set
C and it does not require the subdifferentiability of the mapping F . We say
that the mapping F is metrically calm at u0 relative to the set D if there
exist some constant β > 0 and some neighborhood U of u0 sucht that

dC(u) ≤ βdD
(

F (u)
)

for all u ∈ U.

Theorem 0.2.4. [4] Let F : X → Y be a mapping between Banach spaces
X and Y and let C := F−1(D), where D is a subset of Y . Assume that F is
of class C1 near u0 ∈ C, that is, the derivative mapping DF (·) is continuous
near u0, and assume that D is closed near F (u0). The following hold.

(a) If the set D is subsmooth at F (u0) and if the truncated normal cone
inverse image property is satisfied for F−1(D) near u0, then C is sub-
smooth at u0.

(b) If the set D is metrically subsmooth at F (u0) and if the mapping F
is metrically calm at u0 with respect to the set D, then the set C is
metrically subsmooth at u0.
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Theorem 0.2.5. [4] Let C1, · · · , Ck be a finite system of sets of X which are

closed near u0 ∈
k
∩
i=1
Ci. The following holds.

- If the sets C1, · · · , Ck are subsmooth at u0 and if the truncated normal
cone intersection property is satisfied for these sets near u0, then the

intersection
k
∩
i=1
Ci is subsmooth at u0.

The next two theorems concern the uniform subsmoothness.

Theorem 0.2.6. Let F : X → Y be a mapping between Banach spaces X
and Y and let C := F−1(D), where D is a subset of Y . Assume that F is of
class C1.

- If the set D is uniformly subsmooth and if the truncated normal cone
inverse image property (6) is satisfied with the same real constant β > 0
for all u ∈ F−1(D), then C is uniformly subsmooth.

Theorem 0.2.7. Let C1, · · · , Ck be a finite system of sets of X. Suppose that
the sets C1, · · · , Ck are uniformly subsmooth and that the truncated normal
cone intersection property (7) is satisfied for these sets with the same real

constant β > 0 for all u ∈
k
∩
i=1
Ci. Then the intersection

k
∩
i=1
Ci is uniformly

subsmooth.

The next two theorems concern a family of equi-uniformly subsmooth
sets.

Theorem 0.2.8. Let E be a nonempty set, let F : X → Y be a mapping
between Banach spaces X and Y and let Ct := F−1(Dt) for any t ∈ E,
where (Dt)t∈E is a family closed subsets of Y . Assume that the sets Ct are
nonempty. Assume also that F is of class C1 and that the truncated normal
cone inverse image property relative to a family sets (Dt)t∈E holds uniformly,
that is, there exists some real constant β > 0 such that, for any t ∈ E, we
have

NCt
(u) ∩ BX∗ ⊂ DF (u)∗

(

NDt

(

F (u)
)

∩ βBY ∗

)

for all u ∈ Ct.

- If the family (Dt)t∈E is equi-uniformly subsmooth, then (Ct)t∈E is equi-
uniformly subsmooth.

Theorem 0.2.9. Let E be a nonempty set and let (C1,t)t∈E, · · · , (Ck,t)t∈E
be a finite system of families of sets of X such that for i = 1, · · · , k every

family (Ci,t)t∈E is equi-uniformly subsmooth. Suppose that Ct :=
k
∩
i=1
Ci,t is
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nonempty for any t ∈ E. Suppose also that there is a real constant β > 0
such that for all u ∈ Ct

NCt
(u) ∩ BX∗ ⊂ NC1,t

(u) ∩ (βBY ∗) + · · ·+NCk,t
(u) ∩ (βBY ∗).

Then the family (Ct)t∈E is equi-uniformly subsmooth.
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Abstract. The class of subsmooth sets has been introduced in
variational analysis in [1]. The subsmoothness property for a set
corresponds to a variational behavior of order one of the set, while
the prox-regularity property expresses a variational behavior of
order two. The present paper establishes the existence of solution
for perturbed differential inclusions defined by nonconvex and non
prox-regular sweeping process associated with subsmooth sets.
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Introduction

Let H be a real Hilbert space, T > 0 be a positive real number, and C :
[0, T ] ⇒ H be a set-valued mapping with nonempty closed values moving

45



in an absolutely continuous way. For any x(0) = x0 ∈ C(0), consider the
differential inclusion

(1.1)







ẋ(t) ∈ −NC(t)

(

x(t)
)

a.e t ∈ [0, T ]

x(t) ∈ C(t) ∀t ∈ [0, T ],

where NC(t)(·) denotes a general normal cone to the set C(t). This important
problem of evolution has been introduced and studied in 1970, when the sets
C(t) are convex, by Moreau in the analysis of elastoplastic systems (see,
[19, 20, 21]). In [4], C. Castaing introduced some new techniques from which
many results can be derived, essentially the existence of a solution of (1.1)
for C(t) = S + ϑ(t), where S is any fixed nonconvex closed subset of H
and ϑ is a mapping with finite variation. Later, M. Valadier [24] dealt with
sweeping processes associated with sets C(t) = R

n\int(K(t)), whereK(t) are
closed and convex sets. Condering the set-valued mapping G whose graph is
closed and contains the graph of (t, u) 7→ NC(t)(u) ∩ B, he showed that the
differential inclusion

ẋ(t) ∈ −G
(

t, x(t)
)

, x(0) = x0 ∈ C(0)

admits at least a solution. Then, he obtained, in finite dimensional setting,
existence of solution for (1.1) whenever the set-valued mapping (t, u) 7→
NC(t)(u) ∩ B has a closed graph, where NC(t)(·) is the Clarke normal cone.
Moreover, in the finite dimensional context, many works have been realized
when the sets C(t) are nonconvex closed, as Benabdellah [2], Colombo and
Goncharov [10], and Thibault [23].

The evolution problems associated with perturbed sweeping process be-
gan with the paper of Henry (see, [16]). Studying the planning procedures
in mathematical economy, he introduced the differential inclusion

ẋ(t) ∈ Proj
TC

(

x(t)
)G

(

x(t)
)

, x(0) = x0 ∈ C,

where G is an upper semicontinuous set-valued mapping with nonempty com-
pact convex values, C is a (nonmoving) nonempty closed convex set, and
TC(·) denotes the tangent cone to C and Proj TC(x(t)) denotes the metric
projection mapping onto the closed convex set TC(x(t)). This differential
inclusion has been also considered by B. Cornet [11, 12] with a Clarke tan-
gentially regular set C, reducing the problem as in [16] to the existence of a
solution of the differential inclusion

ẋ(t) ∈ −NC

(

x(t)
)

+G
(

t, x(t)
)

x(0) = x0 ∈ C.
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C. Castaing, T. X. Duc Ha and M. Valadier [7] and C. Castaing and M.
D. P. Monteiro Marques [5] studied the sweeping process (1.1) with pertur-
bations

(1.2)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+G
(

t, x(t)
)

a.e t ∈ [0, T ]

x(t) ∈ C(t) ∀t ∈ [0, T ]

x(0) = x0 ∈ C(0).

in the cases where all the sets C(t) are either convex or complements of
open convex sets. The first general study of the differential inclusion (1.2)
with general closed sets C(t) moving in absolutely way in a finite dimensional
setting has been realized by L. Thibault [23]. Later, several other papers dealt
in the infinite dimensional Hilbert spaceH with the inclusion differential (1.2)
under uniform prox-regularity assumptions, as the works of M. Bounkhel and
L. Thibault [3], J. F. Edmond and L. Thibault in [14]

The main purpose of the present paper is to show how the subsmoothness
property allows us to study the differential inclusion (1.2) in the general
framework of infinite dimensional Hilbert space for nonconvex and non prox-
regular sets C(t). The subsmoothness of a set corresponds to a variational
property of order one while the prox-regularity is a variational property of
order two. Subsmooth sets are strongly connected with nearly radial sets of
Lewis [17] and weakly regular sets of Jourani [15]. The plan of the paper
is the following. We recall the needed concepts in the first section. In the
second section, we prove the theorem of existence of solution of the differential
inclusion (1.2).

1.1 Preliminaries

Throughout the paper, H stands for a real separable Hilbert space whose
inner product is denoted by 〈·, ·〉 and the associated norm by ‖·‖. The closed
unit ball of H with center 0 will be denoted by B and B(u, η) (respectively,
B[u, η]) denotes the open (respectively, closed) ball of center u ∈ H and
radius η > 0. If I is a nonempty compact interval of R, we will denote
by CH(I) the space of all continuous mappings from I to H. The norm of
uniform convergence on CH(I) will be denoted by ‖ · ‖∞, ”a.e.” denotes ”for
almost every” and ẋ is the derivative of x.

Let C,C ′ be two subsets of H and let v be a vector in H, the real d(v, C)
or dC(v) := inf{‖v − u‖ : u ∈ C} is the distance of the point v from the set
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C. We denote by

Haus(C,C ′) = max
{

sup
u∈C

d(u, C ′), sup
v∈C′

d(v, C)
}

the Hausdorff distance between C and C ′. For v ∈ H the projection of v into
C ⊂ H is the set

Proj C(v) := {u ∈ C : dC(v) = ‖v − u‖}.

This set is nonempty whenever C is ball-compact, that is, C ∩ rB is compact
for every real r > 0. Further, if u ∈ Proj C(v) then we have v − u ∈ Np

C(u)
where Np

C(·) denotes the proximal normal cone of C (see, [9]). If C is closed
and convex, then Proj C(v) is a singleton and we will denote by proj C(v) the
unique element of Proj C(v). For a nonempty interval J of R, we recall that
a set-valued mapping F : J ⇒ H is called Lebesgue measurable if for each
open set U ⊂ H the set F−1(U) := {t ∈ J : F (t) ∩ U 6= ∅} is Lebesgue
measurable. When the values of F are closed subsets of H, we know (see
[6]) that the Lebesgue measurability of F is equivalent to the measurability
of the graph of F , that is,

gphF ∈ L(J )⊗ B(H),

where L(J ) denotes the Lebesgue σ-field of J , B(H) the Borel σ-field of H,
and

gphF :=
{

(t, u) ∈ J ×H : u ∈ F (t)
}

.

For any subset C of H, coC stands for the closed convex hull of C, and
σ(·, C) represents the support function of C, that is, for all ξ ∈ H,

σ(ξ, C) := sup
u∈C

〈ξ, u〉.

If C is a nonempty subset of H, the Clarke normal cone N(C; u) or NC(u)
of C at u ∈ C is defined by

NC(u) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC(u)},

where the Clarke tangent cone T (C; u) or TC(u) (see [8]) is defined as follows:

v ∈ TC(u) ⇔







∀ε > 0, ∃δ > 0 such that

∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.
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Equivalently, v ∈ TC(u) if and only if for any sequence (un)n of C converging
to u and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

un + tnvn ∈ C for all n ∈ N.

We put NC(u) = ∅, whenever u /∈ C. For any η > 0 we denote by Nη
C(u) the

truncated Clarke normal cone, that is,

Nη
C(u) = NC(u) ∩ ηB.

We typically denote by f : H → R ∪ {+∞} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential ∂f(u) of f at a point
u (where f is finite) is defined by

∂f(u) =
{

ξ ∈ H : (ξ,−1) ∈ Nepi f

(

(

u, f(u)
)

)}

,

where epi f denotes the epigraph of f , that is,

epi f = {(u, r) ∈ H × R : f(u) ≤ r}.

We also put ∂f(u) = ∅ if f is not finite at u ∈ H. If ψC denotes the indicator
function of the set C, that is, ψC(u) = 0 if u ∈ C and ψC(u) = +∞ otherwise,
then

∂ψC(u) = NC(u) for all u ∈ H.

The Clarke subdifferential ∂f(u) of a locally Lipschitz function f at u has
also the other useful description

∂f(u) = {ξ ∈ H : 〈ξ, v〉 ≤ f 0(u, v), ∀v ∈ H},

where

f 0(u, v) := lim sup
(u′,t)→(u,0+)

f(u′ + tv)− f(u′)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([8]) to be related to the Clarke
subdifferential of the distance function through the equality

NC(u) = clw(R+∂dC(u)) for all u ∈ C,

where R+ := [0,∞[ and clw denotes the closure with respect to the weak
topology of H. Further

(1.3) ∂dC(u) ⊂ NC(u) ∩ B for all u ∈ C.
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The concept of Frchet subdifferential will be also needed. A vector ξ ∈ H
is said to be in the Frchet subdifferential ∂Ff(u) of f at u (see [18]) provided
that for every ε > 0 there exists δ > 0 such that for all u′ ∈ B(u, δ) we have

〈ξ, u′ − u〉 ≤ f(u′)− f(u) + ε‖u′ − u‖.

It is known that we always have the inclusion

∂Ff(u) ⊂ ∂f(u).(1.4)

The Frchet normal cone of C at u ∈ C is given by

NF
C (u) = ∂FψC(u),

so the following inclusion always holds true

NF
C (u) ⊂ NC(u) for all u ∈ C.(1.5)

On the other hand, the Frchet normal cone is also related to the Frchet
subdifferential of the distance function since the following relations hold true
for all u ∈ C

NF
C (u) = R+∂FdC(u)

and

∂FdC(u) = NF
C (u) ∩ B.(1.6)

Another important property is

(1.7) v − u ∈ NF
C (u) hence also v − u ∈ NC(u)

whenever u ∈ Proj C(v), since N
p
C(u) ⊂ NF

C (u).

1.2 Sweeping process with subsmooth sets

We begin by recalling the concept of subsmoothness developed in [1]; it will
be used to define the equi-uniformly subsmooth property for a family of
closed sets of H.
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1.2.1 Definition and elementary properties

Let C be a closed subset of H. The set C is known to be prox-regular
at u0 ∈ C provided the following variational property of order two holds:
There exist r > 0 and δ > 0 such that for all u1, u2 ∈ B(u0, δ) ∩ C and all
ξi ∈ NC(ui) ∩ B, i = 1, 2 we have

(1.8) 〈ξ1 − ξ2, u1 − u2〉 ≥ −
1

r
‖u1 − u2‖

2.

For several properties, characterizations and examples of such sets we refer
the reader to [22].

Relaxing the inequality (1.8) in a variational property of order one, Aus-
sel, Daniilidis and Thibault defined the concept of subsmooth sets as follows.
The closed set C ⊂ H is called subsmooth at u0 ∈ C, if for every ε > 0 there
exists δ > 0 such that for all u1, u2 ∈ B(u0, δ) ∩ C and all ξi ∈ NC(ui) ∩ B,
i = 1, 2 we have

〈ξ1 − ξ2, u1 − u2〉 ≥ −ε‖u1 − u2‖.(1.9)

The set C is called subsmooth, if it is subsmooth at every u0 ∈ C. Further, C
is called uniformly subsmooth, if for every ε > 0 there exists δ > 0, such that
(1.9) holds for all u1, u2 ∈ C satisfying ‖u1−u2‖ < δ and all ξi ∈ NC(ui)∩B,
i = 1, 2.

For other variational properties of order one we refer to Lewis [17] where
nearly radial sets are considered and to Jourani [15] where weakly regular
sets are investigated. The connection between those two classes of sets and
the class of subsmooth sets is studied in [13].

We next define the concept of equi-uniform subsmoothness, which will be
basic to the rest of the paper.

Definition 1.2.1. Let E be a nonempty set. We say that a family (C(t))t∈E
of closed sets of H is equi-uniformly subsmooth, if for every ε > 0, there exists
δ > 0 such that (1.9) holds for any t ∈ E and all u1, u2 ∈ C(t) satisfying
‖u1 − u2‖ < δ and all ξi ∈ NC(t)(ui) ∩ B, i ∈ {1, 2}.

The following results will be used in the proof of The main theorem.

Lemma 1.2.1. If a closed set C of H is subsmooth at u ∈ C, then

∂dC(u) = ∂FdC(u)

and
NC(u) = NF

C (u).
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Proof. Let ε > 0. From the subsmoothness of C at u, there exists some
δ > 0 such that for all v ∈ C with ‖v − u‖ < δ and all ξ ∈ NC(u)

〈−ξ, v − u〉 ≥ −ε‖v − u‖.

Hence, we may write

〈ξ, v − u〉 ≤ ε‖v − u‖ for all v ∈ B(u, δ) ∩ C.

This last inequality entails that ξ ∈ NF
C (u). This means NC(u) ⊂ NF

C (u)
hence NC(u) = NF

C (u) since the reverse inclusion always holds true (see
(1.5)). So, the second equality is established. Take now any ξ ∈ ∂dC(u). Then
we have ‖ξ‖ ≤ 1 and ξ ∈ NC(u) by (1.3). The equality proved above gives ξ ∈
NF

C (u), thus ξ ∈ NF
C (u)∩B, which is equivalent to ξ ∈ ∂FdC(u) according to

(1.6). Consequently ∂dC(u) ⊂ ∂FdC(u) hence the equality ∂dC(u) = ∂FdC(u)
holds true according to (1.4), completing the proof of the lemma.

Lemma 1.2.2. Let E be a metric space and let (C(t))t∈E be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
η > 0. Let Q ⊂ E and s0 ∈ clQ. Then the following hold:

(a) For all (s, u) ∈ gphC we have η∂dC(s)(u) ⊂ ηB;

(b) For any net (sj)j∈J in Q converging to s0, any net (uj)j∈J converging
to u ∈ C(s0) in (H, ‖ · ‖) with uj ∈ C(sj) and dC(sj)(y) →

j∈J
0 for every

y ∈ C(s0) , and any net (ζj)j∈J converging weakly to ζ in (H,w(H,H))
with ζj ∈ η∂dC(sj)(uj), we have ζ ∈ η∂dC(s0)(u).

Proof. The assertion (a) being obvious according to (1.3), we have to
show (b). Let ε > 0. By Definition 1.2.1 choose δ > 0 such that for all s ∈ E,
u1, u2 ∈ C(s) with ‖u1 − u2‖ < δ and all ζi ∈ NC(s)(ui) ∩ B

〈ζ1 − ζ2, u1 − u2〉 ≥ −ε‖u1 − u2‖.(1.10)

Fix any nets (sj)j∈J in Q converging to s0, (uj)j∈J converging strongly to
u ∈ C(s0) in H with uj ∈ C(sj) and dC(sj)(y) →

j∈J
0 for every y ∈ C(s0),

where (J,4) is a directed preordered set. Fix also any net (ζj)j∈J converging
weakly to ζ in H such that ζj ∈ η∂dC(sj)(uj). Since uj ∈ C(sj), the latter
inclusion means η−1ζj ∈ NC(sj)(uj) ∩ B for all j ∈ J (see (1.6) and Lemma

1.2.1). Fix y ∈ B(u, δ
2
)∩C(s0). For each n ∈ N and each j ∈ J , choose some

yj,n ∈ C(sj) such that

‖yj,n − y‖ ≤ dC(sj)(y) +
1

n
.
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Endowing J × N with the product preorder which is obviously directed,
(yj,n)(j,n)∈J×N is a net in H. Since

dC(sj)(y) +
1

n
−→

(j,n)∈J×N

0,

we have ‖yj,n− y‖ −→
(j,n)∈J×N

0, that is, yj,n −→
(j,n)∈J×N

y strongly in H and hence

there exists j0 ∈ J and n0 ∈ N such that for all (j, n) ∈ J × N with j < j0
and n ≥ n0 we have yj,n ∈ B(u, δ

2
). Put uj,n := uj for all (j, n) ∈ J × N.

Obviously uj,n −→
(j,n)∈J×N

u strongly in H (because uj →
j∈J

u). So we may also

suppose that uj,n ∈ B(u, δ
2
) for all (j, n) ∈ J × N, with j < j0 and n ≥ n0.

Thus, for all (j, n) ∈ J × N with j < j0 and n ≥ n0 we have

‖yj,n − u‖ <
δ

2
and ‖uj,n − u‖ <

δ

2
.

Set ζj,n := ζj and sj,n := sj for all (j, n) ∈ J × N. The net (sj,n)(j,n)∈J×N

converges to s0 and the net ζj,n)(j,n)∈J×N converges weakly to ζ in H and
η−1ζj,n ∈ NC(sj,n)(uj,n) ∩ B. Thanks to the latter inequalities above, for all
(j, n) ∈ J × N with j < j0 and n ≥ n0 we have ‖yj,n − uj,n‖ < δ with
yj,n, uj,n ∈ C(sj,n) and hence according to (1.10)

〈0− η−1ζj,n, yj,n − uj,n〉 ≥ −ε‖yj,n − uj,n‖

or equivalently
〈η−1ζj,n, yj,n − uj,n〉 ≤ ε‖yj,n − uj,n‖.

Since the net (η−1ζj,n)(j,n)∈J×N is bounded (by the real number 1), we may
pass to the limit to obtain

〈η−1ζ, y − u〉 ≤ ε‖y − u‖

for all y ∈ B(u, δ
2
) ∩ C(s0) and hence η−1ζ ∈ NF

C(s0)
(u). Further, η−1ζj,n ∈ B

for all (j, n) ∈ J ×N and this ensures η−1ζ ∈ B. Thus, η−1ζ ∈ NF
C(s0)

(u)∩B,

so η−1ζ ∈ ∂FdC(s0)(u) ⊂ ∂dC(s0)(u). The proof is complete.

From Lemma 1.2.2 we easily deduce, thanks to properties of upper semi-
continuous set-valued mappings (see [6]), the following proposition.

Proposition 1.2.1. Let I be a nonempty interval of R and let (C(t))t∈I be
a family of nonempty closed sets of H which is equi-uniformly subsmooth
and let a real η > 0. Assume that there exists a nondecreasing continuous
function v : I → R+ such that, for any y ∈ H and s, t ∈ I with s ≤ t,

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ v(t)− v(s).

Then the following assertions hold:
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(a) For all (s, u) ∈ gphC we have η∂dC(s)(u) ⊂ ηB;

(b) For any sequence (sn)n in I converging to s with sn ≥ s, any sequence
(un)n converging to u ∈ C(s) with un ∈ C(sn), and any ξ ∈ H, we have

lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

≤ σ
(

ξ, η∂dC(s)(u)
)

.

Proof. Only (b) needs to be proved. Let (sn)n and (un)n as in the
statement. Fix any ξ ∈ H. Extracting a subsequence if necessary, we may
suppose that

lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

= lim
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

.

For each n, chosse according to the weak compactness of η∂dC(sn)(un) some
ζn ∈ η∂dC(sn)(un) such that

〈ξ, ζn〉 = σ
(

ξ, η∂dC(sn)(un)
)

.

Since ‖ζn‖ ≤ η by (a), a subsequence of (ζn)n (that we do not relabel)
converges weakly to some ζ in H. It results that

(1.11) 〈ξ, ζ〉 = lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

.

Now, observe that for each y ∈ C(s) that

0 ≤ d(y, C(sn)) ≤ d(y, C(s)) + v(sn)− v(s) = v(sn)− v(s),

hence d(y, C(sn)) → 0 as n → ∞ thanks to the right-hand continuity of v.
We then apply Lemma 1.2.2 to obtain ζ ∈ η∂dC(s)(u). Combining the latter
inclusion with (1.11) we see that

lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

≤ σ
(

ξ, η∂dC(s)(u)
)

,

which finishes the proof.

1.2.2 Main results

Our existence theorem is started under the following assumptions.
Let C : I ⇒ H be a set-valued mapping. It is required to satisfy the

following assumptions:
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(H1) For each t ∈ I, C(t) is a nonempty ball-compact subset of H; there
exists a nondecreasing absolutely continuous function v : I → R+ such
that, for any y ∈ H and s, t ∈ I with s ≤ t

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ v(t)− v(s);

(H2) The family
(

C(t)
)

t∈I
is equi-uniformly subsmooth;

We consider also a set-valued mapping Γ : I × H ⇒ H with nonempty
closed convex values which is L(I)⊗B(H)−measurable and upper semicon-
tinuous with respect to x ∈ H for almost all t ∈ I.

(H3) The set-valued mapping Γ satisfies the growth condition

d
(

0,Γ(t, x)
)

≤ α(t)(1 + ‖x‖)

for all t ∈ I and all x ∈ C([T0, t]) :=
⋃

T0≤s≤t

C(s), where α : I → R+ is

an integrable function on I.

Theorem 1.2.1. Let real numbers T0 and T be fixed with 0 ≤ T0 < T .
Assume that H1,H2,H3 above hold for the interval I = [T0, T ]. Then, there
exists an absolutely continuous mapping x : I → H which is a solution on
the whole interval I of the constrained differential inclusion

(E)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

a.e. t ∈ I

x(t) ∈ C(t) ∀t ∈ I

x(T0) = x0 ∈ C(T0).

Proof. Fix I := [T0, T ] throughout the proof. Observe first by (H3) that
there is some α ∈ L1

R+
(I) such that for all (t, x) ∈ I × C([T0, t]), we have

d
(

0,Γ(t, x)
)

≤ α(t)(1 + ‖x‖).(1.12)

I. We suppose in this first part I that

∫ T

T0

α(s)ds ≤
1

4
.(1.13)

Let us put

r(x0) := 2

(

‖x0‖+

∫ T

T0

|v̇(s)|ds+ 1

)

.
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We are going to construct a sequence of mappings (xn) in CH(I) which
admits a subsequence which converges uniformly to a solution of (E).

Step 1. Construction of the sequence (xn).
For any integer n ≥ 1, consider the partition of I defined by the points

tni = T0 + i
T − T0
2n

, (0 ≤ i ≤ 2n).

Let J = {0, 1, · · · , 2n−1}. Consider the mappings θn and θ̂n from the interval
I of R into itself, defined by

θn(t) =







tni+1 if t ∈ [tni , t
n
i+1[, i ∈ J

T if t = T,
(1.14)

θ̂n(t) =







tni if t ∈ ]tni , t
n
i+1], i ∈ J

T0 if t = T0.
(1.15)

We have |θn(t)− t| < T−T0

2n
and |θ̂n(t)− t| < T−T0

2n
, hence

θn(t) → t and θ̂n(t) → t.(1.16)

Put xn0 = x0 ∈ C(tn0 ). Let fn
0 be the mapping from [tn0 , t

n
1 ] into H given

by fn
0 (t) as the element of minimal norm of Γ(t, xn0 ), that is,

fn
0 (t) = Proj Γ(t,xn

0
)(0) for all t ∈ [tn0 , t

n
1 ].

The mapping fn
0 is measurable according to the measurability of the set-

valued mapping Γ(·, xn0 ). Thanks to (1.12) we get

‖fn
0 (t)‖ ≤ α(t)

(

1 + ‖xn0‖
)

∀ t ∈ [tn0 , t
n
1 ].(1.17)

Since α is an integrable non-negative function on I, hence fn
0 is bounded by

a function in L1
R+

(I) . Thus fn
0 ∈ L1

H(T0, t
n
1 ).

The ball-compactness of C(t) ensures that

Proj C(tn
1
)

(

xn0 +

∫ tn
1

T0

fn
0 (s)ds

)

6= ∅.

Then, we can choose a point xn1 in Proj C(tn
1
)

(

xn0 +
∫ tn

1

T0
fn
0 (s)ds

)

, hence xn1 ∈
C(tn1 ) and

∥

∥

∥
xn1 −

(

xn0 +

∫ tn
1

T0

fn
0 (s)ds

)∥

∥

∥
= d

(

xn0 +

∫ tn
1

T0

fn
0 (s)ds, C(t

n
1 )
)

.
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So, according to (H1) and the inclusion xn0 ∈ C(T0), we have

∥

∥

∥
xn1 −

(

xn0 +

∫ tn
1

T0

fn
0 (s)ds

)∥

∥

∥

≤ d
(

xn0 +

∫ tn
1

T0

fn
0 (s)ds, C(T0)

)

+ v(tn1 )− v(T0)

≤ d
(

xn0 , C(T0)
)

+
∥

∥

∥

∫ tn
1

T0

fn
0 (s)ds

∥

∥

∥
+ v(tn1 )− v(T0)

≤

∫ tn
1

T0

‖fn
0 (s)‖ds+

∫ tn
1

T0

v̇(s)ds.

By (1.17), we obtain

∥

∥

∥
xn1 −

(

xn0 +

∫ tn
1

T0

fn
0 (s)ds

)
∥

∥

∥
≤

∫ tn
1

T0

(

α(s)
(

1 + ‖xn0‖
)

+ v̇(s)
)

ds.

Similarly as above, we choose a measurable mapping fn
1 from [tn1 , t

n
2 ] into

H such that fn
1 (t) ∈ Γ(t, xn1 ) for all t ∈ [tn1 , t

n
2 ]. By (1.12), we have

‖fn
1 (t)‖ ≤ α(t)

(

1 + ‖xn1‖
)

∀t ∈ [tn1 , t
n
2 ],(1.18)

and this says in particular that fn
1 is integrable over [tn1 , t

n
2 ].

The ball-compactness of C(t) ensures that

Proj C(tn
2
)

(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds

)

6= ∅.

Then, we can choose a point xn2 in Proj C(tn
2
)

(

xn1 +
∫ tn

2

tn
1

fn
1 (s)ds

)

, hence xn2 ∈

C(tn2 ) and

∥

∥

∥
xn2 −

(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds

)∥

∥

∥
= d

(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds, C(t

n
2 )
)

.
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So, according to (H1) and the inclusion xn1 ∈ C(tn1 ), we have

∥

∥

∥
xn2 −

(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds

)∥

∥

∥

≤ d
(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds, C(t

n
1 )
)

+ v(tn2 )− v(tn1 )

≤ d
(

xn1 , C(t
n
1 )
)

+
∥

∥

∥

∫ tn
2

tn
1

fn
1 (s)ds

∥

∥

∥
+ v(tn2 )− v(tn1 )

≤

∫ tn
2

tn
1

‖fn
1 (s)‖ds+

∫ tn
2

tn
1

v̇(s)ds,

hence the inequality in (1.18) yields

∥

∥

∥
xn2 −

(

xn1 +

∫ tn
2

tn
1

fn
1 (s)ds

)∥

∥

∥
≤

∫ tn
2

tn
1

(

α(s)(1 + ‖xn1‖) + v̇(s)
)

ds.

By repeating the process, we define finite sequences (xni ) and measurable
mappings (fn

i ) from [tni , t
n
i+1] into H with the following properties:

(1.19) fn
i (t) ∈ Γ(t, xni ) and ‖fn

i (t)‖ ≤ α(t)(1 + ‖xni ‖) ∀t ∈ [tni , t
n
i+1];

(1.20) xni+1 ∈ Proj C(tni+1
)

(

xni +

∫ tni+1

tni

fn
i (s)ds

)

;

(1.21)
∥

∥

∥
xni+1 −

(

xni +

∫ tni+1

tni

fn
i (s)ds

)∥

∥

∥
≤

∫ tni+1

tni

(

α(s)
(

1 + ‖xni ‖
)

+ v̇(s)
)

ds.

Now, according to (1.21), and (1.19), we obtain

‖xni+1‖ ≤ ‖xni ‖+ 2(1 + ‖xni ‖)

∫ tni+1

tni

α(s)ds+

∫ tni+1

tni

v̇(s)ds

≤ ‖xni ‖+ 2(1 + max
0≤j≤2n

‖xnj ‖)

∫ tni+1

tni

α(s)ds+

∫ tni+1

tni

v̇(s)ds.

58



Iterating it follows that

‖xni+1‖ ≤ ‖xn0‖+ 2(1 + max
0≤j≤2n

‖xnj ‖)
i

∑

k=0

∫ tn
k+1

tn
k

α(s)ds+
i

∑

k=0

∫ tn
k+1

tn
k

v̇(s)ds

≤ ‖xn0‖+ 2(1 + max
0≤j≤2n

‖xnj ‖)

∫ T

T0

α(s)ds+

∫ T

T0

v̇(s)ds.

This being true for all 0 ≤ j ≤ 2n, then

max
0≤j≤2n

‖xnj ‖ ≤ ‖xn0‖+ 2(1 + max
0≤j≤2n

‖xnj ‖)

∫ T

T0

α(s)ds+

∫ T

T0

v̇(s)ds.

It results, thanks to (1.13), that

max
0≤j≤2n

‖xnj ‖ ≤ ‖xn0‖+
1

2
(1 + max

0≤j≤2n
‖xnj ‖) +

∫ T

T0

v̇(s)ds.

Consequently,

max
0≤j≤2n

‖xnj ‖ ≤ 2

(

‖xn0‖+
1

2
+

∫ T

T0

v̇(s)ds

)

= r(x0)− 1,(1.22)

the equality being due to the definition of r(x0). Combining this with (1.19),
we get

‖fn
i (t)‖ ≤ α(t)r(x0).(1.23)

For all t ∈ [tni , t
n
i+1[ and all i ∈ J , let us set

fn(t) := fn
i (t).(1.24)

Define xn : I → H by

(1.25) xn(t) = xni +
ϑ(t)− ϑ(tni )

ϑ(tni+1)− ϑ(tni )

(

xni+1−x
n
i −

∫ tni+1

tni

fn
i (s)ds

)

+

∫ t

tni

fn
i (s)ds

whenever t ∈ [tni , t
n
i+1] and i ∈ J , where

ϑ(t) :=

∫ t

T0

(

r(x0)α(s) + v̇(s)
)

ds ∀t ∈ I.(1.26)

It follows from (1.21), (1.22) and (1.26), that

∥

∥

∥
xni+1 − xni −

∫ tni+1

tni

fn
i (s)ds

∥

∥

∥
≤ ϑ(tni+1)− ϑ(tni ).(1.27)
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For almost all t ∈ [tni , t
n
i+1], i ∈ J , we have

(1.28) ẋn(t) =
ϑ̇(t)

ϑ(tni+1)− ϑ(tni )

(

xni+1 − xni −

∫ tni+1

tni

fn
i (s)ds

)

+ fn
i (t)

and

(1.29) ϑ̇(t) = r(x0)α(t) + v̇(t).

We deduce from (1.24) and (1.27) that

(1.30) ‖ẋn(t)− fn(t)‖ ≤ r(x0)α(t) + v̇(t).

Claim: The mapping xn is absolutely continuous over I.
For all τ, t ∈ [tni , t

n
i+1], and τ < t, we have

xn(t)− xn(τ) =
ϑ(t)− ϑ(τ)

ϑ(tni+1)− ϑ(tni )

(

xni+1 − xni −

∫ tni+1

tni

fn
i (s)ds

)

+

∫ t

τ

fn
i (s)ds,

hence

‖xn(t) − xn(τ)‖

≤
ϑ(t)− ϑ(τ)

ϑ(tni+1)− ϑ(tni )

∥

∥

∥
xni+1 − xni −

∫ tni+1

tni

fn
i (s)ds

∥

∥

∥
+

∫ t

τ

‖fn
i (s)‖ds.

We deduce from (1.23) and (1.27) that

‖xn(t)− xn(τ)‖ ≤ ϑ(t)− ϑ(τ) + r(x0)

∫ t

τ

α(s)ds,

by (1.26), we get

‖xn(t)− xn(τ)‖ ≤

∫ t

τ

(

2r(x0)α(s) + v̇(s)
)

ds.(1.31)

This last inequality above holds for all τ, t ∈ [tni , t
n
i+1] with τ < t, hence the

mapping xn is absolutely continuous.
Thanks to (1.15), (1.19), (1.24), (1.25) and we obtain, by construction

fn(t) ∈ Γ
(

t, xn
(

θ̂n(t)
)

)

∀t ∈ I.(1.32)

Further, by (1.23) and (1.24)

‖fn(t)‖ ≤ r(x0)α(t) ∀t ∈ I.(1.33)
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it follows through (1.30) that

‖ẋn(t)‖ ≤ 2r(x0)α(t) + v̇(t).(1.34)

According to (1.7) and (1.20), we have

xni +

∫ tni+1

tni

fn
i (s)ds− xni+1 ∈ NC(tni+1

)

(

xni+1

)

.

This combined with (1.14), (1.24), (1.25) (1.28) and we obtain, by construc-
tion, for almost all t ∈ I and for any n,

ẋn(t)− fn(t) ∈ −N
C
(

θn(t)
)

(

xn
(

θn(t)
)

)

.(1.35)

Step 2. Now, we proceed to prove that the sequence (xn) admits a
subsequence, which converges uniformly to a solution of (E).

Observe first by (H1) and (1.31) that for any t ∈ [tni , t
n
i+1]

d
(

xn(t), C(t)
)

≤
∥

∥xn(t)− xn(t
n
i )
∥

∥+ d
(

xn(t
n
i ), C(t)

)

≤
∥

∥xn(t)− xn(t
n
i )
∥

∥+ d
(

xn(t
n
i ), C(t

n
i )
)

+ v(t)− v(tni )

=

∫ t

tni

(

2r(x0)α(s) + v̇(s)
)

ds+ v(t)− v(tni ).

Fix any t ∈ I. From the latter inequality and (1.15) it ensures that

d
(

xn(t), C(t)
)

≤ 2

∫ t

θ̂n(t)

(

r(x0)α(s) + v̇(s)
)

ds,

so, according to (1.16)
d
(

xn(t), C(t)
)

−→
n→∞

0.

This allows us to write

xn(t) = cn(t) + en(t) with cn(t) ∈ C(t) and en(t) → 0,

choose a real ρ1 > 0 such that ‖en(t)‖ ≤ ρ1 for all n. By (1.31), we have also
for all n

‖xn(t)‖ ≤ ‖x0‖+

∫ t

T0

(

2r(x0)α(s) + v̇(s)
)

ds =: ρ2.
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For r := ρ1 + ρ2, we obtain

cn(t) ∈ C(t) ∩ rB

hence the set {cn(t) : n ∈ N} is relatively compact in (H, ‖ · ‖) thanks to
the ball-compactness of C(t). Using this and the convergence en(t) → 0,
we immediately see that the set {xn(t) : n ∈ N} is relatively compact in
(H, ‖ · ‖). On the other hand, we observe that

∫

S

(

2r(x0)α(s) + |v̇(s)|
)

ds→ 0 as λ(S) → 0,

where λ denotes the Lebesgue measure. This is equivalent to saying that for
all ε > 0 there exists δ > 0 such that

∫

S

(

2r(x0)α(s) + |v̇(s)|
)

ds < ε

whenever λ(S) < δ. It is then obvious to see through the latter inequality
and through (1.31) that the sequence (xn) is equi-continuous. Then it follows
from Arzela-Ascoli’s theorem that the sequence (xn) admits a subsequence
converging uniformly to some mapping x ∈ CH(I) .

Thanks to (1.34) and (1.33) the sequence (ẋn)n and (fn)n are bounded
by a function in L1

R+
(I) . By extracting subsequences we may suppose that

fn(·) → f(·) and ẋn(·) → u(·), both convergences being obtained weakly in
L1
H(I), for some f(·) and some u(·) in L1

H(I). Thus, for any t ∈ I,

xn(t) = x0 +

∫ t

T0

ẋn(s)ds = x0 +

∫ T

T0

ẋn(s)11[0,t](s)ds.

Since the sequence (xn(t)) converges in H to x(t), we may pass to the limit
to obtain

x(t) = x0 +

∫ T

T0

u(s)11[0,t](s)ds = x0 +

∫ t

T0

u(s)ds.

Consequently x is absolutely continuous with ẋ(t) = u(t) for almost all t ∈ I
and hence

ẋn(·) → ẋ(·) weakly in L1
H(I).(1.36)

Thanks to (1.16) and the uniform convergence of xn(·) to x(·), we get
xn(θn(t)) converges to x(t) for each t ∈ I. Note also that, due to the fact
that d

(

xn(t), C(t)
)

converges to 0 on I, we have x(t) ∈ C(t) for all t ∈ I.
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Step 3. Now, it remains to prove that x(·) is a solution of (E).
Due to the fact that (fn(·)) and (ẋn(·)) converge both weakly in L1

H(I) to
f(·) and ẋ(·) respectively, according to Mazur’s lemma, there is a sequence
(zn(·), φn(·))n which converges strongly in L1

H(I) to
(

ẋ(·)− f(·), f(·)
)

with

zn ∈ co {ẋk − fk : k ≥ n} and φn ∈ co {fk : k ≥ n},

for each n ≥ 1. Extract a subsequence (that we dot not relabel) (zn(·), φn(·))n
converging to (ẋ(·) − f(·), f(·)) a.e.. This yields some fixed Lebesgue negli-
gible set N ⊂ I such that for each t ∈ I\N we have (zn(t), φn(t))n converges
to (ẋ(t)− f(t), f(t)) and thus,

(1.37) ẋ(t)− f(t) ∈
⋂

n

co
{

ẋk(t)− fk(t) : k ≥ n
}

(1.38) f(t) ∈
⋂

n

co
{

fk(t) : k ≥ n
}

.

Fix t ∈ I\N and for any n ∈ N, using (1.30), (1.35) and putting η :=
r(x0)α(t) + |v̇(t)|, we get by (1.6) and Lemma 1.2.1

ẋn(t)− fn(t) ∈ −Nη

C
(

θn(t)
)

(

xn
(

θn(t)
)

)

= −η∂d
C
(

θn(t)
)

(

xn
(

θn(t)
)

)

.

Hence, by (1.37) and for all ξ ∈ H we have

〈ξ, ẋ(t)− f(t)〉 ≤ sup
k≥n

〈ξ, ẋk(t)− fk(t)〉 ≤ sup
k≥n

σ

(

ξ,−η∂d
C
(

θk(t)
)

(

xk
(

θk(t)
)

)

)

〈ξ, ẋ(t)− f(t)〉 ≤ lim
n→∞

sup
k≥n

σ

(

ξ,−η∂d
C
(

θk(t)
)

(

xk
(

θk(t)
)

)

)

thus

〈ξ, ẋ(t)− f(t)〉 ≤ lim sup
n→∞

σ

(

ξ,−η∂d
C
(

θn(t)
)

(

xn
(

θn(t)
)

)

)

or equivalently

〈−ξ,−ẋ(t) + f(t)〉 ≤ lim sup
n→∞

σ

(

− ξ, η∂d
C
(

θn(t)
)

(

xn
(

θn(t)
)

)

)

.

Since xn
(

θn(t)
)

∈ C
(

θn(t)
)

along with θn(t) → t and xn
(

θn(t)
)

→ x(t) ∈
C(t) as n→ ∞, the latter inequality entails by Proposition 1.2.1 that

〈−ξ,−ẋ(t) + f(t)〉 ≤ σ
(

− ξ, η∂dC(t)

(

x(t)
)

)
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or equivalently

〈ξ, ẋ(t)− f(t)〉 ≤ σ
(

ξ,−η∂dC(t)

(

x(t)
)

)

.

Since ∂dC(t)(x(t)) is convex and closed for each t ∈ I \N , we deduce that

ẋ(t)− f(t) ∈ −η∂dC(t)(x(t)) ⊂ −NC(t)(x(t)).(1.39)

It is not difficult to see that f(t) ∈ Γ(t, x(t)). Indeed, it result from (1.38)
and (1.32) that for all ξ ∈ H

〈ξ, f(t)〉 ≤ sup
k≥n

〈ξ, fk(t)〉 ≤ sup
k≥n

σ

(

ξ,Γ
(

t, xk
(

θ̂k(t)
)

)

)

,

thus

〈ξ, f(t)〉 ≤ lim sup
n→∞

σ

(

ξ,Γ
(

t, xn
(

θ̂n(t)
)

)

)

.

By the convergence of xn(θ̂n(t)) to x(t) and the upper semicontinuity of
u 7→ σ

(

ξ,Γ(t, u)
)

, we have, for all t ∈ I \N , for any ξ ∈ H,

〈ξ, f(t)〉 ≤ σ
(

ξ,Γ
(

t, x(t)
)

)

.

As Γ(t, x(t)) is closed and convex, we conclude that, for all t ∈ I \N ,

f(t) ∈ Γ(t, x(t)).

This, along with (1.39), implies for all t ∈ I \N

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

,

and hence x is a solution of the constrained differential inclusion (E).

II. In this second part II, we consider the case where
∫ T

T0

α(s)ds >
1

4
.

Taking ε = 1
4
there exists δ > 0 such that for any Lebesgue measurable

subset S ⊂ [T0, T ] with λ(S) < δ we have
∫

S
α(s)ds ≤ 1

4
. Choose some

integer N ≥ 1 such that T−T0

N
≤ δ and consider a subdivision of I given by

T0 < T1 < · · · < TN = T with Ti = T0 +
i(T−T0)

N
where 0 ≤ i ≤ N . Of course,

for any 0 ≤ i ≤ N − 1, we have
∫ Ti+1

Ti

α(s)ds ≤
1

4
.
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Thanks to the part I, there are an absolutely continuous mapping x1 :
[T0, T1] → H and an integrable mapping f1 : [T0, T1] → H such that x1(t) ∈
C(t) for all t ∈ [T0, T1], f1(t) ∈ Γ(t, x1(t)) for almost all t ∈ [T0, T1] and







ẋ1(t) ∈ −NC(t)

(

x1(t)
)

+ f1(t) a.e. t ∈ [T0, T1]

x1(T0) = x0.

Likewise, according to the part I, there exists an absolutely continuous
mapping x2 : [T1, T2] → H and a integrable mapping f2 : [T1, T2] → H
such that x2(t) ∈ C(t) for all t ∈ [T1, T2], f2(t) ∈ Γ(t, x2(t)) for almost all
t ∈ [T1, T2] and







ẋ2(t) ∈ −NC(t)

(

x2(t)
)

+ f1(t) a.e. t ∈ [T1, T2]

x2(T1) = x1(T1).

Inductively, there exists a finite sequence of absolutely continuous map-
pings xi : [Ti−1, Ti] → H and a finite sequence of integrable mappings
fi : [Ti−1, Ti] → H with 1 ≤ i ≤ N , such that xi(t) ∈ C(t) for all t ∈ [Ti−1, Ti],
fi(t) ∈ Γ(t, xi(t)) for almost all t ∈ [Ti−1, Ti] and







ẋi(t) ∈ −NC(t)

(

xi(t)
)

+ fi(t) a.e. t ∈ [Ti−1, Ti]

xi(Ti−1) = xi−1(Ti−1).
(1.40)

Now, let x, f be the mappings from I into H, defined by

x(t) := xi(t) for all t ∈ [Ti−1, Ti],

and
f(t) := fi(t) for all t ∈]Ti−1, Ti]

where 1 ≤ i ≤ N . Obviously, x is an absolutely continuous mapping such
that x(t) ∈ C(t) for all t ∈ I and f is integrable over I with f(t) ∈ Γ(t, x(t))
for almost all t ∈ I. Therefore, by (1.40) we obtain

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ f(t) a.e. t ∈ I

hence






ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

a.e. t ∈ I

x(T0) = x1(T0) = x0.

The proof is then complete.
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Theorem 1.2.2. Let real numbers T0 and T be fixed with 0 ≤ T0 < T .
Assume that the hypothesis (H2) and the following assertions hold for the
interval I = [T0, T ]:

G1 For each t ∈ I, C(t) is a nonempty compact subset of H and for an
absolutely continuous function v : I → R sucht that, for any y ∈ H
and s, t ∈ I

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |v(t)− v(s)|;

G2 For any bounded subset S of H, there are αS and βS in L1
R+

(I) such
that

d
(

0,Γ(t, x)
)

≤ αS(t) + βS(t)‖x‖ for all (t, x) ∈ I × S.

Then, there exist an absolutely continuous mapping x : I → H which is a
solution on the whole interval I of the constrained differential inclusion (E)

Proof. On the one hand, by (G2), for any bounded subset S of H, there
are some αS, βS ∈ L1

R+
(I) such that for all (t, x) ∈ I × S, we have

(1.41) d
(

0,Γ(t, x)
)

≤ αS(t) + βS(t)‖x‖.

On the other hand, by (G1) we have, for each t ∈ I,

|d
(

y, C(t)
)

− d
(

y, C(T0)
)

| ≤ |v(t)− v(T0)|

≤ 2max
s∈I

|v(s)|.

Fixing any t ∈ I, we have, for all y ∈ C(t),

d
(

y, C(T0)
)

≤ 2max
s∈I

|v(s)|,

which clearly implies that

‖y‖ ≤ max
y0∈C(T0)

‖y0‖+ 2max
s∈I

|v(s)|,

hence,

y ∈
(

max
y0∈C(T0)

‖y0‖+ 2max
s∈I

|v(s)|
)

B.

Consequently, for every t ∈ I,

C(t) ⊂
(

max
y0∈C(T0)

‖y0‖+ 2max
s∈I

|v(s)|
)

B.
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Let a real r ≥ maxy0∈C(T0) ‖y0‖+2maxs∈I |v(s)|, and by (1.41) let α(·) and
β(·) in L1

R+
(I) such that for all (t, x) ∈ I×rB d

(

0,Γ(t, x)
)

≤ αS(t)+βS(t)‖x‖.
Then, for any t ∈ I and x ∈ C([T0, t]) we have

d
(

0,Γ(t, x)
)

≤ α(t) + β(t)‖x‖.

We can apply Theorem 1.2.1 to obtain a solution of the constrained
differential inclusion (E).

The results below are direct consequences of Theorem 1.2.1 and Theorem
1.2.2 respectively. Let two given set-valued mappings C : [T0,+∞[⇒ H and
Γ : [T0,+∞[×H ⇒ H, the latter being with nonempty closed convex values
which is L([T0,+∞[) ⊗ B(H) −measurable and upper semicontinuous with
respect to x ∈ H for almost all t ∈ [T0,+∞[. They are required to satisfy
the following assumptions:

(H1∞) For each t ∈ [T0,+∞[, C(t) is a nonempty ball-compact subset of
H; there exists a nondecreasing locally absolutely continuous function
v : [T0,+∞[→ R+ (that is, absolutely continuous on each compact
subinterval of [T0,+∞[) such that, for any y ∈ H and s, t ∈ [T0,+∞[
with s ≤ t

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ v(t)− v(s);

(H2∞) The family
(

C(t)
)

t∈[T0,+∞[
is equi-uniformly subsmooth;

(H3∞) The set-valued mapping Γ satisfies the growth condition

d
(

0,Γ(t, x)
)

≤ α(t)(1 + ‖x‖)

for all t ∈ [T0,+∞[ and all x ∈ C([T0, t]) :=
⋃

T0≤s≤t

C(s), where α :

[T0,+∞[→ R+ is a locally integrable function on [T0,+∞[ (that is,
integrable on each compact subinterval of [T0,+∞[).

Corollaire 1.2.1. Given a real number T0 ≥ 0. Assume that H1∞,H2∞,H3∞

hold. Then, there exists a locally absolutely continuous mapping x(·) from
[T0,+∞[ into H which is a solution on the whole interval [T0,+∞[ of the
constrained differential inclusion

(E∞)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

a.e t ∈ [T0,+∞[

x(t) ∈ C(t) ∀t ∈ [T0,+∞[

x(T0) = x0 ∈ C(T0).
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Proof. We adapt the arguments of the part II in the proof of Theorem
1.2.1.

Put Tk = T0 + k for all k ∈ N. From Theorem 1.2.1 there exists an
absolutely continuous mapping x0 : [T0, T1] → H and a integrable mapping
f 0 : [T0, T1] → H such that x0(t) ∈ C(t) for all t ∈ [T0, T1] and f 0(t) ∈
Γ(t, x0(t)) for almost all t ∈ [T0, T1] and







ẋ0(t) ∈ −NC(t)

(

x0(t)
)

+ f 0(t) a.e. t ∈ [T0, T1]

x0(T0) = x0.

Suppose x0, · · · , xk−1 have been constructed such that, for p = 0, · · · , k−
1, up : [Tp, Tp+1] → H is an absolutely continuous, f p : [Tp, Tp+1] → H is
an integrable mapping with f p ∈ Γ(t, xp(t)) for almost all t ∈ [Tp, Tp+1],
xp(Tp) = xp−1(Tp), x

p ∈ C(t) for all t ∈ [Tp, Tp+1] and

ẋp(t) ∈ −NC(t)

(

xp(t)
)

+ f p(t) a.e. t ∈ [Tp, Tp+1].

Likewise, according to Theorem 1.2.1 again, there are an absolutely con-
tinuous mapping xk : [Tk, Tk+1] → H and an integrable mapping fk :
[Tk, Tk+1] → H such that xk(t) ∈ C(t) for all t ∈ [Tk, Tk+1], f

k(t) ∈ Γ(t, xk(t))
for almost all t ∈ [Tk, Tk+1] and







ẋk(t) ∈ −NC(t)

(

xk(t)
)

+ fk(t) a.e. t ∈ [Tk, Tk+1]

xk(Tk) = xk−1(Tk).
(1.42)

So, we obtain by induction xk for all k ∈ {0} ∪N with the above properties.
Now, let x and f be two mappings from [T0,+∞[ into H, defined by

x(t) := xk(t), f(t) := fk(t) for all t ∈ [Tk, Tk+1[ with k ∈ {0} ∪ N.

Obviously, the mapping x is locally absolutely continuous on [T0,+∞[ such
that x(t) ∈ C(t) for all t ∈ [T0,+∞[ and f is locally integrable on [T0,+∞[
with f(t) ∈ Γ(t, x(t)) for almost all t ∈ [T0,+∞[. Therefore, from (1.42) we
obtain

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ f(t) a.e. t ∈ [T0,+∞[

thus,






















ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t, x(t)
)

a.e. t ∈ [T0,+∞[

x(t) ∈ C(t) ∀t ∈ [T0,+∞[

x(T0) = x0(T0) = x0.

The proof is then complete.
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Corollaire 1.2.2. Let real number T0 ≥ 0 be fixed. Assume that the hypoth-
esis (H2∞) and the following assertions hold:

• For each t ∈ [T0,+∞[, C(t) is a nonempty compact subset of H and
for a locally absolutely continuous function v : [T0,+∞[→ R sucht that,
for any y ∈ H and s, t ∈ I

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |v(t)− v(s)|;

• For any bounded subset S of H, there are αS and βS : [T0,+∞[→ R+,
which are locally integrable on [T0,+∞[ such that

d
(

0,Γ(t, x)
)

≤ αS(t) + βS(t)‖x‖ for all (t, x) ∈ [T0,+∞[×S.

Then, there exist a locally absolutely continuous mapping x : [T0,+∞[→ H
which is a solution on the whole interval [T0,+∞[ of the constrained differ-
ential inclusion (E∞)
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sion finie, Sém. Anal. Convexe Montpellier (1988), Exposé No. 8.
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Chapter 2
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process with subsmooth sets
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Abstract. Recently, D. Aussel, A. Daniilidis and L. Thibault
introduced a new class of sets, called subsmooth sets, in varia-
tional analysis (see, [1]). Subsmooth sets turn out to be naturally
situated between the class of prox-regular sets and the classes of
nearly radial sets and of weakly regular sets. The latter classes
have been introduced by Lewis in 2002 and by Jourani in 2006,
respectively. Motivated by the study of differential inclusions de-
fined by nonconvex and non prox-regular sweeping process, we
prove an existence of solutions, even in the presence of a delay,
for perturbed differential inclusions governed by subsmooth sets.

Keyword : Subsmooth set; Differential inclusion; Sweeping process;
Normal cone; Subdifferential
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Introduction

In this paper, our aim is the study of a nonconvex and non prox-regular
perturbed sweeping process with time delay in an infinite dimensional Hilbert
space, that is, the differential inclusion of the form

(2.1)























ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t,Λ(t)x
)

a.e t ∈ [0, T ]

x(t) ∈ C(t) for all t ∈ [0, T ],

x(s) = ϕ(s) ∀s ∈ [−r, 0],

where NC(t)(·) denotes a general normal cone to the set C(t). Let us describe
the elements and concepts involved in (2.1). Let H be a real Hilbert space,
T > 0 be a real number, and C be a set-valued mapping from [0, T ] into
H, with nonempty closed values moving in an absolutely continuous way.
Given a finite delay r ≥ 0, we consider the spaces C0 := CH(−r, 0) and
CT := CH(−r, T ) endowed with the norm of the uniform convergence ‖ · ‖∞,0

and ‖ · ‖∞,T respectively. With any t ∈ [0, T ], we associate the mapping Λ(t)
from CT into C0 defined, for all x ∈ CT , by

(2.2) Λ(t)x(s) := x(t+ s) for all s ∈ [−r, 0].

Let Γ : [0, T ] × C0 ⇒ H be a set-valued mapping with nonempty convex
compact values satisfying the linear growth condition

Γ(t, φ) ⊂ α(t)(1 + ‖φ‖∞,0)B for all (t, φ) ∈ [0, T ]× C0,(2.3)

where α ∈ L1
R+

(T0, T ) and B is the closed unit ball of H, and let ϕ be a
fixed member of C0 such that ϕ(0) ∈ C(0). A solution of (2.1) is a mapping
x : [−r, T ] → H which is absolutely continuous on [0, T ] with x|[−r,0] = ϕ
and which satisfies the first inclusion of (2.1) for almost every t ∈ [0, T ] and
the second inclusion for all t ∈ [0, T ].

Castaing and Monteiro Marques showed in [3] the existence of a solution of
the above differential inclusion (2.1), under some conditions. Among others,
Γ in [3] has all its values included in a fixed bounded set and C is Lipschitz
and takes on convex compact values. Thibault [17] proved that, in the finite
dimensional context, the problem above has always a solution for general
subsets C(t) and for Γ satisfying

Γ(t, φ) ⊂ α(t)B for all (t, φ) ∈ [0, T ]× C0,

provided that NC(t)(x(t)) is taken as the Clarke normal cone. Recently, in
[4] Castaing, Salvadori and Thibault showed, in finite dimensional, the exis-
tence of a solution of (2.1) when the sets C(t) are bounded and r-prox-regular
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(r > 0), with Γ satisfies (2.3). On the other hand, in the infinite dimensional
setting, Bounkhel and Yarou [2] showed the existence of a solution for this
differential inclusion when the set-valued mapping Γ has all its values con-
tained in a fixed bounded set and the sets C(t) are r-prox-regular and norm
compact. Later, this problem has been studied by Edmond [9] with the case
where C(t) is bounded and r-prox-regular and Γ satisfies (2.3) with B re-
placed by a fixed compact set. In [10] and other existence result is proved
when the sets C(t) are r-prox-regular in an infinite dimensional Hilbert space
and Γ is a single -valued mapping Lipschitz with respect to φ and satisfying
(2.3).

The present paper provides an existence result for (2.1) in the infinite
dimensional Hilbert setting where the sets C(t) are supposed to be equi-
subsmooth. The class of such sets is strictly bigger than of prox-regular sets
(see [1]). It is also connected with the class of nearly radial sets of Lewis
[12] and with the class of weakly regular sets of Jourani [11] (see [8]). The
paper is structured as follows. In section 1, we give notation which will be
used throughout the paper and we recall some definitions and results, in
particular, on the Clarke (respectively, Fréchet) normal cone. In section 2,
we prove the main theorem of the paper, that is, existence of solution of the
differential inclusion (2.1) under the subsmoothness property of the sets C(t)
and under a relaxation of the assumption (2.3).

2.1 Preliminaries

Throughout the paper H is a real separable Hilbert space whose inner prod-
uct is denoted by 〈·, ·〉 and the associated norm by ‖ · ‖. The closed unit ball
of H with center 0 will be denoted by B and B(u, η) (respectively, B[u, η])
denotes the open (respectively, closed) ball of center u ∈ H and radius η > 0.
Given two reals r, T > 0, we will denote by CT := CH(−r, T ) (respectively,
C0 := CH(−r, 0) ) the space of all continuous mappings from [−r, T ] into
H (respectively, [−r, 0] into H). The norm of uniform convergence on CT
(respectively, C0 ) will be denoted by ‖ · ‖∞,T (respectively, ‖ · ‖∞,0), ”a.e”
denotes ”for almost every” and ẋ is the derivative of x.

Let C,C ′ be two subsets of H and let v be a vector in H, the real d(v, C)
or dC(v) := inf{‖v − u‖ : u ∈ C} is the distance of the point v from the set
C. We denote by

Haus(C,C ′) = max
{

sup
u∈C

d(u, C ′), sup
v∈C′

d(v, C)
}

the Hausdorff distance between C and C ′. For v ∈ H the projection of v into
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C ⊂ H is the set

Proj C(v) := {u ∈ C : dC(v) = ‖v − u‖}.

This set is nonempty when C is ball-compact. Recall that a subset S of
(H, ‖ · ‖) is ball-compact provided that S ∩ rB is compact in (H, ‖ · ‖) for
every real r > 0. Obviously any ball-compact set is norm closed, and in finite
dimensions S is ball-compact if and only if it is closed. When h ∈ Proj C(v),
then we have v − h ∈ Np

C(h) where N
p
C(·) denotes the proximal normal cone

of C (see, [6]).
For a nonempty interval J of R, we recall that a set-valued mapping

F : J ⇒ H is called Lebesgue measurable if for each open set U ⊂ H the
set F−1(U) := {t ∈ J : F (t) ∩ U 6= ∅} is Lebesgue measurable. When the
values of F are closed subsets of H, we know (see [5]) that the Lebesgue
measurability of F is equivalent to the measurability of the graph of F , that
is,

gphF ∈ L(J )⊗ B(H),

where L(J ) denotes the Lebesgue σ-field of J , B(H) the Borel σ-field of H,
and

gphF :=
{

(t, u) ∈ J ×H : u ∈ F (t)
}

.

For any subset C of H, coC stands for the closed convex hull of C, and
σ(·, C) represents the support function of C, that is, for all ξ ∈ H,

σ(ξ, C) := sup
u∈C

〈ξ, u〉.

If C is a nonempty subset of H, the Clarke normal cone N(C; u) or NC(u)
of C at u ∈ C is defined by

NC(u) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC(u)},

where the Clarke tangent cone T (C; u) or TC(u) (see [7]) is defined as follows:

v ∈ TC(u) ⇔







∀ε > 0, ∃δ > 0 such that

∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.

Equivalently, v ∈ TC(u) if and only if for any sequence (un)n of C converging
to u and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

un + tnvn ∈ C for all n ∈ N.
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We put NC(u) = ∅, whenever u /∈ C. For any η > 0 we denote by Nη
C(u) the

truncated Clarke normal cone, that is,

Nη
C(u) = NC(u) ∩ ηB.

We typically denote by f : H → R ∪ {+∞} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential ∂f(u) of f at a point
u (where f is finite) is defined by

∂f(u) =
{

ξ ∈ H : (ξ,−1) ∈ Nepi f

(

(

u, f(u)
)

)}

,

where epi f denotes the epigraph of f , that is,

epi f = {(u, r) ∈ H × R : f(u) ≤ r}.

We also put ∂f(u) = ∅ if f is not finite at u ∈ H. If ψC denotes the indicator
function of the set C, that is, ψC(u) = 0 if u ∈ C and ψC(u) = +∞ otherwise,
then

∂ψC(u) = NC(u) for all u ∈ H.

The Clarke subdifferential ∂f(u) of a locally Lipschitz function f at u has
also the other useful description

∂f(u) = {ξ ∈ H : 〈ξ, v〉 ≤ f 0(u, v), ∀v ∈ H},

where

f 0(u, v) := lim sup
(u′,t)→(u,0+)

f(u′ + tv)− f(u′)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([7]) to be related to the Clarke
subdifferential of the distance function through the equality

NC(u) = clw(R+∂dC(u)) for all u ∈ C,

where R+ := [0,∞[ and clw denotes the closure with respect to the weak
topology of H. Further

∂dC(u) ⊂ NC(u) ∩ B for all u ∈ C.

The concept of Fréchet subdifferential will be also needed. A vector ξ ∈ H
is said to be in the Fréchet subdifferential ∂Ff(u) of f at u (see [14, 16])
provided that for every ε > 0 there exists δ > 0 such that for all u′ ∈ B(u, δ)
we have

〈ξ, u′ − u〉 ≤ f(u′)− f(u) + ε‖u′ − u‖.
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It is known that we always have the inclusion

∂Ff(u) ⊂ ∂f(u).

The Fréchet normal cone of C at u ∈ C is given by

NF
C (u) = ∂FψC(u),

so the following inclusion always holds true

NF
C (u) ⊂ NC(u) for all u ∈ C.

On the other hand, the Fréchet normal cone is also related to the Fréchet
subdifferential of the distance function since the following relations hold true
for all u ∈ C

NF
C (u) = R+∂FdC(u)

and

∂FdC(u) = NF
C (u) ∩ B.(2.4)

Another important property is

(2.5) v − u ∈ NF
C (u) hence also v − u ∈ NC(u)

whenever u ∈ Proj C(v), since N
p
C(u) ⊂ NF

C (u).

2.2 Subsmoothness and variational inequal-

ity

This section is devoted to the study of a perturbed sweeping process whose
perturbation is a set-valued mapping involving a delay. We first recall the
definition of subsmooth sets in [1]. In this way we define the equi-uniformly
subsmooth property for a family of closed sets of H.

Definition 2.2.1. A closed set C ⊂ H is called subsmooth at u0 ∈ C, if for
every ε > 0 there exists δ > 0 such that for all u1, u2 ∈ B(u0, δ) ∩ C and all
ξi ∈ NC(ui) ∩ B, i = 1, 2 we have

〈ξ1 − ξ2, u1 − u2〉 ≥ −ε‖u1 − u2‖.(2.6)

The set C is called subsmooth, if it is subsmooth at every u0 ∈ C.
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We further say that C is uniformly subsmooth, if for every ε > 0 there
exists δ > 0, such that (2.6) holds for all u1, u2 ∈ C satisfying ‖u1 − u2‖ < δ
and all ξi ∈ NC(ui) ∩ B.

The class of subsmooth sets strictly contains that of prox-regular sets
introduced in [16] and is connected with the class of nearly radial sets of [12]
and with the class of weakly regular sets of [11], see [8].

Definition 2.2.2. Let E be a nonempty set. We say that a family (C(t))t∈E
of closed sets of H is equi-uniformly subsmooth, if for every ε > 0, there exists
δ > 0 such that (2.6) holds for any t ∈ E and all u1, u2 ∈ C(t) satisfying
‖u1 − u2‖ < δ and all ξi ∈ NC(t)(ui) ∩ B.

Given two set-valued mappings C : [0, T ] ⇒ H and Γ : [0, T ] × C0 ⇒ H,
we shall deal with the differential inclusion defined as follows:

(Er)























ẋ(t) ∈ −NC(t)(x(t)) + Γ(t,Λ(t)x) a.e t ∈ [0, T ];

x(t) ∈ C(t) ∀t ∈ [0, T ];

x(·) = ϕ(·) in [−r, 0],

where Λ(t) is the mapping from CT into C0 defined, for all x ∈ CT , by
Λ(t)x(s) := x(t + s) for all s ∈ [−r, 0] and ϕ is a member of C0 such that
ϕ(0) ∈ C(0).

We are going to investigate the existence of solutions for the above differ-
ential inclusion. We call solution of (Er) any mapping x : [−r, T ] → H such
that

1. for any s ∈ [−r, 0], we have x(s) = ϕ(s);

2. x(t) ∈ C(t) for all t ∈ [0, T ];

3. the restriction x|[0,T ] of x is absolutely continuous and its derivative
satisfies the inclusion

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t,Λ(t)x
)

a.e t ∈ [0, T ].

The hypotheses concerning the set C(t) and the set-valued mapping Γ
with which we shall work are the following:

(H1) For each t ∈ [0, T ], C(t) is a nonempty ball-compact subset of H; the
set C(t) moves in an absolutely continuous way, that is, there exists a
nondecreasing absolutely continuous function v(·) : [0, T ] → R+ such
that, for any y ∈ H and s, t ∈ [0, T ]

|d
(

y, C(t)
)

− d
(

y, C(s)
)

| ≤ |v(t)− v(s)|;
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(H2) The family (C(t))t∈[0,T ] is equi-uniformly subsmooth;

(H3) The set-valued mapping Γ, with nonempty convex closed values, is
L([0, T ])⊗B(C0)−measurable and upper semicontinuous with respect
to φ ∈ C0 for almost all t ∈ [0, T ] and, for some integrable nonnegative
function α(·) over [0, T ] such that.

d
(

0,Γ(t, φ)
)

≤ α(t)(1 + ‖φ‖∞,0) for all t ∈ [0, T ] and all φ ∈ C0.

Theorem 2.2.1. Assume that (H1), (H2) and (H3) hold. Then, for any ϕ
in C0 with ϕ(0) ∈ C(0), the differential inclusion (Er) has a solution.

The following results will be used in the proof of Theorem 2.2.1.

Lemma 2.2.1. [13] If a closed set C of H is subsmooth at u0 ∈ C, then

∂dC(u0) = ∂FdC(u0)

and
NC(u0) = NF

C (u0).

Lemma 2.2.2. [13] Let E be a metric space and let (C(t))t∈E be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
η > 0. Let Q ⊂ E and s0 ∈ clQ. Then the following hold:

(a) For all (s, u) ∈ gphC we have η∂dC(s)(u) ⊂ ηB;

(b) For any net (sj)j∈J in Q converging to s0, any net (uj)j∈J converging
to u ∈ C(s0) in (H, ‖ · ‖) with uj ∈ C(sj) and dC(sj)(y) →

j∈J
0 for every

y ∈ C(s0) , and any net (ζj)j∈J converging weakly to ζ in (H,w(H,H))
with ζj ∈ η∂dC(sj)(uj), we have ζ ∈ η∂dC(s0)(u).

From Lemma 2.2.2 we easily deduce, thanks to properties of upper semi-
continuous set-valued mappings (see [5]), the following proposition.

Proposition 2.2.1. [13] Let I be a nonempty interval of R and let (C(t))t∈I
be a family of nonempty closed sets of H which is equi-uniformly subsmooth
and let a real η > 0. Assume that there exists a continuous function v : I →
R+ such that, for any y ∈ H and s, t ∈ I with s ≤ t,

d
(

y, C(t)
)

≤ d
(

y, C(s)
)

+ v(t)− v(s).

Then the following assertions hold:

(a) For all (s, u) ∈ gphC we have η∂dC(s)(u) ⊂ ηB;
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(b) For any sequence (sn)n in I converging to s with sn ≥ s, any sequence
(un)n converging to u ∈ C(s) with un ∈ C(sn), and any ξ ∈ H, we have

lim sup
n→∞

σ
(

ξ, η∂dC(sn)(un)
)

≤ σ
(

ξ, η∂dC(s)(u)
)

.

Proof of Theorem 2.2.1.

I. We suppose that

∫ T

0

α(s)ds <
1

4
.(2.7)

We are going to construct a sequence of mappings (xn) in CT which ad-
mits a subsequence which converges uniformly on [−r, T ] to a solution of (Er).

Step 1. Construction of the sequence (xn).
For any t ∈ [0, T ], consider the single-valued mapping Λ̂(t) : Ct → C0 defined,
for all ξ ∈ Ct := CH(−r, t) by

Λ̂(t)ξ(s) := ξ(t+ s) ∀s ∈ [−r, 0].

Observe first by (H3) that there is some α ∈ L1
R+

(T0, T ) such that for all
(t, φ) ∈ [0, T ]× C0, we have

d
(

0,Γ(t, φ)
)

≤ α(t)
(

1 + ‖φ‖∞,0

)

.(2.8)

We will introduce a discretization, inspired by the one used in [3]. We define
the mapping un0 : [−r, 0] → H by

un0 (s) = ϕ(s) ∀ s ∈ [−r, 0].

For any integer n ≥ 1, consider the partition of [0, T ] defined by the points
tnj = j T

n
(j = 0, · · · , n). For t ∈ [0, T ] and J := {1, · · · , n}, we define the

mappings

θn(t) =







tnj−1 if t ∈ ]tnj−1, t
n
j ], j ∈ J,

0 if t = 0,
(2.9)

θ̂n(t) =







tnj if t ∈ [tnj−1, t
n
j [, j ∈ J,

T if t = T.
(2.10)
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Observe that for each t ∈ [0, T ], choosing j such that t ∈ [tnj−1, t
n
j [ if t < T

and j = n if t = T , we have

|θ̂n(t)− t| ≤ |tnj − tnj−1| =
T

n

and similarly, we have |θn(t)− t| ≤ T
n
, then

θn(t) → t, θ̂n(t) → t.(2.11)

Put un0 (t
n
0 ) = ϕ(tn0 ) =: pn0 ∈ C(tn0 ). Let fn

1 be the mapping from [tn0 , t
n
1 ]

into H given by fn
1 (t) as the element of minimal norm of Γ(t, Λ̂(tn0 )u

n
0 ), that

is,
fn
1 (t) = Proj

Γ
(

t,Λ̂(tn
0
)un

0

)(0) for all t ∈ [tn0 , t
n
1 ].

The mapping fn
1 is measurable according to the measurability of the set-

valued mapping Γ(·, Λ̂(tn0 )u
n
0 ). Thanks to (2.8) we get

‖fn
1 (t)‖ ≤ (1 + ‖Λ̂(tn0 )u

n
0‖∞,0)α(t) for all t ∈ [tn0 , t

n
1 ].

Since ‖Λ̂(tn0 )u
n
0‖∞,0 = ‖ϕ‖∞,0, we obtain

‖fn
1 (t)‖ ≤ (1 + ‖ϕ‖∞,0)α(t) for all t ∈ [tn0 , t

n
1 ].(2.12)

So, fn
1 is bounded by a function in L1

R+
(0, T ), hence fn

1 ∈ L1
H(t

n
0 , t

n
1 ).

The ball-compactness of C(t) ensures that

Proj C(tn
1
)

(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds

)

6= ∅.

Then, we can choose a point pn1 in Proj C(tn
1
)

(

pn0 +
∫ tn

1

tn
0

fn
1 (s)ds

)

, hence pn1 ∈

C(tn1 ) and

∥

∥

∥
pn1 −

(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds

)∥

∥

∥
= d

(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds, C(t

n
1 )
)

.
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So, according to (H1) and the inclusion pn0 ∈ C(tn0 ), we have

∥

∥

∥
pn1 −

(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds

)∥

∥

∥

≤ d
(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds, C(t

n
0 )
)

+ v(tn1 )− v(tn0 )

≤ d
(

pn0 , C(t
n
0 )
)

+
∥

∥

∥

∫ tn
1

tn
0

fn
1 (s)ds

∥

∥

∥
+ v(tn1 )− v(tn0 )

≤

∫ tn
1

tn
0

‖fn
1 (s)‖ds+

∫ tn
1

tn
0

v̇(s)ds.

By (2.12), it follows that

∥

∥

∥
pn1 −

(

pn0 +

∫ tn
1

tn
0

fn
1 (s)ds

)∥

∥

∥
≤

∫ tn
1

tn
0

(

(1 + ‖ϕ‖∞,0)α(s) + v̇(s)
)

ds.

For all t ∈ [tn0 , t
n
1 ], we define

zn1 (t) = pn0 +
ϑn
1 (t)− ϑn

1 (t
n
0 )

ϑn
1 (t

n
1 )− ϑn

1 (t
n
0 )

(

pn1 − pn0 −

∫ tn
1

tn
0

fn
1 (s)ds

)

+

∫ t

tn
0

fn
1 (s)ds,

where

ϑn
1 (t) :=

∫ t

tn
0

(

(1 + ‖ϕ‖∞,0)α(s) + v̇(s)
)

ds.

Note that zn1 (t
n
0 ) = ϕ(tn0 ) = pn0 and zn1 (t

n
1 ) = pn1 . Let us consider the mapping

un1 (·) : [−r, t
n
1 ] → H defined by

un1 (t) =







ϕ(t) if t ∈ [−r, tn0 ]

zn1 (t) if t ∈ [tn0 , t
n
1 ],

and let us observe that un1 is continuous on [−r, tn1 ] since z
n
1 (t

n
0 ) = ϕ(tn0 ) and

zn1 is obviously continuous.
Similarly as above, we choose a measurable mapping fn

2 from [tn1 , t
n
2 ] into

H such that fn
2 (t) ∈ Γ(t, Λ̂(tn1 )u

n
1 ) for all t ∈ [tn1 , t

n
2 ]. By (2.8), we have

‖fn
2 (t)‖ ≤ (1 + ‖Λ̂(tn1 )u

n
1‖∞,0)α(t) for all t ∈ [tn1 , t

n
2 ],
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and we observe that

‖Λ̂(tn1 )u
n
1‖∞,0 = sup

s∈[−r,0]

‖un1 (s+ tn1 )‖ = sup
s∈[−r+tn

1
,tn
1
]

‖un1 (s)‖

≤ sup
s∈[−r,tn

1
]

‖un1 (s)‖ = ‖un1‖∞,tn
1
.

Thus, for all t ∈ [tn1 , t
n
2 ] we have

‖fn
2 (t)‖ ≤ (1 + ‖un1‖∞,tn

1
)α(t),(2.13)

and this says in particular that fn
2 is integrable on [tn1 , t

n
2 ].

Again, due to the ball-compactness of C(t), we have

Proj C(tn
2
)

(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds

)

6= ∅.

Then, there exists a point pn2 in Proj C(tn
2
)

(

pn1+
∫ tn

2

tn
1

fn
2 (s)ds

)

, hence pn2 ∈ C(tn2 )

and
∥

∥

∥
pn2 −

(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds

)∥

∥

∥
= d

(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds, C(t

n
2 )
)

.

So, according to (H1) and the inclusion pn1 ∈ C(tn1 ), we have

∥

∥

∥
pn2 −

(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds

)∥

∥

∥

≤ d
(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds, C(t

n
1 )
)

+ v(tn2 )− v(tn1 )

≤ d
(

pn1 , C(t
n
1 )
)

+
∥

∥

∥

∫ tn
2

tn
1

fn
2 (s)ds

∥

∥

∥
+ v(tn2 )− v(tn1 )

≤

∫ tn
2

tn
1

‖fn
2 (s)‖ds+

∫ tn
2

tn
1

v̇(s)ds.

Taking (2.13) into account, it follows that

(2.14)
∥

∥

∥
pn2 −

(

pn1 +

∫ tn
2

tn
1

fn
2 (s)ds

)
∥

∥

∥
≤

∫ tn
2

tn
1

(

(1 + ‖un1‖∞,tn
1
)α(s) + v̇(s)

)

ds.

As previously, for each t ∈ [tn1 , t
n
2 ] we put

zn2 (t) = pn1 +
ϑn
2 (t)− ϑn

2 (t
n
1 )

ϑn
2 (t

n
2 )− ϑn

2 (t
n
1 )

(

pn2 − pn1 −

∫ tn
2

tn
1

fn
2 (s)ds

)

+

∫ t

tn
1

fn
2 (s)ds

84



where

ϑn
2 (t) :=

∫ t

tn
0

(

(

1 + ‖un1‖∞,tn
1

)

α(s) + v̇(s)
)

ds ∀t ∈ [tn0 , t
n
2 ],

so that zn2 (t
n
1 ) = zn1 (t

n
1 ) = pn1 . We consider the mapping un2 : [−r, tn2 ] → H by

un2 (t) =







ϕ(t) if t ∈ [−r, 0]

zni (t) if t ∈ [tni−1, t
n
i ], (i = 1, 2).

We observe that the restriction of un2 to [−r, tn1 ] coincides with u
n
1 and zn2 is

the restriction of un2 on [tn1 , t
n
2 ]. Further, we have zn2 (t

n
1 ) = un1 (t

n
1 ), thus u

n
2 is

continuous on [−r, tn2 ].
By repeating the process, we obtain the sequences (pnj ), (z

n
j (·)), (ϑ

n
j (·)),

mappings (unj (·)) continuous on [−r, tnj ] and mappings (fn
j (·)) integrable on

[tnj , t
n
j+1], satisfying for j ∈ J the following properties :

fn
j (t) ∈ Γ(t, Λ̂(tnj−1)u

n
j−1) ∀t ∈ [tnj−1, t

n
j ];(2.15)

pnj ∈ Proj C(tnj )

(

pnj−1 +

∫ tnj

tnj−1

fn
j (s)ds

)

;(2.16)

znj (t) = pnj−1 +
ϑn
j (t)− ϑn

j (t
n
j−1)

ϑn
j (t

n
j )− ϑn

j (t
n
j−1)

(

pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds

)

+

∫ t

tnj−1

fn
j (s)ds ∀t ∈ [tnj−1, t

n
j ]

and znj (t
n
j−1) = znj−1(t

n
j−1) = pnj−1, z

n
j (t

n
j ) = pnj ;

(2.17)

(2.18) ϑn
j (t) :=

∫ t

0

(

(

1 + ‖unj−1‖∞,tnj−1

)

α(s) + |v̇(s)|
)

ds ∀t ∈ [0, tnj ];

unj (t) =







ϕ(t) if t ∈ [−r, 0]

zni (t) if t ∈ [tni−1, t
n
i ], (1 ≤ i ≤ j)

(2.19)

‖Λ̂(tnj )u
n
j ‖∞,0 ≤ ‖unj ‖∞,tnj

;(2.20)

‖fn
j (t)‖ ≤

(

1 + ‖unj−1‖∞,tnj−1

)

α(t);(2.21)
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(2.22)
∥

∥

∥
pnj−p

n
j−1−

∫ tnj

tnj−1

fn
j (s)ds

∥

∥

∥
≤

∫ tnj

tnj−1

(

(

1+‖unj−1‖∞,tnj−1

)

α(s)+|v̇(s)|
)

ds.

Now, let us define xn : [−r, T ] → H and fn : [0, T [→ H by

xn(t) := unn(t) for all t ∈ [−r, T ],(2.23)

fn(t) := fn
j (t) for all t ∈ [tnj−1, t

n
j [, j ∈ J.(2.24)

By construction xn is continuous on [−r, T ]. Let us establish that xn is
absolutely continuous on [0, T ]. It clearly suffices to show that znj is absolutely
continuous on [tnj−1, t

n
j ], j ∈ J . Indeed, for any τ, t ∈ [tnj−1, t

n
j ], and τ < t, we

have

znj (t)− znj (τ) =
ϑn
j (t)− ϑn

j (τ)

ϑn
j (t

n
j )− ϑn

j (t
n
j−1)

(

pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds

)

+

∫ t

τ

fn
j (s)ds,

which ensures that

‖znj (t)−z
n
j (τ)‖ ≤

ϑn
j (t)− ϑn

j (τ)

ϑn
j (t

n
j )− ϑn

j (t
n
j−1)

∥

∥

∥
pnj−p

n
j−1−

∫ tnj

tnj−1

fn
j (s)ds

∥

∥

∥
+

∫ t

τ

‖fn
j (s)‖ds.

By (2.22) and (2.18)

∥

∥

∥
pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds

∥

∥

∥
≤ ϑn

j (t
n
j )− ϑn

j (t
n
j−1).(2.25)

It results from (2.18) and (2.21), that

‖znj (t)− znj (τ)‖ ≤

∫ t

τ

(

2
(

1 + ‖unj−1‖∞,tnj−1

)

α(s) + |v̇(s)|
)

ds.

This last inequality above holds for all τ, t ∈ [tnj−1, t
n
j ], j ∈ J with τ < t,

hence the mappings znj are absolutely continuous.

According to (2.9), (2.15) and (2.24), we have, by construction,

fn(t) ∈ Γ
(

t, Λ̂(θn(t))u
n
n−1

)

∀t ∈ [0, T [.

Using the mapping Λ(t) : CT → C0 defined in (2.2), it results that

fn(t) ∈ Γ
(

t,Λ(θn(t))xn
)

∀t ∈ [0, T ].(2.26)
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Thanks to (2.26), (2.8) and (2.20), we obtain

‖fn(t)‖ ≤ (1 + ‖xn‖∞,T )α(t) ∀t ∈ [0, T ].(2.27)

For any t ∈ [tnj−1, t
n
j ], j ∈ J , we have

xn(t) = pnj−1 +
ϑn
j (t)− ϑn

j (t
n
j−1)

ϑn
j (t

n
j )− ϑn

j (t
n
j−1)

(

pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds

)

+

∫ t

tnj−1

fn
j (s)ds,

(2.28)

hence for almost all t ∈ [tnj−1, t
n
j ], j ∈ J , we get

(2.29) ẋn(t) =
ϑ̇n
j (t)

ϑn
j (t

n
j )− ϑn

j (t
n
j−1)

(

pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds

)

+ fn
j (t).

For each j ∈ J , taking (2.25) and (2.24) into account, it follows that for
almost every t ∈ [tnj−1, t

n
j ]

‖ẋn(t)− fn(t)‖ ≤ ϑ̇n
j (t),

and thanks to the equality ϑ̇n
j (t) = (1+‖unj−1‖∞,tnj−1

)α(t)+ |v̇(t)| (see (2.18)),

we obtain for almost every t ∈ [tnj−1, t
n
j ]

‖ẋn(t)− fn(t)‖ ≤ (1 + ‖unj−1‖∞,tnj−1
)α(t) + |v̇(t)|.

Since unj−1 is the restriction of xn to [−r, tnj−1] we deduce that for almost
every t ∈ [tnj−1, t

n
j ]

‖ẋn(t)− fn(t)‖ ≤ (1 + ‖xn‖∞,T )α(t) + |v̇(t)|.

Consequently, for almost every t ∈ [0, T ] we have

‖ẋn(t)− fn(t)‖ ≤ (1 + ‖xn‖∞,T )α(t) + |v̇(t)|.(2.30)

Referring to (2.27), it results that

‖ẋn(t)‖ ≤ 2(1 + ‖xn‖∞,T )α(t) + |v̇(t)|.

As xn is absolutely continuous on [0, T ], it follows that, for any t ∈ [0, T ],

‖xn(t)− xn(0)‖ ≤

∫ t

0

(

2
(

1 + ‖xn‖∞,T

)

α(s) + |v̇(s)|
)

ds
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hence

‖xn(t)‖ ≤ ‖ϕ(0)‖+

∫ T

0

(

2
(

1 + ‖xn‖∞,T

)

α(s) + |v̇(s)|
)

ds

and thus

‖xn‖∞,T ≤ ‖ϕ‖∞,0 +

∫ T

0

(

2
(

1 + ‖xn‖∞,T

)

α(s) + |v̇(s)|
)

ds.

Referring to (2.7), we have

‖xn‖∞,T ≤ L− 1(2.31)

where

L :=
(

1− 2

∫ T

0

α(s)ds
)−1(

‖ϕ‖∞,0 +

∫ T

0

|v̇(s)|ds+
1

2

)

+ 1.

Then, (2.27) entails

‖fn(t)‖ ≤ Lα(t).(2.32)

Note that, by (2.30) and (2.31), for almost all t ∈ [0, T ],

‖ẋn(t)− fn(t)‖ ≤ Lα(t) + |v̇(t)|.(2.33)

We have also

‖ẋn(t)‖ ≤ 2Lα(t) + |v̇(t)|.(2.34)

We observe by (2.5) and (2.16) that

pnj − pnj−1 −

∫ tnj

tnj−1

fn
j (s)ds ∈ −NC(tnj )

(pnj ),

hence, by (2.28) and (2.29) we have ẋn(t) − fn
j (t) ∈ −NC(tnj )

(

xn(t
n
j )
)

. It

results from (2.10) and (2.24) that, by construction, for almost all t ∈ [0, T ]
and for any n,

ẋn(t)− fn(t) ∈ −N
C
(

θ̂n(t)
)

(

xn
(

θ̂n(t)
)

)

.(2.35)

Step 2. Now, we proceed to prove that the sequence (xn)n admits a
subsequence, which converges uniformly to a solution of (Er).
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Denote by yn the restriction of xn to [0, T ], that is, yn := xn|[0,T ]. Observe
first by (H1) and (2.34) that for every t ∈ [0, T ]

dC(t)(yn(t)) = dC(t)(xn(t)) ≤ ‖xn(t)− xn(t
n
j )‖+ dC(t)(xn(t

n
j ))

≤

∫ t

tnj

‖ẋn(s)‖ds+ |v(t)− v(tnj )|

≤ 2

∫ t

tnj

(

Lα(s) + |v̇(s)|
)

ds,

so by (2.10)

dC(t)

(

yn(t)
)

≤ 2

∫ t

θ̂n(t)

(

Lα(s) + |v̇(s)|
)

ds.

It results from (2.11) and this last inequality above that

dC(t)

(

yn(t)
)

−→
n→∞

0.

This combined with (2.31) yields yn(t) ∈ C(t) ∩ rB and ensures that the set
{yn(t), n ∈ N} is relatively compact in H, in view of hypothesis (H1). Since
xn is absolutely continuous on [0, T ] we may write according to (2.34), for
any t, τ ∈ [0, T ] with τ < t,

(2.36) ‖yn(t)− yn(τ)‖ = ‖xn(t)− xn(τ)‖ ≤

∫ t

τ

(

2Lα(s) + |v̇(s)|
)

ds.

Observe that
∫

S

(

2Lα(s) + |v̇(s)|
)

ds→ 0 as λ(S) → 0,

where λ denotes the Lebesgue measure. This is equivalent to saying that for

all ε > 0 there exists δ > 0 such that

∫

S

(

2Lα(s) + |v̇(s)|
)

ds < ε whenever

λ(S) < δ. It is then obvious to see through the latter inequality and through
(2.36) that the sequence (yn)n is equi-continuous on [0, T ]. Then it follows
from Arzela-Ascoli theorem that the sequence (yn)n admits a subsequence,
still denoted by (yn)n for simplicity, converging uniformly in CH(0, T ) to some
mapping y ∈ CH(0, T ). Define x ∈ CT by putting

{

x(t) = y(t) for all t ∈ [0, T ],
x(t) = ϕ(t) for all t ∈ [−r, 0],
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we also see the sequence (xn)n converges uniformly on [−r, T ] to x. Moreover,
thanks to (2.34) and (2.32), the sequences (ẏn)n and (fn)n are bounded by
a function in L1

R+
(0, T ). By extracting subsequences we may suppose that

fn → f and ẏn → u, both convergences being obtained weakly in L1
H(0, T ).

Thus, for any t ∈ [0, T ],

xn(t) = ϕ(0) +

∫ t

0

ẏn(s)ds = ϕ(0) +

∫ T

0

ẏn(s)11[0,t](s)ds.

Since the sequence (xn(t)) converges in H to x(t), we may pass to the limit
to obtain

x(t) = ϕ(0) +

∫ T

0

u(s)11[0,t](s)ds = ϕ(0) +

∫ t

0

u(s)ds.

Consequently x is absolutely continuous on [0, T ], with ẋ(t) = u(t) for almost
all t ∈ [0, T ] and hence y is absolutely continuous on [0, T ] and

ẏn → ẏ weakly in L1
H(0, T ).(2.37)

Thanks to (2.11) and the uniform convergence of (xn)n to x, we get
xn(θn(t)) converges to x(t) for each t ∈ [0, T ]. Note also that, due to the fact
that dC(t)(xn(t)) converges to 0 on [0, T ], we have x(t) ∈ C(t) for all t ∈ [0, T ].

Claim: Λ(θn(t))xn converges to Λ(t)x.
First, let us denote the modulus of continuity of a function g defined on

an interval I of R by

ω(g, I, ε) := sup{‖g(t)− g(s)‖ : s, t ∈ J, |t− s| ≤ ε}.

Then

‖Λ(θn(t))xn − Λ(t)xn‖∞,0 = sup
τ∈[−r,0]

‖xn(θn(t) + τ)− xn(t+ τ)‖

≤ ω(xn, [−r, T ],
T
n
)

≤ ω(ϕ, [−r, 0], T
n
) + ω(xn, [0, T ],

T
n
).

Considering ̺(t) =

∫ t

0

(

2Lα(s)+|v̇(s)|
)

ds we deduce from the latter inequal-

ity and (2.36) that

‖Λ(θn(t))xn − Λ(t)xn‖∞,0 ≤ ω(ϕ, [−r, 0], T
n
) + ω(̺, [0, T ], T

n
)
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Since ϕ and ̺ are uniformly continuous on [−r, 0] and [0, T ] respectively,
then,

‖Λ(θn(t))xn − Λ(t)xn‖∞,0 −→
n→∞

0;

and since the uniform convergence of xn to x on [−r, T ] implies Λ(t)xn con-
verges uniformly to Λ(t)x on [−r, 0], we deduce that

(2.38) Λ(θn(t))xn → Λ(t)x in C0.

Step 3. Now, it remains to prove that x is a solution of (Er).
Due to the fact that (fn)n and (ẏn)n converge both weakly in L1

H(0, T )
to f and ẏ respectively, according to Mazur’s lemma, there is a sequence
(zn, φn)n which converges strongly in L1

H×H(0, T ) to (ẏ − f, f) with

zn ∈ co {ẏk − fk : k ≥ n} and φn ∈ co {fk : k ≥ n},

for each n ≥ 1. Extract a subsequence (that we dot not relabel) (zn, φn)n
converging to (ẏ − f, f) a.e, that is, there exists some fixed Lebesgue negli-
gible set N ⊂ [0, T ] such that for each t ∈ [0, T ]\N we have (zn(t), φn(t))n
converges to (ẏ(t)−f(t), f(t)) or equivalently to (ẋ(t)−f(t), f(t)). Therefore,
for each t ∈ [0, T ]\N ,

(2.39) ẋ(t)− f(t) ∈
⋂

n

co
{

ẋk(t)− fk(t) : k ≥ n
}

(2.40) f(t) ∈
⋂

n

co
{

fk(t) : k ≥ n
}

.

Fix t ∈ [0, T ]\N and for all n ∈ N, using (2.33), (2.35) and putting η :=
Lα(t) + |v̇(t)|, we get by (2.4) and Lemma 2.2.1

ẋn(t)− fn(t) ∈ −Nη

C
(

θ̂n(t)
)

(

xn
(

θ̂n(t)
)

)

= −η∂d
C
(

θ̂n(t)
)

(

xn
(

θ̂n(t)
)

)

.

Hence, by (2.39) and for all ξ ∈ H we have

〈ξ, ẋ(t)− f(t)〉 ≤ sup
k≥n

〈ξ, ẋk(t)− fk(t)〉 ≤ sup
k≥n

σ

(

ξ,−η∂d
C
(

θ̂k(t)
)

(

xk
(

θ̂k(t)
)

)

)

〈ξ, ẋ(t)− f(t)〉 ≤ lim
n→∞

sup
k≥n

σ

(

ξ,−η∂d
C
(

θ̂k(t)
)

(

xk
(

θ̂k(t)
)

)

)

thus

〈ξ, ẋ(t)− f(t)〉 ≤ lim sup
n→∞

σ

(

ξ,−η∂d
C
(

θ̂n(t)
)

(

xn
(

θ̂n(t)
)

)

)
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or equivalently

〈−ξ,−ẋ(t) + f(t)〉 ≤ lim sup
n→∞

σ

(

− ξ, η∂d
C
(

θ̂n(t)
)

(

xn
(

θ̂n(t)
)

)

)

.

Since xn
(

θ̂n(t)
)

∈ C
(

θ̂n(t)
)

and x(t) ∈ C(t), the latter inequality entails by
Proposition 2.2.1 that

〈−ξ,−ẋ(t) + f(t)〉 ≤ σ
(

− ξ, η∂dC(t)

(

x(t)
)

)

or equivalently

〈ξ, ẋ(t)− f(t)〉 ≤ σ
(

ξ,−η∂dC(t)

(

x(t)
)

)

.

Since ∂dC(t)(x(t)) is convex and closed for each t ∈ [0, T ]\N , we deduce that

ẋ(t)− f(t) ∈ −η∂dC(t)(x(t)) ⊂ −NC(t)(x(t)).(2.41)

It is not difficult to see that f(t) ∈ Γ(t,Λ(t)x). Indeed, it result from
(2.40) and (2.26) that for all ξ ∈ H

〈ξ, f(t)〉 ≤ sup
k≥n

〈ξ, fk(t)〉 ≤ sup
k≥n

σ

(

ξ,Γ
(

t,Λ
(

θk(t)
)

xk

)

)

,

thus

〈ξ, f(t)〉 ≤ lim sup
n→∞

σ

(

ξ,Γ
(

t,Λ
(

θn(t)
)

xn

)

)

.

Due to (2.38) and to the upper semicontinuity of φ 7→ σ
(

ξ,Γ(t, φ)
)

, we have,
for all t ∈ [0, T ] \N , for any ξ ∈ H,

〈ξ, f(t)〉 ≤ σ
(

ξ,Γ
(

t,Λ(t)x
)

)

.

As Γ(t,Λ(t)x) is closed and convex, we conclude that, for all t ∈ [0, T ] \N ,

f(t) ∈ Γ(t,Λ(t)x).

This, along with (2.41), implies for all t ∈ [0, T ] \N

ẋ(t) ∈ −NC(t)

(

x(t)
)

+ Γ
(

t,Λ(t)x
)

,

and hence x is a solution of the constrained differential inclusion (Er).
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II. Case where
∫ T

0

α(s)ds ≥
1

4
.

Taking ε = 1
4
there exists δ > 0 such that for any Lebesgue measurable

subset S ⊂ [0, T ] with λ(S) < δ we have
∫

S
α(s)ds < 1

4
. Choose some

integer N ≥ 1 such that T
N
< δ and consider a subdivision of [0, T ] given by

0 = T0 < T1 < · · · < TN = T with Ti = i T
N

where i ∈ {0, · · · , N}. Of course,
for any i ∈ {0, · · · , N − 1}, we have

∫ Ti+1

Ti

α(s)ds <
1

4
.(2.42)

We have
∫ T1

T0
α(s)ds < 1

4
, in view of (2.42). The part I ensures the exis-

tence of a mapping x1 : [−r, T1] → H absolutely continuous on [0, T1] such
that

(2.43)























x1(s) = ϕ(s) for all s ∈ [−r, 0],

x1(t) ∈ C(t) for all t ∈ [0, T1],

ẋ1(t) ∈ −NC(t)

(

x1(t)
)

+ Γ
(

t,Λ(t)x1
)

a.e. t ∈ [0, T1].

Let us define the function α̃1 from
[

0, T
N

]

into R+ by

α̃1(t) := α(t+ T1),

so by (2.42), we have
∫ T

N

0

α̃1(s)ds <
1

4
.

Consider the set-valued mappings Γ̃1 :
[

0, T
N

]

×C0 ⇒ H and C̃1 :
[

0, T
N

]

⇒

H defined respectively by

Γ̃1(t, ψ) := Γ(t+ T1, ψ), C̃1(t) := C(t+ T1).(2.44)

Obviously, by (H3) for any (t, ψ) ∈
[

0, T
N

]

× C0 we have

d
(

0, Γ̃1(t, ψ)
)

≤ α̃1(t)
(

1 + ‖ψ‖∞,0

)

.

Consider also the single-valued mapping ϕ̃1 : [−r, 0] → H defined by

ϕ̃1(s) := x1(s+ T1).(2.45)
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and note that ϕ̃1 ∈ C0 along with ϕ̃1(0) = x1(T1) ∈ C(T1), so ϕ̃1(0) ∈ C̃1(0)
by definition of C̃1. Likewise, according to the part I, there is a mapping

x̃1 :
[

− r, T
N

]

→ H which is absolutely continuous on
[

0, T
N

]

and such that

(2.46)















x̃1(s) = ϕ̃1(s) for all s ∈ [−r, 0]

x̃1(t) ∈ C̃1(t) for all t ∈

[

0, T
N

]

˙̃x1(t) ∈ −NC̃1(t)

(

x̃1(t)
)

+ Γ̃1

(

t,Λ(t)x̃1
)

a.e. t ∈

[

0,
T

N

]

.(2.47)

Putting

x2(t) =







x1(t) if t ∈ [−r, T1],

x̃1(t− T1) if t ∈ [T1, T2],

it results from (2.44) and (2.47) that

(2.48) ẋ2(t) ∈ −NC(t)

(

x2(t)
)

+ Γ
(

t,Λ(t− T1)x̃1
)

a.e. t ∈ [T1, T2].

Claim: Λ(t− T1)x̃1 = Λ(t)x2 for every t ∈ [T1, T2].
Fix t ∈ [T1, T2]. For any s ∈ [−r, 0], we observe: if s ≤ T1 − t, we obtain

x̃1(t− T1 + s) = ϕ̃1(t− T1 + s),

ϕ̃1(t− T1 + s) = x2(t+ s),

where the first equality follows from (2.46) and the second equality follows
from (2.45) and by the definition of x2. On the other hand if T1 − t ≤ s ≤ 0
it follows from the definition of x2 that x̃1(t − T1 + s) = x2(t + s). So, for
any s ∈ [−r, 0], we see that

Λ(t− T1)x̃1(s) = x̃1(t− T1 + s) =







x2(t+ s) if s ≤ T1 − t,

x2(t+ s) if T1 − t ≤ s ≤ 0,

thus
Λ(t− T1)x̃1(s) = Λ(t)x2(s).

This assures that
Λ(t− T1)x̃1 = Λ(t)x2,

and justifies the claim.
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The equality of the claim combined with (2.48) yields

ẋ2(t) ∈ −NC(t)

(

x2(t)
)

+ Γ
(

t,Λ(t)x2
)

a.e. t ∈ [T1, T2].

According to (2.43) and to the latter inclusion, we obtain

(2.49)























x2(s) = ϕ(s) for all s ∈ [−r, 0],

x2(t) ∈ C(t) for all t ∈ [0, T2],

ẋ2(t) ∈ −NC(t)

(

x2(t)
)

+ Γ
(

t,Λ(t)x2
)

a.e. t ∈ [0, T2].

Now, suppose that (2.49) holds for 2, 3, · · · , i with i ≤ N − 1. As above,

define α̃i :
[

0, T
N

]

→ R+ by

α̃i(t) := α(t+ Ti),

and note by (2.42) that
∫ T

N

0

α̃i(s)ds <
1

4
.

Take the set-valued mappings Γ̃i :
[

0, T
N

]

× C0 ⇒ H and C̃i :
[

0, T
N

]

⇒ H

with

Γ̃i(t, ψ) := Γ(t+ Ti, ψ), C̃i(t) := C(t+ Ti).(2.50)

The assumption (H3) gives, for all t ∈
[

0, T
N

]

and ψ ∈ C0,

d
(

0, Γ̃i(t, ψ)
)

≤ α̃i(t)
(

1 + ‖ψ‖∞,0

)

.

Define the mapping ϕ̃i : [−r, 0] → H by

ϕ̃i(s) := xi(s+ Ti),(2.51)

and observe that ϕ̃i ∈ C0 and ϕ̃i(0) = xi(Ti) ∈ C(Ti), that is, ϕ̃i(0) ∈ C̃i(0).

It results from part I again that there exists a mapping x̃i(·) :
[

−r, T
N

]

→

H which is absolutely continuous on
[

0, T
N

]

and such that

(2.52)















x̃i(s) = ϕ̃i(s) for all s ∈ [−r, 0],

x̃i(t) ∈ C̃i(t) for all t ∈

[

0, T
N

]
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˙̃xi(t) ∈ −NC̃i(t)

(

x̃i(t)
)

+ Γ̃i

(

t,Λ(t)x̃i
)

a.e. t ∈

[

0,
T

N

]

.(2.53)

In an analogous way as above, put

xi+1(t) =







xi(t) if t ∈ [−r, Ti],

x̃i(t− Ti) if t ∈ [Ti, Ti+1].

From (2.50) and (2.52), it follows that

(2.54) xi+1(t) ∈ C(t) for all t ∈ [Ti, Ti+1].

It follows also from (2.50) and (2.53) that

(2.55) ẋi+1(t) ∈ −NC(t)

(

xi+1(t)
)

+ Γ
(

t,Λ(t− Ti)x̃i
)

a.e. t ∈ [Ti, Ti+1].

Claim: Λ(t− Ti)x̃i = Λ(t)xi+1 for every t ∈ [Ti, Ti+1].
Fix t ∈ [Ti, Ti+1]. For any s ∈ [−r, 0] we observe : if s ≤ Ti − t, then from
(2.52), x̃i(t− Ti + s) = ϕ̃i(t− Ti + s) and from (2.51) and by the definition
of xi+1, ϕ̃i(t − Ti + s) = xi+1(t + s). On the other hand, if Ti − t ≤ s ≤ 0,
x̃i(t − Ti + s) = xi+1(t + s), thanks to the definition of xi+1. So, for any
s ∈ [−r, 0], we see that

Λ(t− Ti)x̃i(s) = x̃i(t− Ti + s) =







xi+1(t+ s) if s ≤ Ti − t,

xi+1(t+ s) if Ti − t ≤ s ≤ 0,

thus
Λ(t− Ti)x̃i(s) = Λ(t)xi+1(s).

Consequently,
Λ(t− Ti)x̃i = Λ(t)xi+1,

as stated in the claim.
It follows from (2.55) that

ẋi+1(t) ∈ −NC(t)

(

xi+1(t)
)

+ Γ
(

t,Λ(t)xi+1

)

a.e. t ∈ [Ti, Ti+1],

and this combined with the induction property (2.49) at the step i and with
(2.54)

(2.56)























xi+1(s) = ϕ(s) for all s ∈ [−r, 0]

xi+1(t) ∈ C(t) for all t ∈ [0, Ti+1]

ẋi+1(t) ∈ −NC(t)

(

xi+1(t)
)

+ Γ
(

t,Λ(t)xi+1

)

a.e. t ∈ [0, Ti+1].

Therefore, this ensures that (2.56) holds by induction for 0, 1, · · · , N . Con-
sequently, we obtain a solution x := xN on the whole interval [−r, T ]. The
proof is then complete.
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Introduction

The general class of differential inclusion known as the sweeping process, has
been introduced and thoroughly studied in the 70s period by J. J. Moreau
in a series of seminal papers [25, 26, 27, 28]. That differential inclusion can
be expressed in the form

(I)







u̇(t) ∈ −NC(t)

(

u(t)
)

a.e t ∈ [0, T ],

u(0) = u0 ∈ C(0),

where C(t) is a closed convex set moving in an absolutely continuous way
(or with a bounded variation) in an infinite dimensional Hilbert space H and
NC(t)(·) denotes the usual normal cone. This evolution differential inclusion
corresponds to several important mechanical problems (see [23, 28]). In the
context of nonconvex sets C(t), new techniques have been found from which
one can derive several results; in particular, Castaing showed in finite di-
mensions the existence of a solution when C(t) is the form C(t) = S + ϑ(t),
where S is any fixed closed subset of H and ϑ is a mapping with finite vari-
ation. Valadier’s method in [33] yields, but still in the finite dimensional
setting, the existence of a solution whenever the graph of the multimapping
(t, u) 7→ NC(t)(u) ∩ B is closed and NC(t)(·) is the Clarke normal cone. An
important example in [33] with such a closedness property corresponds to the
complement of the interior of a convex set moving in an absolutely continuous
way. For some other contributions see also [5, 18, 34]. Recently Benabdellah
[2], Colombo and Goncharov [12], and Thibault [32] have proved that, in
the finite dimensional context, the problem (I) above has always a solution
when NC(t)(·) is the Clarke normal cone. For the case where the sets C(t)
are (uniformly) prox-regular and move with a bounded variation we refer the
reader to the paper [16] by J. F. Edmond and L. Thibault.

In the same 70s period, Henry [20] introduced for the study of planning
procedures in mathematical economy the differential inclusion











u̇(t) ∈ Proj
TC

(

u(t)
)

(

G
(

u(t)
)

)

a.e t ∈ [0, T ]

u(0) = u0 ∈ C,

where G(·) is an upper semicontinuous multimapping with nonempty com-
pact convex values, C is a (nonmoving) nonempty closed convex set, TC(·) is
the tangent cone to C and Proj TC

(·) denotes the metric projection mapping
onto the closed convex set TC(·). Later, Cornet (see [14] and [15]), as in
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Henry [20], reduced the last inclusion above to the existence of a solution for
the following problem







u̇(t) ∈ −NC

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ]

u(0) = u0 ∈ C,

which is a particular case of the differential inclusion (I) perturbed by a
multimapping G : [0, T ]×H ⇒ H, that is, the differential inclusion

(II)







u̇(t) ∈ −NC(t)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ]

u(0) = u0 ∈ C(0).

Significant progress concerning the differential inclusion (II) has been made
in the finite dimensional setting by Castaing, Duc Ha, and Valadier [7] and
by Castaing and Monteiro Marques [5] (see also the references therein), un-
der the assumption of convexity of C(t) or of its complement. The case of
general closed sets C(t) moving in an absolutely continuous way in a finite di-
mensional setting has been studied for (II) by Thibault [32]. Several other
works can also be found in the references in [7]. Recently in the infinite
dimensional Hilbert space H, Bounkhel and Thibault [4] and Edmond and
Thibault [17] showed the existence of a solution of (II) when the sets C(t)
are r-prox-regular (r > 0) and move in an absolutely continuous way. The
mapping G(·, ·) was required to have all its values included in a fixed compact
subset. For the study of (I) with r-prox-regular subsets C(t) of the infinite
dimensional Hilbert space H, we refer to [12].

In all the aforementioned works, the sets C(t) do not depend on the state
u(t). The first work dealing with a moving set C(t, x) depending on the
time and the state has been made in [22] under the convexity assumption
for C(t, x). Recently, N. Chemetov and M. D. P. Monteiro Marques [9],
established the first results concerning the situation where the moving set
C(t, x), depending both on the time and on the state, is nonconvex. Given
a single valued mapping G : [0, T ]×H → H of Carathéodory type (that is,
measurable in t and continuous in x), they studied the differential inclusion

(II ′)











u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ]

u(0) = u0 ∈ C(0, u0),

for a constraint multimapping C : [0, T ] × H ⇒ H with nonconvex prox-
regular values which are ball-compact. Associating with each absolutely
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continuous mapping y : [0, T ] → H, with y(0) = u0, the unique solution
φ(y) of the time-dependent sweeping process (with unknown mapping u)

u̇(t) ∈ −N
C
(

t,y(t)
)

(

u(t)
)

+G
(

t, y(t)
)

with u(0) = u0 ∈ C
(

0, y(0)
)

,

the solution of (II ′) is obtained in [9] by applying the Schauder fixed point
theorem to an appropriate compact convex subset of the space of continuous
mappings from [0, T ] into H. In [8], by means of a generalized version of the
Schauder fixed point theorem from [21, 29], C. Castaing, A. G Ibrahim and
M. Yarou provided another approach allowing them to prove, the existence
of a solution when G ≡ {0} and C(t, x) is prox-regular and ball-compact;
with the same approach they also obtained an existence result (even in the
presence of a delay) when G is a convex-valued multimapping bounded on
[0, T ] × CH(−r, 0) (CH(−r, 0) denotes the space of all continuous mappings
from [−r, 0] to H), and C(t, x) is convex and ball-compact. D. Azzam, S.
Izza and L. Thibault [1] obtained, in finite dimensions, a solution for (II ′),
with a multimapping G, via a reduction to an unconstrained differential
inclusion. In [19], assuming that the prox-regular sets C(t, x) are contained
in a fixed compact set of H and using (without a fixed point theorem) the
scheme un0 = u0, u

n
i+1 = Proj C(tni+1

,un
i )
(uni −

T
2n
gni ) with g

n
i ∈ G(tni , u

n
i ) (where

tni := i T
2n
, i = 0, · · · , 2n− 1), T. Haddad established the existence of solution

of (II ′) with a multimapping G with compact convex values.
Our main purpose in this paper is to study, in the same setting of infinite

dimensional Hilbert space H, the perturbed sweeping process (II ′), and
to show how the approach in [8] can be adapted to yield the existence of
solution for (II ′) with prox-regular sets C(t, x) and a multimapping G with
(unnecessarily bounded) closed convex values. For that adaption, a result on
the Hölder continuity (with respect to the Hausdorff distance) of the metric
projection to prox-regular set is required. The paper is organized as follows:
in the next section, we introduce notation which will be used and recall
several concepts of nonsmooth and variational analysis which are involved
throughout the paper. The second section gives the behaviour of the metric
projection mapping onto prox-regular set. The last section is devoted to the
proof of the theorem of existence of a solution of the differential inclusion
(II ′) with a nonconvex prox-regular set C(t, x).

3.1 Preliminaries and Notation

Throughout the paper H is a Hilbert space whose inner product is denoted
by 〈·, ·〉 and the associated norm by ‖ · ‖. The closed unit ball of H with
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center 0 will be denoted by B and B(u, η) (respectively, B[u, η]) denotes the
open (respectively, closed) ball of center u ∈ H and radius η > 0. Given a
real T > 0, we will denote by CH(0, T ) the space of all continuous mappings
from [0, T ] to H, ”a.e” denotes ”for almost all” and u̇ is the derivative of u.

Let C,C ′ be two subsets of H and let v be a vector in H, the real d(v, C)
or dC(v) := inf{‖v − u‖ : u ∈ C} is the distance of the point v from the set
C. We denote by

Haus(C,C ′) = max
{

sup
u∈C

d(u, C ′), sup
v∈C′

d(v, C)
}

the Hausdorff distance between C and C ′. Let us denote, for r > 0 and
γ ∈]0, 1[, by Uγ

r (C) (respectively, by E
γ
r (C)) the open tube around the set C

(respectively, the open enlargement of the set C), that is,

Uγ
r (C) := {v ∈ H : 0 < d(v, C) < γr},

respectively,
Eγ

r (C) := {v ∈ H : d(v, C) < γr}.

We need first to recall some notation and definitions that will be used in
all the paper. For any subset C of H, coC stands for the closed convex hull
of C, and σ(·, C) represents the support function of C, that is, for all ξ ∈ H,

σ(ξ, C) := sup
u∈C

〈ξ, u〉.

If C is a nonempty subset of H, the Clarke normal cone N(C; u) or NC(u)
of C at u ∈ C is defined by

NC(u) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC(u)},

where the Clarke tangent cone T (C; u) or TC(u) (see [10]) is defined as follows:

v ∈ TC(u) ⇔







∀ε > 0, ∃δ > 0 such that

∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.

Equivalently, v ∈ TC(u) if and only if for any sequence (un)n of C converging
to u and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

un + tnvn ∈ C for all n ∈ N.

We put NC(u) = ∅, whenever u /∈ C.
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We typically denote by f : H → R ∪ {+∞} a proper function (that is,
f is finite at least at one point). The Clarke subdifferential ∂f(u) of f at a
point u (where f is finite) is defined by

∂f(u) =
{

ξ ∈ H : (ξ,−1) ∈ Nepi f

(

(

u, f(u)
)

)}

,

where epi f denotes the epigraph of f , that is,

epi f = {(u, r) ∈ H × R : f(u) ≤ r}.

We also put ∂f(u) = ∅ if f is not finite at u ∈ H. If ψC denotes the indicator
function of the set C, that is, ψC(u) = 0 if u ∈ C and ψC(u) = +∞ otherwise,
then

∂ψC(u) = NC(u) for all u ∈ H.

The Clarke subdifferential ∂f(u) of a locally Lipschitz function f at u has
also the other useful description

∂f(u) = {ξ ∈ H : 〈ξ, v〉 ≤ f 0(u, v), ∀v ∈ H},

where

f 0(u, v) := lim sup
(u′,t)→(u,0+)

f(u′ + tv)− f(u′)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

NC(u) = clw(R+∂dC(u)) for all u ∈ C,

where R+ := [0,∞[ and clw denotes the closure with respect to the weak
topology of H. Further

∂dC(u) ⊂ NC(u) ∩ B for all u ∈ C.

We will also need the concept of proximal subgradient. A vector ξ ∈ H
is a proximal subgradient of f at u (see, [11, 24, 31]) if there exist some
constant real number σ ≥ 0 and some δ > 0 such that

〈ξ, v − u〉 ≤ f(v)− f(u) + σ‖v − u‖2 for all v ∈ B(u, δ).

The set ∂pf(u) of all proximal subgradients of f at u is the proximal subdif-
ferential of f at u. If f(u) is not finite we put ∂pf(u) = ∅. It is known that
we always have the inclusion

∂pf(u) ⊂ ∂f(u).
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The proximal normal cone of C at u ∈ C is given by

Np
C(u) = ∂pψC(u),

so the following inclusion always holds true

Np
C(u) ⊂ NC(u) for all u ∈ C.

On the other hand, the proximal normal cone enjoys a geometrical charac-
terization (see, [11]) given by the equality

Np
C(u) = {ξ ∈ H : ∃ρ > 0 s.t. u ∈ Proj C(u+ ρξ)},

where
Proj C(v) := {u ∈ C : d(v, C) = ‖v − u‖}

is the set of nearest points of v in C. When this set has a unique point, we
will use the notation PC(v). For u ∈ C, the proximal cone is also related to
the distance function to C via the equalities (see, [11, 3])

Np
C(u) = R+∂pdC(u)

and
Np

C(u) ∩ B = ∂pdC(u).

3.2 Metric projection onto prox-regular set

First we begin by recalling that, for a given r ∈]0,+∞], a subset C of the
Hilbert space H is (uniformly) r-prox-regular (see, [30]) if for any u ∈ C
and for any ξ ∈ NC(u) with ‖ξ‖ < 1, then u is the unique nearest point of
u+ r−1ξ in C.

The following Theorem provides some properties of the proximal and
Clarke subdifferentials of the function distance dC(·) when the set C is
r-prox-regular. It also summarizes some important consequences of the prox-
regularity property which will be needed in the sequel of the paper. For the
proof of these results we refer the reader to [30, 4].

Theorem 3.2.1. Let C be a nonempty closed subset in the Hilbert space H
and let r > 0. If the subset C is r-prox-regular, then the following hold:

a) For any point v in the open enlargement Eγ
r (C), the mapping PC(v)

exists and is continuous;

b) For any v ∈ Uγ
r (c) and y = PC(v) we have y ∈ Proj C

(

y + r v−y
‖v−y‖

)

;
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c) The Clarke and the proximal subdifferentials of dC(·) coincide at all
points v ∈ Eγ

r (C);

d) The Clarke and the proximal normal cone to C coincide at all points
u ∈ C.

We will also need the following lemma from [4].

Lemma 3.2.1. Let r > 0. Assume that C(t) is r-prox-regular for all t ∈
[0, T ] and that there exists an absolutely continuous function ϑ : [0, T ] → R

such that

|d(x, C(t))− d(x, C(t))| ≤ |ϑ(t)− ϑ(s)| for all s, t ∈ [0, T ].

Then, for any given 0 < δ < r, the following holds:

For any s ∈ [0, T ], any sequence (un)n converging to u ∈ C(s)+(r−δ)B
in (H, ‖ · ‖) ((un)n is not necessarily in C(sn)), any sequence (sn)n in
[0, T ] converging to s and any sequence (ζn)n converging weakly to ζ in
(H,w(H,H)) with ζn ∈ ∂dC(sn)(un), we have ζ ∈ ∂dC(s)(u).

For several other important geometric concepts of regularity in nons-
mooth analysis, we refer to [3, 10, 13]. Consider now the behaviour of
PC(u) with respect to the r-prox-regular set C when we endow the space
of r-prox-regular sets with the Hausdorff distance.

Theorem 3.2.2. Let C and C ′ be r-prox-regular sets of the Hilbert space H
for a constant r > 0 and let γ ∈]0, 1[. Then for all u ∈ Uγ

r (C) and v ∈ Uγ
r (C

′)
we have

‖PC(u)− PC′(v)‖ ≤ (1− γ)−1‖u− v‖+

√

2γr

1− γ

(

Haus (C,C ′)
)1/2

.

Proof. Let u ∈ Uγ
r (C), v ∈ Uγ

r (C
′) be fixed. Put x := PC(u) and

y := PC′(v) (note that the projections exist according to Theorem 3.2.1).
Put also h := Haus (C,C ′) and observe that d(y, C) ≤ h because y ∈ C ′.
Suppose for a moment that x 6= u and y 6= v. By that Theorem 3.2.1 we
obtain x ∈ Proj C(x+ r u−x

‖u−x‖
) and y ∈ Proj C′(y + r v−y

‖v−y‖
), which entails for

all z ∈ C
∥

∥

∥
x+ r

u− x

‖u− x‖
− x

∥

∥

∥
≤

∥

∥

∥
x+ r

u− x

‖u− x‖
− z

∥

∥

∥

⇔

r − ‖z − y‖ ≤
∥

∥

∥
x+ r

u− x

‖u− x‖
− z

∥

∥

∥
− ‖z − y‖
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thus,

r− h ≤ r− d(y, C) ≤
∥

∥

∥
x+ r

u− x

‖u− x‖
− z

∥

∥

∥
− ‖z − y‖ ≤

∥

∥

∥
x+ r

u− x

‖u− x‖
− y

∥

∥

∥
.

We deduce that

r2 − 2rh ≤ r2 − 2rh+ h2 ≤ ‖x− y‖2 +
2r

‖u− x‖
〈u− x, x− y〉+ r2,

and the inequality between the first and the third member is equivalent to

‖u− x‖(‖x− y‖2 + 2rh) ≥ 2r〈u− x, y − x〉.

This gives without the restriction x 6= u that

γr(‖x− y‖2 + 2rh) ≥ 2r〈u− x, y − x〉.

Likewise we have

γr(‖x− y‖2 + 2rh) ≥ 2r〈v − y, x− y〉.

Adding both inequalities we obtain

γ(‖x− y‖2 + 2rh) ≥ 〈v − u, x− y〉+ ‖x− y‖2

⇔
2γrh+ 〈u− v, x− y〉 ≥ (1− γ)‖x− y‖2

thus
2γrh

1− γ
+

1

1− γ
‖u− v‖‖x− y‖ ≥ ‖x− y‖2.

This yields

(

‖x− y‖ −
1

2(1− γ)
‖u− v‖

)2

≤
2γrh

1− γ
+

( 1

2(1− γ)
‖u− v‖

)2

≤

(
√

2γrh

1− γ
+

1

2(1− γ)
‖u− v‖

)2

,

hence

‖x− y‖ −
1

2(1− γ)
‖u− v‖ ≤

√

2γrh

1− γ
+

1

2(1− γ)
‖u− v‖,

and this translates the desired inequality of the theorem.
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The result can be applied to r-prox-regular moving set C(t, u) satisfying

(3.1) |d(x, C(t, u))− d(x, C(t, v))| ≤ L‖u− v‖

whenever t ∈ [0, T ] and x, u, v ∈ H where L is some real constant with
L ∈ [0, 1[; indeed the latter inequality is equivalent to

Haus (C(t, u), C(t, v)) ≤ L‖u− v‖.

This application has as an immediate consequence the following result.

Corollaire 3.2.1. Let C(t, u) be r-prox-regular moving sets of the Hilbert
space H for a constant r > 0 which satisfy (3.1), and let γ ∈]0, 1[. Then, for
all u, v ∈ H and x ∈ Uγ

r (C(t, u)) ∩ U
γ
r (C(t, v)), we have

‖PC(t,u)(x)− PC(t,v)(x)‖ ≤

√

2γrL

1− γ
‖u− v‖1/2.

Consider now for each (t, x) ∈ [0, T ] × H fixed, the mapping φ from
DomPC(t) defined by u 7→ PC(t,u)(x). Thus, Corollary 3.2.1 above establishes
the local Hölder continuity of φ on Uγ

r (C(t, u)) whenever the variable set
C(t, u) is r-prox-regular.

3.3 Existence of solution of the general per-

turbed sweeping process differential in-

clusion

We shall deal with two multimappings C : [0, T ] × H ⇒ H with nonempty
closed values and G : [0, T ] ×H ⇒ H with nonempty closed convex values.
They are required to satisfy the following assumptions:

(H1) The multimapping G is scalarly upper semicontinuous with respect
to both variables (that is, for each y ∈ H the function (t, u) →
σ(y,G(t, u)) is upper semicontinuous) and, for some real α > 0

d
(

0, G(t, u)
)

≤ α

for all t ∈ [0, T ] and u ∈ H with u ∈ C(t, u);

(H2) For each t ∈ [0, T ] and each u ∈ H, the sets C(t, u) are r-prox-regular
for some constant r > 0;
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(H3) There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ [0, T ]
and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

(H4) For any bounded subset A ⊂ H, the set C([0, T ]×A) is relatively ball-
compact, that is, the intersection of C([0, T ]×A) with any closed ball
of H is relatively compact in H.

Remark 3.3.1. Note that the multimapping is scalarly upper semicontinuous
whenever it is ‖ · ‖ ×weak upper semicontinuous in the usual sense, that is,
for every (t0, x0) ∈ [0, T ] ×H and every weak open set W ⊃ G(t0, x0) there
exists some ‖ · ‖-neighbohood V of (t0, x0) such that

W ⊃ G(t, x) for all (t, x) ∈ V.

Theorem 3.3.1. Assume that H is a Hilbert space, that (H1 − H4) hold.
Then, for any u0 ∈ H with u0 ∈ C(0, u0), there exists a Lipschitz continuous
mapping u : [0, T ] → H such that

(D)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ],

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ],

u(t) = u0 +
∫ t

0
u̇(s)ds ∀t ∈ [0, T ],

that is, u(·) is a Lipschitz solution of the differential inclusion (D) with
‖u̇(t)‖ ≤ L1+2α

1−L2
a.e. t ∈ [0, T ].

Proof. We will construct a sequence of absolutely continuous mappings
(un(·)) which has a subsequence converging pointwise to a solution of (D).

Consider some integer p ≥ 1 such that

(3.2)
T

p
<

r(1− L2)

2
(

α(1 + 3L2) + L1(1 + L2)
) .

For each integer n ≥ 1, we consider the partition of [0, T ] by the points
tnk = k T

pn
, k = 0, 1, · · · , pn. For each (t, x) ∈ [0, T ] ×H denote by g(·, ·) the

element of minimal norm of the closed convex set G(t, x) of H, that is,

g(t, x) = PG(t,x)(0).
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Put xn0 := u0 ∈ C(tn0 , u0).

Step 1. We construct xn0 , x
n
1 , · · · , x

n
pn in H such that for each k =

0, 1, · · · , pn − 1, the following inclusions hold

(3.3) xnk+1 ∈ C(tnk+1, x
n
k+1)

(3.4) xnk +
T

pn
g(tnk , x

n
k)− xnk+1 ∈ NC(tn

k+1
,xn

k+1
)(x

n
k+1),

along with the inequality

(3.5) ‖xnk+1 − xnk‖ ≤
L1 + 2α

1− L2

T

pn
.

Observe first by (H1) that ‖g(tn0 , u0)‖ ≤ α. Then, for any v ∈
B(u0, 2

L1+2α
1−L2

T
pn
), we have

d
(

u0 +
T

pn
g(tn0 , u0), C(t

n
1 , v)

)

≤ d
(

u0 +
T

pn
g(tn0 , u0), C(t

n
0 , u0)

)

+ L1|t
n
1 − tn0 |+ L2‖v − u0‖

≤ ‖
T

pn
g(tn0 , u0)‖+ L1

T

pn
+ 2L2

L1 + 2α

1− L2

T

pn

≤
(

α + L1 + 2L2
L1 + 2α

1− L2

) T

pn

=
α(1 + 3L2) + L1(1 + L2)

1− L2

T

pn

<
1

2
r according to (3.2).

Since C(tn1 , v) is r-prox-regular, Theorem 3.2.1 guarantees, for every v ∈
B
(

u0, 2
L1+2α
1−L2

T
pn

)

, that

(3.6) φ1(v) := PC(tn
1
,v)

(

u0 +
T

pn
g
(

tn0 , u0
)

)

is well defined. Taking into account Corollary 3.2.1, (H2) and (H3) we see
that the mapping φ1 : B(u0, 2

L1+2α
1−L2

T
pn
) → H is locally Hölder continuous.

Further, for all v ∈ B[u0,
L1+2α
1−L2

T
pn
], we have φ1(v) ∈ B[u0,

L1+2α
1−L2

T
pn
]. Indeed,
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for any such v it follows from the definition of φ1(v) and from (H3) (as above)
that

‖φ1(v)− u0‖ ≤ ‖φ1(v)− (u0 +
T

pn
g(tn0 , u0))‖+

T

pn
‖g(tn0 , u0)‖

= d
(

u0 +
T

pn
g(tn0 , u0), C(t

n
1 , v)

)

+
T

pn
‖g(tn0 , u0)‖

≤ d
(

u0 +
T

pn
g(tn0 , u0), C(t

n
0 , u0)

)

+ L1|t
n
1 − tn0 |

+ L2‖v − u0‖+
T

pn
‖g(tn0 , u0)‖

≤
T

pn
‖g(tn0 , u0)‖+ L1|t

n
1 − tn0 |+ L2‖v − u0‖+

T

pn
‖g(tn0 , u0)‖

≤
(

2α + L1 + L2
L1 + 2α

1− L2

) T

pn
=
L1 + 2α

1− L2

T

pn
.

Consequently, for all v ∈ B[u0,
L1+2α
1−L2

T
pn
]

φ1(v) ∈ C

(

tn1 , B
[

u0,
L1 + 2α

1− L2

T

pn

]

)

⋂

B
[

u0,
L1 + 2α

1− L2

T

pn

]

,

then by (H4), the set φ1

(

B[u0,
L1+2α
1−L2

T
pn
]
)

is relatively compact. So, the map-

ping φ1 is continuous from the closed convex set B[u0,
L1+2α
1−L2

T
pn
] into itself and

the range of B[u0,
L1+2α
1−L2

T
pn
] by φ1 is relatively compact. We may then apply

to the mapping φ1 the extended Schauder fixed point theorem established in
[21] or [29] to obtain some xn1 ∈ B[u0,

L1+2α
1−L2

T
pn
] such that xn1 = φ1(x

n
1 ).This

ensures in particular

xn1 ∈ C(tn1 , x
n
1 ) and ‖xn1 − xn0‖ ≤

L1 + 2α

1− L2

T

pn

and by (3.6)

u0 +
T

pn
g(tn0 , u0)− xn1 ∈ NC(tn

1
,xn

1
)(x

n
1 ).

Now, suppose that, for 0, 1, · · · , k + 1, with k + 1 ≤ pn − 1 the points
xn0 , x

n
1 , · · · , x

n
k+1 have been constructed so that properties (3.3), (3.4) and

(3.5) hold true. By construction

xnk+1 ∈ C(tnk+1, x
n
k+1)

and hence according to (H1)

‖g(tnk+1, x
n
k+1)‖ ≤ α.
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Further, as above for any v ∈ B(xnk+1, 2
L1+2α
1−L2

T
pn
), we have

d
(

xnk+1 +
T

pn
g(tnk+1, x

n
k+1), C(t

n
k+2, v)

)

≤ d
(

xnk+1 +
T

pn
g(tnk+1, x

n
k+1), C(t

n
k+1, x

n
k+1)

)

+ L1|t
n
k+2 − tnk+1|+ L2‖v − xnk+1‖

≤ ‖
T

pn
g(tnk+1, x

n
k+1)‖+ L1

T

pn
+ 2L2

L1 + 2α

1− L2

T

pn

≤
(

α + L1 + 2L2
L1 + 2α

1− L2

) T

pn
=
α(1 + 3L2) + L1(1 + L2)

1− L2

T

pn

<
1

2
r according to (3.2).

The r-prox-regularity of C(tnk+2, v) ensures by Theorem 3.2.1 that

(3.7) φk+2(v) := PC(tn
k+2

,v)

(

xnk+1 +
T

pn
g
(

tnk+1, x
n
k+1

)

)

is well defined. Thus, in an analogous way as above, φk+2 from
B(xnk+1, 2

L1+2α
1−L2

T
pn
) into H is locally Hölder continuous and for all v ∈

B[xnk+1,
L1+2α
1−L2

T
pn
] we have

(3.8) φk+2(v) ∈ C

(

tnk+2, B
[

xnk+1,
L1 + 2α

1− L2

T

pn

]

)

⋂

B
[

xnk+1,
L1 + 2α

1− L2

T

pn

]

.

Indeed,

‖φk+2(v)− xnk+1‖ ≤ ‖φk+2(v)− (xnk+1 +
T

pn
g(tnk+1, x

n
k+1))‖+

T

pn
‖g(tnk+1, x

n
k+1)‖

= d
(

xnk+1 +
T

pn
g(tnk+1, x

n
k+1), C(t

n
k+2, v)

)

+
T

pn
‖g(tnk+1, x

n
k+1)‖

≤ d
(

xnk+1 +
T

pn
g(tnk+1, x

n
k+1), C(t

n
k+1, x

n
k+1)

)

+ L1|t
n
k+2 − tnk+1|

+ L2‖v − xnk+1‖+
T

pn
‖g(tnk+1, x

n
k+1)‖

≤
T

pn
‖g(tnk+1, x

n
k+1)‖+ L1|t

n
k+2 − tnk+1|+ L2‖v − xnk+1‖

+
T

pn
‖g(tnk+1, x

n
k+1)‖

≤
(

2α + L1 + L2
L1 + 2α

1− L2

) T

pn
=
L1 + 2α

1− L2

T

pn
.
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This justifies the inclusion (3.8), then by (H4), the set
φk+2(B[xnk+1,

L1+2α
1−L2

T
pn
]) is relatively compact. So, the mapping φk+2 is

continuous from the closed convex set B[xnk+1,
L1+2α
1−L2

T
pn
] into itself and the

range of B[xnk+1,
L1+2α
1−L2

T
pn
] by φk+2 is relatively compact. We may then

apply to the mapping φk+2 the extended Schauder fixed point theorem
established in [21] or [29] to obtain some xnk+2 ∈ B[xnk+1,

L1+2α
1−L2

T
pn
] such that

xnk+2 = φk+2(x
n
k+2). This ensures in particular

xnk+2 ∈ C(tnk+2, x
n
k+2) and ‖xnk+2 − xnk+1‖ ≤

L1 + 2α

1− L2

T

pn

and by (3.7)

xnk+1 +
T

pn
g(tnk+1, x

n
k+1)− xnk+2 ∈ NC(tn

k+2
,xn

k+2
)(x

n
k+2).

Therefore, the construction of xn0 , x
n
1 , · · · , x

n
pn is achieved by induction such

that properties (3.3), (3.4) and (3.5) for k = 0, 1, · · · , pn − 1 are satisfied.

Step 2. Construction of un(·).
For any t ∈ [tnk , t

n
k+1] with k = 0, 1, · · · , pn − 1, put

un(t) :=
tnk+1 − t

tnk+1 − tnk
xnk +

t− tnk
tnk+1 − tnk

xnk+1.

Thus, for almost all t ∈ [tnk , t
n
k+1],

u̇n(t) = −
xnk

tnk+1 − tnk
+

xnk+1

tnk+1 − tnk
= −

pn

T
(xnk − xnk+1).

By construction, (3.3), (3.4), (3.5) and the latter equalities give

(3.9) un(t
n
k+1) ∈ C

(

tnk+1, un(t
n
k+1)

)

(3.10) −u̇n(t) ∈ N
C
(

tn
k+1

,un(tnk+1
)
)

(

un(t
n
k+1)

)

− g
(

tnk , un(t
n
k)
)

a.e t ∈ [tnk , t
n
k+1[

with

(3.11) ‖u̇n(t)‖ =
pn

T
‖xnk − xnk+1‖ ≤

L1 + 2α

1− L2

:=M.

Put

δn(t) :=

{

tnk if t ∈ [tnk , t
n
k+1[

tnpn−1 if t = T,
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and

θn(t) :=

{

tnk+1 if t ∈ [tnk , t
n
k+1[

T if t = T.

Observe that for each t ∈ [0, T ], choosing k such that t ∈ [tnk , t
n
k+1[ if t < T

and k = pn − 1 if t = T , we have

|δn(t)− t| ≤ |tnk+1 − tnk | =
T

pn
, so δn(t) → t as n→ +∞,

and similarly θn(t) → t as n → +∞. Further, for each t ∈ [tnk , t
n
k+1[, the

definitions of δn(·) and θn(·) combined with (3.9) and (3.10) yield

(3.12) un
(

θn(t)
)

∈ C
(

θn(t), un
(

θn(t)
)

)

(3.13)

−u̇n(t) ∈ N
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

− g
(

δn(t), un
(

δn(t)
)

)

a.e t ∈ [0, T ]

Step 3. Convergence of a subsequence of (un(·)) to some absolutely
continuous mapping u(·).
For each k = 0, 1, · · · , pn − 1, it results from (3.5) that

‖xnk+1 − u0‖ ≤ ‖xnk+1 − xnk‖+ · · ·+ ‖xn1 − xn0‖ ≤ (k + 1)
L1 + 2α

1− L2

T

pn
,

so

‖xnk+1‖ ≤ ‖u0‖+
L1 + 2α

1− L2

T := β.

Fix any t ∈ [0, T ] and consider, for any infinite subset N ⊂ N, the sequence
(un(t))n∈N . It follows from (3.12) that un(θn(t)) ∈ C(θn(t), un(θn(t))) ∩ βB,
which implies that un(θn(t)) ∈ C([0, T ] × βB) ∩ βB. By (H4) the sequence
(un(θn(t))) is relatively compact, so there is an infinite subset N0 ⊂ N such
that (un(θn(t)))n∈N0

converges to some vector l(t) ∈ H. Putting hn(t) :=
un(θn(t))− un(t) for all n ∈ N0, by (3.11), we obtain

‖hn(t)‖ ≤

∫ θn(t)

t

‖u̇n(s)‖ds ≤M(θn(t)− t) −→
n→∞

0.

Then, (un(t))n∈N0
converges to l(t), thus the set {un(t) : n ∈ N} is relatively

compact in H. The sequence (un)n∈N being in addition equicontinuous ac-
cording to (3.11), this sequence (un)n∈N is relatively compact in CH(0, T ) ,
so we can extract a subsequence of (un)n∈N (that we do not relabel) which
converges uniformly to u on [0, T ]. By the inequality (3.11) again there is a
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subsequence of (u̇n)n∈N (that we do not relabel) which converges w(L1
H ,L

∞
H )

in L1
H(0, T ) to a mapping w ∈ L1

H(0, T ) with ‖w(t)‖ ≤ M a.e. t ∈ [0, T ].
Fixing t ∈ [0, T ] and taking any ξ ∈ H, the above weak convergence in
L1
H(0, T ) yields

lim
n→∞

∫ T

0

〈11[0,t](s)ξ, u̇n(s)〉ds =

∫ T

0

〈11[0,t](s)ξ, w(s)〉ds,

or equivalently

lim
n→∞

〈ξ, u0 +

∫ t

0

u̇n(s)ds〉 = 〈ξ, u0 +

∫ t

0

ẇ(s)ds〉.

This means, for each t ∈ [0, T ], that un(t) −→
n→∞

u0 +
∫ t

0
w(s)ds weakly in H.

Since the sequence (un(t))n∈N also converges strongly to u(t) in H, it ensures
that u(t) = u0 +

∫ t

0
w(s)ds, so the mapping u(·) is absolutely continuous on

[0, T ] with u̇ = w. The mapping u(·) is even Lipschitz on [0, T ] with M as a
Lipschitz constant therein.

Step 4. We show now that u(·) is a solution of (D).
Put

zn(t) := g(δn(t), un(δn(t))) for all t ∈ [0, T ],

and observe that zn is a step mapping. Since ‖g(δn(t), un(δn(t)))‖ ≤ α for
all n ∈ N and t ∈ [0, T ], we may suppose (taking a subsequence if necessary)
that the sequence (zn(·))n converges w(L1

H ,L
∞
H ) in L1

H(0, T ) to a mapping
z(·) ∈ L1

H(0, T ) with ‖z(t)‖ ≤ α a.e t ∈ [0, T ].

For all t ∈ [0, T ] we have u(t) ∈ C(t, u(t)). Indeed, by (H3) and (3.11)

d
(

un(t), C
(

t, u(t)
)

)

≤ ‖un(t)− un
(

θn(t)
)

‖+ L1|t− θn(t)|+ L2‖u(t)− un
(

δn(t)
)

‖

≤ (M + L1)|t− θn(t)|+ L2M |δn(t)− t|+ L2‖u(t)− un(t)‖

then,

d(un(t), C(t, u(t))) −→
n→∞

0, so d(u(t), C(t, u(t))) = 0 and u(t) ∈ C(t, u(t)).

Further, from the inequality ‖u̇n(t)− zn(t)‖ ≤M +α =: γ a.e. and from the
inclusion (3.13) it follows for a.e. t ∈ [0, T ] that

−u̇n(t) + zn(t) ∈ N
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

⋂

γB

= γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

,
(3.14)
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(3.15) zn(t) ∈ G
(

δn(t), un
(

δn(t)
)

)

.

Since (−u̇n + zn, zn)n converges weakly in L1
H×H(0, T ) to (−u̇ + z, z), by

Mazur theorem, there are

(3.16) ξn ∈ co {−u̇q + zq : q ≥ n} and ζn ∈ co {zq : q ≥ n}

such that (ξn, ζn)n converges strongly in L1
H×H(0, T ) to (−u̇+ z, z). Extract-

ing a subsequence if necessary we suppose that (ξn(·), ζn(·))n converges a.e.
to (−u̇(·) + z(·), z(·)), then there is a Lebesgue negligible set S ⊂ [0, T ] such
that for every t ∈ [0, T ]\S on one hand (ξn(t), ζn(t)) → (−u̇(t) + z(t), z(t))
strongly in H and on the other hand the inclusions (3.14) and (3.15) hold
true for every integer n as well as the inclusions

−u̇(t)+z(t) ∈
⋂

n

co
{

−u̇q(t)+zq(t) : q ≥ n
}

and z(t) ∈
⋂

n

co
{

zq(t) : q ≥ n
}

.

It results from (3.14) and (3.15) that for any n ∈ N, any t ∈ [0, T ]\S, and
for any y ∈ H

〈

y,−u̇n(t) + zn(t)
〉

≤ σ

(

y, γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

)

(3.17)

and

(3.18)
〈

y, zn(t)
〉

≤ σ

(

y,G
(

δn(t), un
(

δn(t)
)

)

)

.

Further, for each n ∈ N and any t ∈ [0, T ]\S, from (3.16) we have

〈

y, ξk(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

for all k ≥ n

and
〈

y, ζk(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

for all k ≥ n

and taking the limit in both inequalities as k → +∞ gives through (3.17)
and (3.18)

〈

y,−u̇(t) + z(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

≤ sup
q≥n

σ

(

y, γ∂d
C

(

θq(t),uq

(

θq(t)
)

)

(

uq
(

θq(t)
)

)

)
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and
〈

y, z(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

≤ sup
q≥n

σ

(

y,G
(

δq(t), uq
(

δq(t)
)

)

)

,

which ensures that

〈

y,−u̇(t) + z(t)
〉

≤ lim sup
n→+∞

σ

(

y, γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

)

and
〈

y, z(t)
〉

≤ lim sup
n→+∞

σ

(

y,G
(

δn(t), un
(

δn(t)
)

)

)

.

According to (H3) and Lemma 3.2.1, the multimapping (t, u, x) → ∂dC(t,u)(x)
takes on weakly compact convex values and is upper semicontinuous from
[0, T ] × H × H into (H,w(H,H)), hence for each y ∈ H the real-valued
function σ(y, γ∂dC(·,·)(·)) is upper semicontinuous on [0, T ]×H×H. Further,
σ(y,G(·, ·)) is also upper semicontinuous on [0, T ]×H by assumption (H1).
It follows that, for every t ∈ [0, T ]\S and every y ∈ H,

〈

y,−u̇(t) + z(t)
〉

≤ σ
(

y, γ∂d
C
(

t,u(t)
)

(

u(t)
)

)

and
〈

y, z(t)
〉

≤ σ
(

y,G
(

t, u(t)
)

)

,

which ensures that −u̇(t) + z(t) ∈ γ∂dC(t,u(t))(u(t)) and z(t) ∈ G(t, u(t)),
consequently

u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+ z(t) a.e.

z(t) ∈ G
(

t, u(t)
)

a.e.

with
‖u̇(t)− z(t)‖ ≤ γ.

The proof is complete.

The next theorem proves on the whole interval R+ := [0,+∞[, the exis-
tence of solution to the above evolution problem . In the result of Theorem
3.3.1, the solution is Lipschitz on the interval [0, T ], but in the theorem below,
the solution is locally Lipschitz on R+.

Theorem 3.3.2. Let G : R+ ×H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a
Hilbert space and that (G1 − G4) below hold:
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(G1) There exists a non-negative function β(·) ∈ L∞
loc(R+) such that

d
(

0, G(t, u)
)

≤ β(t)

for all t ∈ R+ and u ∈ H with u ∈ C(t, u);

(G2) For each t ∈ R+ and each u ∈ H, the sets C(t, u) are nonempty closed
in H and r-prox-regular for some constant r > 0;

(G3) There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ R+

and x, y, u, v ∈ H
∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

(G4) For any real T > 0 and any bounded subset A ⊂ H, the set C([0, T ]×A)
is ball-compact, that is, the intersection of C([0, T ]×A) with any closed
ball of H is relatively compact in H.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally Lipschitz continuous on R+ and satisfies

(DR+
)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ R+,

u(t) ∈ C
(

t, u(t)
)

∀t ∈ R+,

u(t) = u0 +
∫ t

0
u̇(s)ds ∀t ∈ R+.

Proof. Put Tk = k for all k ∈ {0} ∪ N. It will suffice to prove that
Theorem 3.3.1 applies on each interval [Tk, Tk+1].

According to assumptions G1,G2,G3,G4 we have H1,H2,H3,H4 hold on
the interval [T0, T1]. Since u0 ∈ C(T0, u0), by Theorem 3.3.1 there exists a
Lipschitz continuous mapping u0 : [T0, T1] → H such that



























u̇0(t) ∈ −N
C
(

t,u0(t)
)

(

u0(t)
)

+G
(

t, u0(t)
)

a.e t ∈ [T0, T1],

u0(t) ∈ C
(

t, u0(t)
)

∀t ∈ [T0, T1],

u0(T0) = u0.

Suppose u0, · · · , uk−1 have been constructed such that, for l = 0, · · · , k−
1, ul : [Tl, Tl+1] → H is Lipschitz continuous, ul(Tl) = ul−1(Tl), u

l(t) ∈
C(t, ul(t)) for all t ∈ [Tl, Tl+1] and

u̇l(t) ∈ −N
C
(

t,ul(t)
)

(

ul(t)
)

+G
(

t, ul(t)
)

a.e t ∈ [Tl, Tl+1].
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In an analogous way as above, the hypotheses G1,G2,G3,G4 ensure that
H1,H2,H3,H4 hold on the interval [Tk, Tk+1] and we have uk−1(Tk) ∈
C(Tk, u

k−1(Tk)). It follows from Theorem 3.3.1 that there is a Lipschitz
continuous mapping uk : [Tk, Tk+1] → H such that

(3.19)



























u̇k(t) ∈ −N
C
(

t,uk(t)
)

(

uk(t)
)

+G
(

t, uk(t)
)

a.e t ∈ [Tk, Tk+1],

uk(t) ∈ C
(

t, uk(t)
)

∀t ∈ [Tk, Tk+1],

uk(Tk) = uk−1(Tk).

So, we obtain by induction uk for all k ∈ {0} ∪N with the above properties.
Let u : R+ → H be the mapping defined by

u(t) := uk(t) for all t ∈ [Tk, Tk+1[ with k ∈ {0} ∪ N.

It is easily seen that u is locally Lipschitz continuous on R+. Therefore, it
results from (3.19) that



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ R+,

u(t) ∈ C
(

t, u(t)
)

∀t ∈ R+,

u(0) = u0(T0) = u0.

This proves the theorem.

The corollaries below are direct consquences of Theorem 3.3.1 and The-
orem 3.3.2 respectively.

Corollaire 3.3.1. Let G : [0, T ] × H ⇒ H be a multimapping which is
scalarly upper semicontinuous with respect to both variables. Assume that H
is a finite dimensional Euclidean space and that the assumptions below hold:

• There exists a positive real number α such that

d
(

0, G(t, u)
)

≤ α

for all t ∈ [0, T ] and u ∈ H with u ∈ C(t, u);

• For each t ∈ [0, T ] and each u ∈ H, the sets C(t, u) are nonempty
closed in H and r-prox-regular for some constant r > 0;
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• There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ [0, T ]
and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : [0, T ] → H
which is Lipschitz continuous on [0, T ] and satisfies (D). Further, we have
‖u̇(t)‖ ≤ L1+2α

1−L2
a.e. t ∈ [0, T ].

Corollaire 3.3.2. Let G : R+×H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a
finite dimensional Euclidean space and that the following assumptions hold:

• There exists a non-negative function β(·) ∈ L∞
loc(R+) such that

d
(

0, G(t, u)
)

≤ β(t)

for all t ∈ R+ and u ∈ H with u ∈ C(t, u);

• For each t ∈ R+ and each u ∈ H, the sets C(t, u) are nonempty closed
in H and r-prox-regular for some constant r > 0;

• There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ R+

and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally Lipschitz continuous on R+ and satisfies (DR+

)
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Paris-Dauphine, (1981).

[15] B. Cornet, Existence of slow solutions for a class of differential inclu-
sions, J. Math. Anal. Appl. 96 (1983), 130-147.

[16] J. F. Edmond, L. Thibault, Relaxation of an optimal control problem
involving a perturbed sweeping process, Math. Program. 104 (2005), 347-
373.

[17] J. F. Edmond, L. Thibault, BV solutions of nonconvex sweeping
process differential inclusion with perturbation, J. Differential Equations
226 (2006), 135-179.

[18] A. Gamal, Perturbation semi-continues supérieurement de certaines
équations d’évolution Sém. Anal. Convex Montpellier (1981), Exposé 14.
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Introduction

In this article we consider the evolution problem in a Hilbert space H

(Dr)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t,Λ(t)u
)

a.e t ∈ [0, T ]

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ]

u(s) = ϕ(s) ∀s ∈ [−r, 0]; u(0) = u0 ∈ C(0, u0),

where r > 0 is a finite delay, G : [0, T ] × C0 ⇒ H is a set-valued mapping
taking closed convex values, C : [0, T ] × H ⇒ H is a set-valued mapping
with nonempty closed values and ϕ is an element of C0 with ϕ(0) = u0 ∈
C(0, u0). Here N

C
(

t,u(t)
)(·) denotes a normal cone to the set C(t, u(t)) and

C0 := CH(−r, 0) is the Banach space of all continuous mappings from [−r, 0] to
H equipped with the norm of uniform convergence ‖·‖∞,0. For any t ∈ [0, T ],
the mapping Λ(t) from CT := CH(−r, T ) into C0 is given by Λ(t)u(s) = u(t+s)
for all s ∈ [−r, 0] and u ∈ CT . By a solution of (Dr) we mean a mapping
u : [−r, T ] → H such that its restriction on [−r, 0] is equal to ϕ and its
restriction to [0, T ] is absolutely continuous, that is, u(t) = u0 +

∫ t

0
u̇(s)ds,

for all t ∈ [0, T ] with u̇ ∈ L1
H(0, T ) , and such that the conditions in (Dr) are

satisfied. Such perturbed both time-dependent and state-dependent sweeping
processes with delay have been studied in the paper of C. Castaing, A. G
Ibrahim and M. Yarou [8]; their approach strongly uses the convexity and
ball-compactness assumption for C(t, x) and G is bounded on [0, T ] × C0.
We refer to [1, 8, 9, 22] for other works related to both time-dependent
and state-dependent sweeping processes but without delay. We must also
say that non perturbed sweeping processes have been introduced by J. J.
Moreau [25, 26, 28]

Our main purpose in this paper is to prove existence result for (Dr) when
C has prox-regular values. The paper is organized as follows. In section 1,
we give notation which will be used throughout the paper and we recall some
definitions and results. Section 2 is devoted to prove the existence of solution
for (Dr).

4.1 Preliminaries and fundamental results

Throughout the paper H is a Hilbert space whose inner product is denoted
by 〈·, ·〉 and the associated norm by ‖·‖. The closed unit ball ofH with center
0 will be denoted by B and B(u, η) (respectively, B[u, η]) denotes the open

126



(respectively, closed) ball of center u ∈ H and radius η > 0. Given a real
T > 0, we will denote by CH(0, T ) the space of all continuous mappings from
[0, T ] to H, ”a.e” denotes ”for almost every where” and u̇ is the derivative
of u.

Let C,C ′ be two subsets of H and let v be a vector in H, the real d(v, C)
or dC(v) := inf{‖v − u‖ : u ∈ C} is the distance of the point v from the set
C. We denote by

Haus(C,C ′) = max
{

sup
u∈C

d(u, C ′), sup
v∈C′

d(v, C)
}

the Hausdorff distance between C and C ′. Let us denote, for ρ > 0 and
γ ∈]0, 1[, by Uγ

ρ (C) (respectively, by E
γ
ρ (C)) the open tube around the set C

(respectively, the open enlargement of the set C), that is,

Uγ
ρ (C) := {v ∈ H : 0 < d(v, C) < γρ},

respectively,
Eγ

ρ (C) := {v ∈ H : d(v, C) < γρ}.

We need first to recall some notation and definitions that will be used in
all the paper. For any subset C of H, coC stands for the closed convex hull
of C, and σ(·, C) represents the support function of C, that is, for all ξ ∈ H,

σ(ξ, C) := sup
u∈C

〈ξ, u〉.

If C is a nonempty subset of H, the Clarke normal cone N(C; u) or NC(u)
of C at u ∈ C is defined by

NC(u) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC(u)},

where the Clarke tangent cone T (C; u) or TC(u) (see [10]) is defined as follows:

v ∈ TC(u) ⇔







∀ε > 0, ∃δ > 0 such that

∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.

Equivalently, v ∈ TC(u) if and only if for any sequence (un)n of C converging
to u and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

un + tnvn ∈ C for all n ∈ N.

We put NC(u) = ∅, whenever u /∈ C.
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We typically denote by f : H → R ∪ {+∞} a proper function (that is,
f is finite at least at one point). The Clarke subdifferential ∂f(u) of f at a
point u (where f is finite) is defined by

∂f(u) =
{

ξ ∈ H : (ξ,−1) ∈ Nepi f

(

(

u, f(u)
)

)}

,

where epi f denotes the epigraph of f , that is,

epi f = {(u, ρ) ∈ H × R : f(u) ≤ ρ}.

We also put ∂f(u) = ∅ if f is not finite at u ∈ H. If ψC denotes the indicator
function of the set C, that is, ψC(u) = 0 if u ∈ C and ψC(u) = +∞ otherwise,
then

∂ψC(u) = NC(u) for all u ∈ H.

The Clarke subdifferential ∂f(u) of a locally Lipschitz function f at u has
also the other useful description

∂f(u) = {ξ ∈ H : 〈ξ, v〉 ≤ f 0(u, v), ∀v ∈ H},

where

f 0(u, v) := lim sup
(u′,t)→(u,0+)

f(u′ + tv)− f(u′)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

NC(u) = clw(R+∂dC(u)) for all u ∈ C,

where R+ := [0,∞[ and clw denotes the closure with respect to the weak
topology of H. Further

∂dC(u) ⊂ NC(u) ∩ B for all u ∈ C.

We will also need the concept of proximal subgradient. A vector ξ ∈ H
is a proximal subgradient of f at u (see, [11, 24, 32]) if there exist some
constant real number σ ≥ 0 and some δ > 0 such that

〈ξ, v − u〉 ≤ f(v)− f(u) + σ‖v − u‖2 for all v ∈ B(u, δ).

The set ∂pf(u) of all proximal subgradients of f at u is the proximal subdif-
ferential of f at u. If f(u) is not finite we put ∂pf(u) = ∅. It is known that
we always have the inclusion

∂pf(u) ⊂ ∂f(u).
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The proximal normal cone of C at u ∈ C is given by

Np
C(u) = ∂pψC(u),

so the following inclusion always holds true

Np
C(u) ⊂ NC(u) for all u ∈ C.

On the other hand, the proximal normal cone enjoys a geometrical charac-
terization (see, [11]) given by the equality

Np
C(u) = {ξ ∈ H : ∃ρ > 0 s.t. u ∈ Proj C(u+ ρξ)},

where
Proj C(v) := {u ∈ C : d(v, C) = ‖v − u‖}

is the set of nearest points of v in C. When this set has a unique point, we
will use the notation PC(v). For u ∈ C, the proximal cone is also related to
the distance function to C via the equalities (see, [11, 3])

Np
C(u) = R+∂pdC(u)

and

(4.1) Np
C(u) ∩ B = ∂pdC(u).

Now, we begin by recalling that, for a given ρ ∈]0,+∞], a subset C of
the Hilbert space H is (uniformly) ρ-prox-regular (see [31]) if for any u ∈ C
and for any ξ ∈ NC(u) with ‖ξ‖ < 1, then u is the unique nearest point of
u+ ρ−1ξ in C.

The following proposition summarize some important consequences of the
prox-regularity property which will be needed in the sequel of the paper. For
the proof of these results we refer the reader to [31].

Theorem 4.1.1. Let C be a nonempty closed subset in the Hilbert space H
and let ρ > 0. If the subset C is ρ-prox-regular, then the following hold:

a) For any point v in the open enlargement Eγ
ρ (C), the mapping PC(v)

exists and is continuous;

b) For any v ∈ Uγ
ρ (c) and y = PC(v) we have y ∈ Proj C

(

y + ρ v−y
‖v−y‖

)

;

c) The Clarke and the proximal subdifferentials of dC(·) coincide at all
points v ∈ Eγ

ρ (C);
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d) The Clarke and the proximal normal cone to C coincide at all points
u ∈ C.

We will also need the following lemma from [4].

Lemma 4.1.1. Let ρ > 0. Assume that C(t) is ρ-prox-regular for all t ∈
[0, T ] and that there exists an absolutely continuous function ϑ : [0, T ] → R

such that

|d(x, C(t))− d(x, C(t))| ≤ |ϑ(t)− ϑ(s)| for all s, t ∈ [0, T ].

Then, for any given 0 < δ < ρ, the following holds:

For any s ∈ [0, T ], any sequence (un)n converging to u ∈ C(s)+(ρ−δ)B
in (H, ‖ · ‖) ((un)n is not necessarily in C(sn)), any sequence (sn)n in
[0, T ] converging to s and any sequence (ζn)n converging weakly to ζ in
(H,w(H,H)) with ζn ∈ ∂dC(sn)(un), we have ζ ∈ ∂dC(s)(u).

The following results, recently established in [29], will play an important
role in the proof of our main result.

Theorem 4.1.2. Let C and C ′ be ρ-prox-regular sets of the Hilbert space
H for a constant ρ > 0 and let γ ∈]0, 1[. Then for all u ∈ Uγ

ρ (C) and
v ∈ Uγ

ρ (C
′) we have

‖PC(u)− PC′(v)‖ ≤ (1− γ)−1‖u− v‖+

√

2γρ

1− γ

(

Haus (C,C ′)
)1/2

.

The result can be applied to ρ-prox-regular moving set C(t, u) satisfying

(4.2) |d(x, C(t, u))− d(x, C(t, v))| ≤ L‖u− v‖

whenever t ∈ [0, T ] and x, u, v ∈ H where L is some real constant with
L ∈ [0, 1[; indeed the latter inequality is equivalent to

Haus (C(t, u), C(t, v)) ≤ L‖u− v‖.

This application has as an immediate consequence the following result.

Corollaire 4.1.1. Let C(t, u) be ρ-prox-regular moving sets of the Hilbert
space H for a constant ρ > 0 which satisfy (4.2), and let γ ∈]0, 1[. Then, for
all u, v ∈ H and x ∈ Uγ

ρ (C(t, u)) ∩ U
γ
ρ (C(t, v)), we have

‖PC(t,u)(x)− PC(t,v)(x)‖ ≤

√

2γρL

1− γ
‖u− v‖1/2.

Consider now for each (t, x) ∈ [0, T ] × H fixed, the mapping φ from
DomPC(t) defined by u 7→ PC(t,u)(x). Thus, Corollary 4.1.1 above establishes
the local Hölder continuity of φ on Uγ

ρ (C(t, u)) whenever the variable set
C(t, u) is ρ-prox-regular.
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4.2 Perturbed nonconvex sweeping process

with delay

Let two given set-valued mappings C : [0, T ]×H ⇒ H with nonempty closed
values and G : [0, T ]×C0 ⇒ H with nonempty closed convex values. Suppose
that they satisfy the following assumptions:

(H1) The set-valued mapping G is scalarly upper semicontinuous with re-
spect to both variables (that is, for each y ∈ H the function (t, ϕ) →
σ(y,G(t, ϕ)) is upper semicontinuous) and, for some real α > 0

d
(

0, G(t, ϕ)
)

≤ α

for all t ∈ [0, T ] and ϕ ∈ C0;

(H2) For each t ∈ [0, T ] and each u ∈ H, the sets C(t, u) are nonempty
closed in H and ρ-prox-regular for some constant ρ > 0;

(H3) There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ [0, T ]
and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖;

(H4) For any bounded subset A ⊂ H, the set C([0, T ]×A) is relatively ball-
compact, that is, the intersection of C([0, T ]×A) with any closed ball
of H is relatively compact in H.

Theorem 4.2.1. Assume that H is a Hilbert space, that (H1 − H4) hold.
Then, for any ϕ ∈ C0 and u0 ∈ H with ϕ(0) = u0 ∈ C(0, u0), the differential
inclusion

(Dr)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t,Λ(t)u
)

a.e t ∈ [0, T ],

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ],

u = ϕ in [−r, 0],

has at least one solution u : [−r, T ] → H, which is continuous on [−r, T ] and
Lipschitz on [0, T ] with ‖u̇(t)‖ ≤ L1+2α

1−L2
a.e t ∈ [0, T ].

Proof. Fix an integer p ≥ 1 and suppose, without loss of generality, that

(4.3) T < pρ(1− L2)
(

2α(1 + 3L2) + 2L1(1 + L2)
)−1

.
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We are going to construct a sequence of mappings (un(·)) in CH(−r, T )
which has a subsequence converging pointwise to a solution of (Dr).

Step 1. Construction of the sequence (un)n
For any t ∈ [0, T ], consider the single-valued mapping Λ̂(t) : Ct → C0 defined,
for all ξ ∈ Ct := CH(−r, t) by

Λ̂(t)ξ(s) := ξ(t+ s) ∀s ∈ [−r, 0].

For each integer n ≥ 1, we partition [0, T ] by the points

tnk = k
T

pn
, k = 0, 1, · · · , pn.

For each (t, ϕ) ∈ [0, T ] × C0 denote by g(t, ϕ) the element of minimal norm
of the closed convex set G(t, ϕ) of H, that is,

g(t, ϕ) = PG(t,ϕ)(0).

Put xn0 := u0 ∈ C(tn0 , u0) and un0 (t) = ϕ(t) for all t ∈ [−r, tn0 ]. For any
v ∈ B(u0, 2

L1+2α
1−L2

T
pn
), from (H1) and (H3) we get

d
(

u0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 ), C(t

n
1 , v)

)

≤ d
(

u0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 ), C(t

n
0 , u0)

)

+ L1|t
n
1 − tn0 |+ L2‖v − u0‖

≤
∥

∥

∥

T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 )
∥

∥

∥
+ L1

T

pn
+ 2L2

L1 + 2α

1− L2

T

pn

≤
(

α + L1 + 2L2
L1 + 2α

1− L2

) T

pn
=
α(1 + 3L2) + L1(1 + L2)

1− L2

T

pn
,

and hence it results according to (4.3) that

d
(

u0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 ), C(t

n
1 , v)

)

<
1

2
ρ.

By the ρ-prox-regularity assumption, Theorem 4.1.1 guarantees, for every
v ∈ B

(

u0, 2
L1+2α
1−L2

T
pn

)

, that

(4.4) φ1(v) := PC(tn
1
,v)

(

u0 +
T

pn
g
(

tn0 , Λ̂(t
n
0 )u

n
0

)

)

is well defined. It results from Corollary 4.1.1, (H2) and (H3) that the
mapping φ1 : B

(

u0, 2
L1+2α
1−L2

T
pn

)

→ H is locally Hölder continuous. Further,
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for all v ∈ B
[

u0,
L1+2α
1−L2

T
pn

]

, we have φ1(v) ∈ B
[

u0,
L1+2α
1−L2

T
pn

]

. Indeed, for any

such v it follows from the definition of φ1(v) and from (H3) (as above) that

‖φ1(v)− xn0‖ ≤
∥

∥

∥
φ1(v)−

(

xn0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 )
)

∥

∥

∥
+
T

pn
‖g(tn0 , Λ̂(t

n
0 )u

n
0 )‖

= d
(

xn0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 ), C(t

n
1 , v)

)

+
T

pn
‖g(tn0 , Λ̂(t

n
0 )u

n
0 )‖

≤ d
(

xn0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 ), C(t

n
0 , x

n
0 )
)

+
T

pn
‖g(tn0 , Λ̂(t

n
0 )u

n
0 )‖

+ L2‖v − xn0‖+ L1|t
n
1 − tn0 |

≤ 2
T

pn
‖g(tn0 , Λ̂(t

n
0 )u

n
0 )‖+ L1|t

n
1 − tn0 |+ L2‖v − xn0‖

≤
(

2α + L1 + L2
L1 + 2α

1− L2

) T

pn
=
L1 + 2α

1− L2

T

pn
.

Since this holds for any v ∈ B
[

u0,
L1+2α
1−L2

T
pn

]

we deduce

φ1(v) ∈ C

(

tn1 , B
[

u0,
L1 + 2α

1− L2

T

pn

]

)

⋂

B
[

u0,
L1 + 2α

1− L2

T

pn

]

,

and the set φ1

(

B[u0,
L1+2α
1−L2

T
pn
]
)

is relatively compact, in view of hypoth-

esis (H4). So, the mapping φ1 is continuous from the closed convex set
B
[

u0,
L1+2α
1−L2

T
pn

]

into itself and the range of B
[

u0,
L1+2α
1−L2

T
pn

]

by φ1 is relatively

compact. The extended Schauder fixed point theorem (established in [21] or
[30]), applied to the mapping φ1, implies that there exists xn1 ∈ B[u0,

L1+2α
1−L2

T
pn
]

such that xn1 = φ1(x
n
1 ). Consequently, we obtain

xn1 ∈ C(tn1 , x
n
1 ) and ‖xn1 − u0‖ ≤

L1 + 2α

1− L2

T

pn

and by (4.4)

u0 +
T

pn
g(tn0 , Λ̂(t

n
0 )u

n
0 )− xn1 ∈ NC(tn

1
,xn

1
)(x

n
1 ).

Define χn
1 : [tn0 , t

n
1 ] → H by

χn
1 (t) :=

tn1 − t

tn1 − tn0
xn0 +

t− tn0
tn1 − tn0

xn1 if t ∈ [tn0 , t
n
1 ].

and consider un1 : [−r, tn1 ] → H given by

un1 (t) :=







χn
1 (t) if t ∈ [tn0 , t

n
1 ]

ϕ(t) if t ∈ [−r, 0].
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As above, for any v ∈ B
(

xn1 , 2
L1+2α
1−L2

T
pn

)

, we observe by (H1) and (H3) that

d
(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 ), C(t

n
2 , v)

)

≤ d
(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 ), C(t

n
1 , x

n
1 )
)

+ L1|t
n
2 − tn1 |+ L2‖v − xn1‖

≤
∥

∥

∥

T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 )
∥

∥

∥
+ L1

T

pn
+ 2L2

L1 + 2α

1− L2

T

pn

≤
(

α + L1 + 2L2
L1 + 2α

1− L2

) T

pn
=
α(1 + 3L2) + L1(1 + L2)

1− L2

T

pn
,

which combined with (4.3) yields

d
(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 ), C(t

n
2 , v)

)

<
1

2
ρ.

By the ρ-prox-regularity assumption, Theorem 4.1.1 ensures, for every v ∈
B
(

xn1 , 2
L1+2α
1−L2

T
pn

)

, that

(4.5) φ2(v) := PC(tn
2
,v)

(

xn1 +
T

pn
g
(

tn1 , Λ̂(t
n
1 )u

n
1

)

)

is well defined. It results from Corollary 4.1.1, (H2) and (H3) that the
mapping φ2 : B

(

xn1 , 2
L1+2α
1−L2

T
pn

)

→ H is locally Hölder continuous. Further,

for all v ∈ B
[

xn1 ,
L1+2α
1−L2

T
pn

]

, we have φ2(v) ∈ B
[

xn1 ,
L1+2α
1−L2

T
pn

]

. Indeed, for any

such v it follows from the definition of φ2(v), from (H1) and (H3) (as above)
that

‖φ2(v)− xn1‖ ≤
∥

∥

∥
φ2(v)−

(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 )
)

∥

∥

∥
+
T

pn
‖g(tn1 , Λ̂(t

n
1 )u

n
1 )‖

= d
(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 ), C(t

n
2 , v)

)

+
T

pn
‖g(tn1 , Λ̂(t

n
1 )u

n
1 )‖

≤ d
(

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 ), C(t

n
1 , x

n
1 )
)

+
T

pn
‖g(tn1 , Λ̂(t

n
1 )u

n
1 )‖

+ L2‖v − xn1‖+ L1|t
n
2 − tn1 |

≤ 2
T

pn
‖g(tn1 , Λ̂(t

n
1 )u

n
1 )‖+ L1|t

n
2 − tn1 |+ L2‖v − xn1‖

≤
(

2α + L1 + L2
L1 + 2α

1− L2

) T

pn
=
L1 + 2α

1− L2

T

pn
.

Since this holds for any v ∈ B
[

xn1 ,
L1+2α
1−L2

T
pn

]

we deduce

φ2(v) ∈ C

(

tn2 , B
[

xn1 ,
L1 + 2α

1− L2

T

pn

]

)

⋂

B
[

xn1 ,
L1 + 2α

1− L2

T

pn

]

,
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and the set φ2

(

B[xn1 ,
L1+2α
1−L2

T
pn
]
)

is relatively compact, in view of hypoth-

esis (H4). So, the mapping φ2 is continuous from the closed convex set
B
[

xn1 ,
L1+2α
1−L2

T
pn

]

into itself and the range of B
[

xn1 ,
L1+2α
1−L2

T
pn

]

by φ2 is relatively

compact. The extended Schauder fixed point theorem (established in [21] or
[30]), applied to the mapping φ2, implies that there exists xn2 ∈ B[xn1 ,

L1+2α
1−L2

T
pn
]

such that xn2 = φ2(x
n
2 ). Consequently, we obtain

xn2 ∈ C(tn2 , x
n
2 ) and ‖xn2 − xn1‖ ≤

L1 + 2α

1− L2

T

pn

and by (4.5)

xn1 +
T

pn
g(tn1 , Λ̂(t

n
1 )u

n
1 )− xn2 ∈ NC(tn

2
,xn

2
)(x

n
2 ).

Define χn
2 : [tn1 , t

n
2 ] → H by

χn
2 (t) :=

tn2 − t

tn2 − tn1
xn1 +

t− tn1
tn2 − tn1

xn2 if t ∈ [tn1 , t
n
2 ].

and define also un2 : [−r, tn2 ] → H by

un2 (t) :=







χn
2 (t) if t ∈ [tn1 , t

n
2 ]

un1 (t) if t ∈ [−r, tn1 ].

By repeating the process, for k = 0, 1, · · · , pn − 1, we obtain (xnk)
pn

k=0 in
H, (χn

k(·))
pn

k=1 with χn
k : [tnk−1, t

n
k ] → H and (unk(·))

pn

k=0 with unk : [−r, tnk ] → H
such that the following properties hold:

(4.6) xnk+1 ∈ C(tnk+1, x
n
k+1) and ‖xnk+1 − xnk‖ ≤

L1 + 2α

1− L2

T

pn
,

(4.7) xnk +
T

pn
g(tnk , Λ̂(t

n
k)u

n
k)− xnk+1 ∈ NC(tn

k+1
,xn

k+1
)(x

n
k+1),

χn
k+1 : [t

n
k , t

n
k+1] → H with

χn
k+1(t) :=

tnk+1 − t

tnk+1 − tnk
xnk +

t− tnk
tnk+1 − tnk

xnk+1 if t ∈ [tnk , t
n
k+1],

unk+1 : [−r, t
n
k+1] → H with

unk+1(t) :=







χn
k+1(t) if t ∈ [tnk , t

n
k+1]

unk(t) if t ∈ [−r, tnk ].
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Now, let us define the sequence of mappings (un(·))n from [−r, T ] into H
with un : [−r, T ] → H given by

un(t) := unpn(t) for all t ∈ [−r, T ].

Thus, for almost all t ∈ [tnk , t
n
k+1] and k = 0, 1, · · · , pn − 1,

u̇n(t) = −
xnk

tnk+1 − tnk
+

xnk+1

tnk+1 − tnk
= −

pn

T
(xnk − xnk+1).

This combined with (4.6) and (4.7), by construction, yields

un(t
n
k+1) ∈ C

(

tnk+1, un(t
n
k+1)

)

−u̇n(t) ∈ N
C
(

tn
k+1

,un(tnk+1
)
)

(

un(t
n
k+1)

)

− g
(

tnk , Λ̂(t
n
k)u

n
k

)

a.e t ∈ [tnk , t
n
k+1[

with, according to (4.6),

(4.8) ‖u̇n(t)‖ =
pn

T
‖xnk − xnk+1‖ ≤

L1 + 2α

1− L2

:=M.

Putting

δn(t) :=

{

tnk if t ∈ [tnk , t
n
k+1[

tnpn−1 if t = T,

and

θn(t) :=

{

tnk+1 if t ∈ [tnk , t
n
k+1[

T if t = T,

we obtain

(4.9) un
(

θn(t)
)

∈ C
(

θn(t), un
(

θn(t)
)

)

−u̇n(t) ∈ N
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

−g
(

δn(t), Λ̂
(

δn(t)
)

unpn−1

)

a.e t ∈ [0, T [.

Using the mapping Λ(t) : CH([−r, T ]) → CH([−r, 0]) defined in the introduc-
tion, it is easily seen that, for any ξ ∈ CT and any t ∈ [0, T ],

Λ(t)ξ = Λ̂(t)ξ|[−r,t]

where ξ|[−r,t] denotes the restriction of ξ to [−r, t]. The last inclusion above
can then be written as
(4.10)

−u̇n(t) ∈ N
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

−g
(

δn(t),Λ
(

δn(t)
)

un

)

a.e t ∈ [0, T ].
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Step 2. Convergence of a subsequence of (un(·)) to some mapping u(·)
absolutely continuous on [0, T ].
For any t ∈ [0, T ], the sequences θn(t) and δn(t) converge to t. Indeed, for
each t ∈ [0, T ], choosing k such that t ∈ [tnk , t

n
k+1[ if t < T and k = pn − 1 if

t = T , we have

|θn(t)− t| ≤ |tnk+1 − tnk | =
T

pn
, so θn(t) → t as n→ +∞,

and similarly δn(t) → t as n→ +∞.
For each k = 0, 1, · · · , pn − 1, it results from the inequality in (4.6) that

‖xnk+1 − u0‖ ≤ ‖xnk+1 − xnk‖+ · · ·+ ‖xn1 − xn0‖ ≤ (k + 1)
L1 + 2α

1− L2

T

pn
,

so

‖xnk+1‖ ≤ ‖u0‖+
L1 + 2α

1− L2

T := β.

Consider vn := un|[0,T ], that is, vn(t) = un(t) for all t ∈ [0, T ]. Fix any t ∈
[0, T ] and consider, for any infinite subset N ⊂ N, the sequence (vn(t))n∈N . It
follows from (4.9) that vn(θn(t)) ∈ C(θn(t), vn(θn(t)))∩βB, which implies that
vn(θn(t)) ∈ C([0, T ]×βB)∩βB. By (H4) the sequence (vn(θn(t))) is relatively
compact, so there is an infinite subset N0 ⊂ N such that (vn(θn(t)))n∈N0

converges to some vector l(t) ∈ H. Putting hn(t) := vn(θn(t))− vn(t) for all
n ∈ N0, by (4.8), we obtain

‖hn(t)‖ ≤

∫ θn(t)

t

‖v̇n(s)‖ds ≤M(θn(t)− t) −→
n→∞

0.

Then, (vn(t))n∈N0
converges to l(t), thus the set {vn(t) : n ∈ N} is relatively

compact in H. The sequence (vn(·))n∈N being in addition equicontinuous
according to (4.8), this sequence (vn(·))n∈N is relatively compact in CH(0, T ) ,
so we can extract a subsequence of (vn(·))n∈N (that we do not relabel) which
converges uniformly to some mapping v(·) on [0, T ]. By the inequality (4.8)
again there is a subsequence of (v̇n)n∈N (that we do not relabel) which con-
verges w(L1

H ,L
∞
H ) in L1

H(0, T ) to a mapping w ∈ L1
H(0, T ) with ‖w(t)‖ ≤M

a.e. t ∈ [0, T ]. Fixing t ∈ [0, T ] and taking any y ∈ H, the above weak
convergence in L1

H(0, T ) yields

lim
n→∞

∫ T

0

〈11[0,t](s)y, v̇n(s)〉ds =

∫ T

0

〈11[0,t](s)y, w(s)〉ds,

or equivalently

lim
n→∞

〈y, u0 +

∫ t

0

v̇n(s)ds〉 = 〈y, u0 +

∫ t

0

ẇ(s)ds〉.

137



This means, for each t ∈ [0, T ], that vn(t) −→
n→∞

u0 +
∫ t

0
w(s)ds weakly in H.

Since the sequence (vn(t))n∈N also converges strongly to v(t) in H, it ensures
that v(t) = u0 +

∫ t

0
w(s)ds, so the mapping v(·) is absolutely continuous on

[0, T ] with v̇ = w. The mapping v(·) is even Lipschitz on [0, T ] with M as a
Lipschitz constant therein, since the convex set {ζ ∈ L1

H(0, T ) : ‖ζ(t)‖ ≤ H}
is norm closed in L1

H(0, T ), and hence weakly closed.
Further, since un(t) = ϕ(t) for all t ∈ [−r, 0], putting u(t) = ϕ(t) if

t ∈ [−r, 0] and u(t) = v(t) if t ∈ [0, T ], we see that (un(·))n converges
uniformly on [−r, T ] to u(·) and u(·) is continuous on [−r, T ] and Lipschitz
on [0, T ].

Step 3. Let us prove that u(·) is a solution of (Dr).
Claim: For any t ∈ [0, T ], (Λ

(

δn(t)
)

un)n converges uniformly to Λ(t)u in C0.
Fix any t ∈ [0, T ]. We can write, for every s ∈ [−r, 0]

‖un(δn(t) + s)− u(t+ s)‖

≤ ‖un
(

δn(t) + s
)

− u
(

δn(t) + s
)

‖+ ‖u
(

δn(t) + s
)

− u(t+ s)‖

≤ sup
τ∈[−r,T ]

‖un(τ)− u(τ)‖+M |t− δn(t)|,

so we have

‖Λ
(

δn(t)
)

un − Λ(t)u‖C0 ≤ ‖un − u‖CT +M |t− δn(t)|.

Since un(·)n converges uniformly to u(·) on [−r, T ], we deduce

‖Λ
(

δn(t)
)

un − Λ(t)u‖C0 −→
n→+∞

0,

which justifies the claim.
According to (H1), we have

∥

∥g
(

δn(t),Λ
(

δn(t)
)

un
)∥

∥ ≤ α for all n ∈ N

and t ∈ [0, T ], then putting zn(t) := g
(

δn(t),Λ
(

δn(t)
)

un
)

for all t ∈ [0, T ],
we may assume (taking a subsequence if necessary) that the sequence
(zn(·)) converges w(L

1
H ,L

∞
H ) in L1

H(0, T ) to a mapping z(·) ∈ L1
H(0, T ) with

‖z(t)‖ ≤ α a.e t ∈ [0, T ].

For all t ∈ [0, T ] we have u(t) ∈ C(t, u(t)). Indeed, since un(θn(t)) ∈
C(t, un(θn(t))), the assumption (H3) ensures that

d
(

un(t), C
(

t, u(t)
)

)

≤ ‖un(t)− un(θn(t))‖+ L1|t− θn(t)|+ L2‖u(t)− un(θn(t))‖

≤ (M + L1 +ML2)|t− θn(t)|+ L2‖u(t)− un(t)‖
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then,

d(un(t), C(t, u(t))) −→
n→∞

0, so d(u(t), C(t, u(t))) = 0 and u(t) ∈ C(t, u(t)).

Further, from the inequality ‖u̇n(t)− zn(t)‖ ≤M +α := γ a.e. and from the
inclusion (4.10) it follows for a.e. t ∈ [0, T ] that

−u̇n(t) + zn(t) ∈ N
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

⋂

γB

= γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

, see (4.1)
(4.11)

(4.12) zn(t) ∈ G
(

δn(t),Λ
(

δn(t)
)

un

)

.

It follows from (−u̇n+zn, zn)n converges weakly in L1
H×H(0, T ) to (−u̇+z, z)

and by Mazur theorem there are

(4.13) ξn ∈ co {−u̇q + zq : q ≥ n} and ζn ∈ co {zq : q ≥ n}

such that (ξn, ζn)n converges strongly in L1
H×H(0, T ) to (−u̇+ z, z). Extract-

ing a subsequence if necessary we suppose that (ξn(·), ζn(·))n converges a.e.
to (−u̇(·) + z(·), z(·)), then there is a Lebesgue negligible set S ⊂ [0, T ] such
that, for every t ∈ [0, T ]\S, on one hand (ξn(t), ζn(t)) → (−u̇(t) + z(t), z(t))
strongly in H and on the other hand the inclusions (4.11) and (4.12) hold
true for all integer n as well as the inclusions

−u̇(t)+z(t) ∈
⋂

n

co
{

−u̇q(t)+zq(t) : q ≥ n
}

and z(t) ∈
⋂

n

co
{

zq(t) : q ≥ n
}

.

It results from (4.11) and (4.12) that for any n ∈ N, any t ∈ [0, T ]\S, and
for any y ∈ H

〈

y,−u̇n(t) + zn(t)
〉

≤ σ

(

y, γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

)

(4.14)

and

(4.15)
〈

y, zn(t)
〉

≤ σ

(

y,G
(

δn(t),Λ
(

δn(t)
)

un

)

)

.

Further, for each n ∈ N and any t ∈ [0, T ]\S, from (4.13) we have
〈

y, ξk(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

for all k ≥ n
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and
〈

y, ζk(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

for all k ≥ n

and taking the limit in both inequalities as k → +∞ gives through (4.14)
and (4.15)

〈

y,−u̇(t) + z(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

≤ sup
q≥n

σ

(

y, γ∂d
C

(

θq(t),uq

(

θq(t)
)

)

(

uq
(

θq(t)
)

)

)

and
〈

y, z(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

≤ sup
q≥n

σ

(

y,G
(

δq(t),Λ
(

δq(t)
)

uq

)

)

,

which ensures that

〈

y,−u̇(t) + z(t)
〉

≤ lim sup
n→+∞

σ

(

y, γ∂d
C

(

θn(t),un

(

θn(t)
)

)

(

un
(

θn(t)
)

)

)

and
〈

y, z(t)
〉

≤ lim sup
n→+∞

σ

(

y,G
(

δn(t),Λ
(

δn(t)
)

un

)

)

.

According to (H3) and Lemma 4.1.1 the set-valued mapping (t, u, x) →
∂dC(t,u)(x), taking on weakly compact convex values, is upper semicontinuous
from [0, T ]×H ×H into (H,w(H,H)), hence for each y ∈ H the real-valued
function σ(y, γ∂dC(·,·)(·)) is upper semicontinuous on [0, T ]×H×H. Further,
σ(y,G(·, ·)) is also upper semicontinuous on [0, T ]×CH(−r, 0) by assumption
(H1). It follows that, for every t ∈ [0, T ]\S and every y ∈ H,

〈

y,−u̇(t) + z(t)
〉

≤ σ
(

y, γ∂d
C
(

t,u(t)
)

(

u(t)
)

)

and
〈

y, z(t)
〉

≤ σ
(

y,G
(

t,Λ(t)u
)

)

,

which ensures that −u̇(t) + z(t) ∈ γ∂dC(t,u(t))(u(t)) and z(t) ∈ G(t,Λ(t)u),
consequently

u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+ z(t) a.e t ∈ [0, T ]

z(t) ∈ G
(

t,Λ(t)u
)

a.e t ∈ [0, T ]

with
‖u̇(t)− z(t)‖ ≤ γ a.e t ∈ [0, T ].

The proof is complete.
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Introduction

In this paper, given a Hilbert space H, we discuss the existence of solution
of the evolution process differential inclusion of the form

(D)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ]

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ]

u(0) = u0 ∈ C(0, u0).

In (D), C : [0, T ]×H ⇒ H is a multimapping with nonempty closed values
and G : [0, T ] × H ⇒ H is a multimapping with nonempty closed convex
values, and N

C
(

t,u(t)
)(·) denotes a normal cone to the set C(t, u(t)). As

stated, the set C(t, x) depends both on the time t and on the state x. Such
differential inclusions have been introduced, for a time-dependent set, in the
form

(SP)























u̇(t) ∈ −NK(t)

(

u(t)
)

a.e t ∈ [0, T ]

u(t) ∈ K(t) ∀t ∈ [0, T ]

u(0) = u0 ∈ K(0).

by J. J. Moreau [17, 18, 19] who called (SP) a sweeping procee because of
the mechanical interpretation (see, [17, 18, 19]).

The first work devoted to the inclusion (D) has been realized by M. Kunze
and M. D. P. Monteiro Marques [15] with G ≡ {0} and C(t, x) convex for all
t ∈ [0, T ] and all x ∈ H. In [8], G is a (single-valued) mapping measurable
with respect to the first variable and continuous with respect to the second
one. Associating with each absolutely continuous mapping y : [0, T ] → H,
with y(0) = u0, the unique solution φ(y) of the time-dependent sweeping
process (with unknown mapping u)

u̇(t) ∈ −N
C
(

t,y(t)
)

(

u(t)
)

+G
(

t, y(t)
)

with u(0) = u0 ∈ C
(

0, y(0)
)

,

N. Chemetov and M. D. P. Monteiro Marques, by applying the classical
Schauder fixed point theorem, proved the existence of solution of (D), for
nonconvex prox-regular and ball-compact sets C(t, x) moving in a Lipschitz
way. To be more precise, in [8], it is assumed that there exists an absolutely
continuous function ϑ : [0, T ]H, which is monotone increasing, and a constant
L2 ∈]0, 1[, such that

|d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)

| ≤ ‖x− y‖+ ϑ(t)ϑ(s) + L2‖u− v‖
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for all t, s ∈ [0, T ] with s < t and x, y, u, v ∈ H. Recently, in [6] C. Castaing,
A. G Ibrahim and M. Yarou obtained, under the prox-regularity and ball-
compactness assumption for C(t, x), the existence of solution for (D) when
G ≡ {0} via another method applying a generalized version of the Schauder
fixed point theorem from [14, 22]. On the other hand, with G 6≡ {0} and
C(t, x) convex and ball-compact using a careful adaptation of their method,
they also showed in the same paper [6] an existence result for (D) with delay,
that is, G is an upper semicontinuous and bounded multimapping defined
on [0, T ]× CH(−r, 0) and taking on weakly compact convex values of H; by
CH(−r, 0) we denote with r > 0 the space of all continuous mappings from
[−r, 0] to H. We refer to D. Azzam-Laouir, S. Izza and L. Thibault [2] for
a reduction approach of (D) to an unconstrained differential inclusion when
C(t, x) is prox-regular, G is a multimapping, and H is finite dimensional.
J. Noel and L. Thibault proved the existence of a solution for (D) in the
Hilbert setting when C(t, x) is a ball-compact prox-regular set and G is
a multimapping; the method in [21] is based upon a result on the Hölder
property of the metric projection to prox-regular set with respect to the
Hausdorff distance. With the sets C(t, x) prox-regular and contained in a
fixed compact set and through the scheme

un0 = u0 u
n
i+1 = Proj C(tni+1

,un
i )
(uni −

T

2n
gni )

with gni ∈ G(tni , u
n
i ) where t

n
i := i

T

2n
, i = 0, · · · , 2n − 1,

T. Haddad [13] gave another approach which yields to a proof of existence in
the Hilbert setting for (D) without application of any fixed point theorem.

In the present paper, using ideas from [13] and [21] we provided a new
constructive proof of existence of solution for (D) when the sets C(t, x) are
ball-compact and subsmooth. The method also allows us to relax the growth
conditions on the multimapping G which are assumed in [6, 13, 8]. The class
of subsmooth sets introduced in [1] strictly contains the class of closed convex
sets and the class of prox-regular sets. In the first section, we recall some
preliminaries and we prove an upper semicontinuity result which will be used
in our developement. The second section is devoted to the aforementioned
constructive proof (using no fixed-point theorem) of the differential inclusion
(D) governed by subsmooth sets C(t, x).

5.1 Preliminaries

Throughout the paper H is a Hilbert space whose inner product is denoted
by 〈·, ·〉 and the associated norm by ‖·‖. The closed unit ball ofH with center
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0 will be denoted by B and B(u, η) (respectively, B[u, η]) denotes the open
(respectively, closed) ball of center u ∈ H and radius η > 0. Given a real
T > 0, we will denote by CH(0, T ) the space of all continuous mappings from
[0, T ] to H, ”a.e.” denotes ”for almost every where” and u̇ is the derivative of
u. Let C,C ′ be two subsets of H and let v be a vector in H, the real d(v, C)
or dC(v) := inf{‖v − u‖ : u ∈ C} is the distance of the point v from the set
C. We denote by

Haus(C,C ′) = max
{

sup
u∈C

d(u, C ′), sup
v∈C′

d(v, C)
}

the Hausdorff distance between C and C ′. For v ∈ H the projection of v into
C ⊂ H is the set

Proj C(v) := {u ∈ C : dC(v) = ‖v − u‖}.

This set is nonempty when C is ball-compact. Recall that a subset S of
(H, ‖ · ‖) is ball-compact provided that S ∩ rB is compact in (H, ‖ · ‖) for
every real r > 0. Obviously any ball-compact set is norm closed, and in finite
dimensions S is ball-compact if and only if it is closed. When h ∈ Proj C(v),
then we have v − h ∈ Np

C(h) where N
p
C(·) denotes the proximal normal cone

of C (see, [9]).
For a nonempty interval J of R, we recall that a multimapping F :

J ⇒ H is called Lebesgue measurable if for each open set U ⊂ H the set
F−1(U) := {t ∈ J : F (t) ∩ U 6= ∅} is Lebesgue measurable. When the
values of F are closed subsets of H, we know (see [5]) that the Lebesgue
measurability of F is equivalent to the measurability of the graph of F , that
is,

gphF ∈ L(J )⊗ B(H),

where L(J ) denotes the Lebesgue σ-field of J , B(H) the Borel σ-field of H,
and

gphF :=
{

(t, u) ∈ J ×H : u ∈ F (t)
}

.

For any subset C of H, coC stands for the closed convex hull of C, and
σ(·, C) represents the support function of C, that is, for all ξ ∈ H,

σ(ξ, C) := sup
u∈C

〈ξ, u〉.

If C is a nonempty subset of H, the Clarke normal cone N(C; u) or NC(u)
of C at u ∈ C is defined by

NC(u) = {ξ ∈ H : 〈ξ, v〉 ≤ 0, ∀v ∈ TC(u)},
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where the Clarke tangent cone T (C; u) or TC(u) (see [10]) is defined as follows:

v ∈ TC(u) ⇔







∀ε > 0, ∃δ > 0 such that

∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.

Equivalently, v ∈ TC(u) if and only if for any sequence (un)n of C converging
to u and any sequence of positive reals (tn)n converging to 0, there exists a
sequence (vn)n in H converging to v such that

un + tnvn ∈ C for all n ∈ N.

We put NC(u) = ∅, whenever u /∈ C. For any η > 0 we denote by Nη
C(u) the

truncated Clarke normal cone, that is,

Nη
C(u) = NC(u) ∩ ηB.

We typically denote by f : H → R ∪ {+∞} a proper function (that is, f is
finite at least at one point). The Clarke subdifferential ∂f(u) of f at a point
u (where f is finite) is defined by

∂f(u) =
{

ξ ∈ H : (ξ,−1) ∈ Nepi f

(

(

u, f(u)
)

)}

,

where epi f denotes the epigraph of f , that is,

epi f = {(u, r) ∈ H × R : f(u) ≤ r}.

We also put ∂f(u) = ∅ if f is not finite at u ∈ H. If ψC denotes the indicator
function of the set C, that is, ψC(u) = 0 if u ∈ C and ψC(u) = +∞ otherwise,
then

∂ψC(u) = NC(u) for all u ∈ H.

The Clarke subdifferential ∂f(u) of a locally Lipschitz function f at u has
also the other useful description

∂f(u) = {ξ ∈ H : 〈ξ, v〉 ≤ f 0(u, v), ∀v ∈ H},

where

f 0(u, v) := lim sup
(u′,t)→(u,0+)

f(u′ + tv)− f(u′)

t
.

The above function f 0(u; ·) is called the Clarke directional derivative of f
at u. The Clarke normal cone is known ([10]) to be related to the Clarke
subdifferential of the distance function through the equality

NC(u) = clw(R+∂dC(u)) for all u ∈ C,
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where R+ := [0,∞[ and clw denotes the closure with respect to the weak
topology of H. Further

(5.1) ∂dC(u) ⊂ NC(u) ∩ B for all u ∈ C.

The concept of Fréchet subdifferential will be also needed. A vector ξ ∈ H
is said to be in the Fréchet subdifferential ∂Ff(u) of f at u (see [16]) provided
that for every ε > 0 there exists δ > 0 such that for all u′ ∈ B(u, δ) we have

〈ξ, u′ − u〉 ≤ f(u′)− f(u) + ε‖u′ − u‖.

It is known that we always have the inclusion

∂Ff(u) ⊂ ∂f(u).

The Fréchet normal cone of C at u ∈ C is given by

NF
C (u) = ∂FψC(u),

so the following inclusion always holds true

NF
C (u) ⊂ NC(u) for all u ∈ C.

On the other hand, the Fréchet normal cone is also related to the Fréchet
subdifferential of the distance function since the following relations hold true
for all u ∈ C

NF
C (u) = R+∂FdC(u)

and

∂FdC(u) = NF
C (u) ∩ B.(5.2)

Another important property is

v − u ∈ NF
C (u) hence also v − u ∈ NC(u)

whenever u ∈ Proj C(v), since N
p
C(u) ⊂ NF

C (u).

The next lemma 5.1.2, recently established in [20], will play an important
role in the proof of our main results.

We recall firstly the definition of subsmooth sets (see, [1]). Let C be a
closed subset of H. We say that C is subsmooth at u ∈ C, if for every ε > 0
there exists δ > 0 such that

〈ξ1 − ξ2, u1 − u2〉 ≥ −ε‖u1 − u2‖.(5.3)

whenever u1, u2 ∈ B(u, δ) ∩ C and ξi ∈ NC(ui) ∩ B, i = 1, 2. The set C is
subsmooth, if it is subsmooth at each point of C. We further say that C is
uniformly subsmooth, if for every ε > 0 there exists δ > 0, such that (5.3)
holds for all u1, u2 ∈ C satisfying ‖u1 − u2‖ < δ and all ξi ∈ NC(ui) ∩ B.
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Definition 5.1.1. Let {C(t, v) : (t, v) ∈ [0, T ] × H} be a family of closed
sets of H. This family is called equi-uniformly subsmooth, if for every ε > 0,
there exists δ > 0 such that (5.3) holds for each (t, v) ∈ [0, T ] × H, and all
u1, u2 ∈ C(t, v) satisfying ‖u1 − u2‖ < δ and all ξi ∈ NC(t,v)(ui) ∩ B.

Lemma 5.1.1. [20] If a closed set C of H is subsmooth at u0 ∈ C, then

∂dC(u0) = ∂FdC(u0)

and
NC(u0) = NF

C (u0).

Lemma 5.1.2. [20] Let E be a metric space and let (C(q))q∈E be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
η > 0. Let Q ⊂ E and q0 ∈ clQ. Then the following hold:

(a) For all (q, u) ∈ gphC we have η∂dC(q)(u) ⊂ ηB;

(b) For any net (qj)j∈J in Q converging to q0, any net (uj)j∈J converging
to u ∈ C(q0) in (H, ‖ · ‖) with uj ∈ C(qj) and dC(qj)(y) →

j∈J
0 for every

y ∈ C(q0) , and any net (ζj)j∈J converging weakly to ζ in (H,w(H,H))
with ζj ∈ η∂dC(qj)(uj), we have ζ ∈ η∂dC(q0)(u).

Through Lemma 5.1.2 we can, using some ideas in [20], establish the
following partial upper semicontinuity property.

Proposition 5.1.1. Let {C(t, v) : (t, v) ∈ [0, T ] × H} be a family of
nonempty closed sets of H which is equi-uniformly subsmooth and let a real
η > 0. Assume that there exist real constants L1 > 0 and L2 > 0 such that,
for any x, y, u, v ∈ H and s, t ∈ [0, T ]

|d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)

| ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Then the following assertions hold:

(a) For all (s, v, y) ∈ gphC we have η∂dC(s,v)(y) ⊂ ηB;

(b) For any sequence (sn)n in [0, T ] converging to s, any sequence (vn)n
converging to v, any sequence (yn)n converging to y ∈ C(s, v) with
yn ∈ C(sn, vn), and any ξ ∈ H, we have

lim sup
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

≤ σ
(

ξ, η∂dC(s,v)(y)
)

.
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Proof. The proof will be a careful adaptation of techniques of the proof
of Proposition 1.2.1 in [20]. We only have to prove (b). Let (sn)n, (vn)n and
(yn)n as in the statement. Extracting a subsequence if necessary, we may
suppose that

lim sup
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

= lim
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

.

For any n, the weak compactness of η∂dC(sn,vn)(yn) ensures the existence of
some ζn ∈ η∂dC(sn,vn)(yn) such that

〈ξ, ζn〉 = σ
(

ξ, η∂dC(sn,vn)(yn)
)

.

Since ‖ζn‖ ≤ η by (a), a subsequence of (ζn)n (that we do not relabel)
converges weakly to some ζ in H. It results that

(5.4) 〈ξ, ζ〉 = lim sup
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

.

Now, observe, for each z ∈ C(s, v), that

0 ≤ d
(

z, C(sn, vn)
)

≤ d
(

z, C(s, v)
)

+ L1|sn − s|+ L2‖vn − v‖.

Since (vn)n and (sn)n converge to v and s respectively, it follows that
d
(

z, C(sn, vn)
)

converge to 0. We then apply Lemma 5.1.2 to obtain
ζ ∈ η∂dC(s,v)(y). The latter inclusion combined with (5.4) yields

lim sup
n→∞

σ
(

ξ, η∂dC(sn,vn)(yn)
)

≤ σ
(

ξ, η∂dC(s,v)(y)
)

,

This complete the proof.

5.2 Subsmoothnes and variational inequality

We show in this section under reasonable assumptions that there always
exists a solution for variational evolution differential inclusion governed by
subsmooth set.

We shall be dealing with two multimappings G : [0, T ] × H ⇒ H with
nonempty weakly compact convex values and C : [0, T ] × H ⇒ H with
nonempty values. They are required to satisfy the following assumptions:

(H1) The multimapping G is scalarly upper semicontinuous with respect
to both variables (that is, for each y ∈ H the function (t, u) →
σ(y,G(t, u)) is upper semicontinuous) and, for some real α > 0

d
(

0, G(t, u)
)

≤ α

for all t ∈ [0, T ] and u ∈ H with u ∈ C(t, u);
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(H2) For each t ∈ [0, T ] and each u ∈ H, the sets C(t, u) are nonempty and
equi-uniformly subsmooth;

(H3) There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ [0, T ]
and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

(H4) For any bounded subset A ⊂ H, the set C([0, T ]×A) is relatively ball-
compact, that is, the intersection of C([0, T ]×A) with any closed ball
of H is relatively compact in H.

Of course the inequality condition in (H3) is equivalent to

∣

∣d
(

x, C(t, u)
)

− d
(

x, C(s, v)
)∣

∣ ≤ L1|t− s|+ L2‖u− v‖

for all t, s ∈ [0, T ] and x, u, v ∈ H.

Theorem 5.2.1. Assume that H is a Hilbert space, that H1, · · · ,H4 hold.
Then, for any u0 ∈ H with u0 ∈ C(0, u0), there exists a Lipschitz continuous
solution u : [0, T ] → H of the differential inclusion

(D)











u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ [0, T ],

u(t) ∈ C
(

t, u(t)
)

∀t ∈ [0, T ],

with ‖u̇(t)‖ ≤ L1+2α
1−L2

a.e t ∈ [0, T ].

Proof. For each integer n ≥ 1, we consider the partition of [0, T ] by the
points

tnk = k
T

n
, k = 0, 1, · · · , n.

For each (t, x) ∈ [0, T ]×H denote by g(t, x) the element of minimal norm of
the closed convex set G(t, x) of H, that is,

g(t, x) = Proj G(t,x)(0).

Put xn0 := u0 ∈ C(tn0 , u0).

Step 1. We construct xn0 , x
n
1 , · · · , x

n
n in H such that for each k =

0, 1, · · · , n− 1, the following inclusions hold

(5.5) xnk+1 ∈ C(tnk+1, x
n
k)
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(5.6) xnk +
T

n
g(tnk , x

n
k)− xnk+1 ∈ NC(tn

k+1
,xn

k
)(x

n
k+1),

along with the inequality ‖xn1 − xn0‖ ≤ (L1 + 2α)T
n
and for k = 1, · · · , n− 1

(5.7) ‖xnk+1 − xnk‖ ≤ (L1 + 2α)
T

n
+ L2‖x

n
k−1 − xnk−2‖.

The ball-compactness of C(tn1 , x
n
0 ) ensures that we can choose

xn1 ∈ Proj C(tn
1
,xn

0
)

(

xn0 +
T

n
g(tn0 , x

n
0

)

)

and hence
xn1 ∈ C(tn1 , x

n
0 )

xn0 +
T

n
g(tn0 , x

n
0

)

− xn1 ∈ NC(tn
1
,xn

0
)(x

n
1 ).

On the other hand, using ‖g(tn0 , x
n
0 )‖ ≤ α, in view of hypothesis (H1) we

have

‖xn1 − xn0‖ ≤
∥

∥

∥
xn1 −

(

xn0 +
T

n
g(tn0 , x

n
0 )
)

∥

∥

∥
+

∥

∥

∥

T

n
g(tn0 , x

n
0 )
∥

∥

∥

= d
(

xn0 +
T

n
g(tn0 , x

n
0 ), C(t

n
1 , x

n
0 )
)

+
∥

∥

∥

T

n
g(tn0 , x

n
0 )
∥

∥

∥

≤ d
(

xn0 +
T

n
g(tn0 , x

n
0 ), C(t

n
0 , x

n
0 )
)

+ L1|t
n
1 − tn0 |+

∥

∥

∥

T

n
g(tn0 , x

n
0 )
∥

∥

∥

≤ 2
∥

∥

∥

T

n
g(tn0 , x

n
0 )
∥

∥

∥
+ L1

T

n

≤
(

L1 + 2α
)T

n
.(5.8)

Now, suppose that, for 0, 1, · · · , k, with k ≤ n − 1 the points xn0 , x
n
1 , · · · , x

n
k

have been constructed, so that properties (5.5), (5.6) and (5.7) hold true.
Since C(tnk+1, x

n
k) is ball-compact, then we can find

xnk+1 ∈ Proj C(tn
k+1

,xn
k
)

(

xnk +
T

n
g(tnk , x

n
k)
)

,

and therefore,
xnk+1 ∈ C(tnk+1, x

n
k),

xnk +
T

n
g(tnk , x

n
k)− xnk+1 ∈ NC(tn

k+1
,xn

k
)(x

n
k+1).
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By (H1) and (H3), we get

‖xnk+1 − xnk‖ ≤
∥

∥

∥
xnk+1 −

(

xnk +
T

n
g(tnk , x

n
k)
)

∥

∥

∥
+

∥

∥

∥

T

n
g(tnk , x

n
k)
∥

∥

∥

= d
(

xnk +
T

n
g(tnk , x

n
k), C(t

n
k+1, x

n
k)
)

+
∥

∥

∥

T

n
g(tnk , x

n
k)
∥

∥

∥

≤ d
(

xnk +
T

n
g(tnk , x

n
k), C(t

n
k , x

n
k−1)

)

+
∥

∥

∥

T

n
g(tnk , x

n
k)
∥

∥

∥

+ L1|t
n
k+1 − tnk |+ L2‖x

n
k − xnk−1‖

≤ 2α
T

n
+ L1

T

n
+ L2‖x

n
k − xnk−1‖.

The finite sequence xn0 , x
n
1 · · · , x

n
n satisfying (5.5), (5.6) and (5.7) is then

contructed by induction.
Fix any k = 1, · · · , n− 1. We observe that

‖xnk+1 − xnk‖ ≤ 2α
T

n
+ L1

T

n
+ L2‖x

n
k − xnk−1‖

≤ 2α
T

n
+ L1

T

n
+ L2

(

2α
T

n
+ L1

T

n
+ L2‖x

n
k−1 − xnk−2‖

)

= 2α
T

n
(1 + L2) + L1

T

n
(1 + L2) + L2

2‖x
n
k−1 − xnk−2‖,

thus, we deduce

‖xnk+1 − xnk‖ ≤ 2α
T

n
(1 + L2 + L2

2 + · · ·+ Lk−1
2 ) + L1

T

n
(1 + L2 + L2

2 + · · ·+ Lk−1
2 )

+ Lk
2‖x

n
1 − xn0‖ =

T

n
(2α + L1)(1 + L2 + L2

2 + · · ·+ Lk−1
2 ) + Lk

2‖x
n
1 − xn0‖.

It follows from (5.8) that

‖xnk+1 − xnk‖ ≤ (2α + L1)
(

1 + L2 + L2
2 + · · ·+ Lk

2

)T

n
,

and since L2 < 1, we deduce

(5.9) ‖xnk+1 − xnk‖ ≤
2α + L1

1− L2

T

n
,

and the latter inequality still holds true for k = 0 according to (5.8). Further
for k = 1, · · · , n− 1,

‖xnk+1‖ ≤ ‖xnk+1 − xnk‖+ ‖xnk − xnk−1‖+ · · ·+ ‖xn1 − xn0‖+ ‖xn0‖

≤ ‖u0‖+
2α + L1

1− L2

(k + 1)
T

n

≤ ‖u0‖+
2α + L1

1− L2

T =: β.(5.10)
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Step 2. Construction of un(·).
For any t ∈ [tnk , t

n
k+1] with k = 0, 1, · · · , n− 1, put

un(t) :=
tnk+1 − t

tnk+1 − tnk
xnk +

t− tnk
tnk+1 − tnk

xnk+1.

Thus, for almost all t ∈ [tnk , t
n
k+1],

u̇n(t) = −
xnk

tnk+1 − tnk
+

xnk+1

tnk+1 − tnk
= −

n

T
(xnk − xnk+1).

By construction, (5.5), (5.6), (5.7) and the latter equalities give

(5.11) un(t
n
k+1) ∈ C

(

tnk+1, un(t
n
k)
)

(5.12) −u̇n(t) ∈ N
C
(

tn
k+1

,un(tnk )
)

(

un(t
n
k+1)

)

− g
(

tnk , un(t
n
k)
)

a.e t ∈ [tnk , t
n
k+1[

with (by (5.9))

(5.13) ‖u̇n(t)‖ =
n

T
‖xnk − xnk+1‖ ≤

L1 + 2α

1− L2

=:M.

Put

δn(t) :=

{

tnk if t ∈ [tnk , t
n
k+1[

tnn−1 if t = T,

and

θn(t) :=

{

tnk+1 if t ∈ [tnk , t
n
k+1[

T if t = T.

Observe that for each t ∈ [0, T ], choosing k such that t ∈ [tnk , t
n
k+1[ if t < T

and k = n− 1 if t = T , we have

|δn(t)− t| ≤ |tnk+1 − tnk | =
T

pn
, so δn(t) → t as n→ +∞,

and similarly θn(t) → t as n → +∞. Further, for each t ∈ [tnk , t
n
k+1[, the

definitions of δn(·) and θn(·) combined with (5.11) and (5.12) yield

(5.14) un
(

θn(t)
)

∈ C
(

θn(t), un
(

δn(t)
)

)
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−u̇n(t) ∈ N
C

(

θn(t),un

(

δn(t)
)

)

(

un
(

θn(t)
)

)

− g
(

δn(t), un
(

δn(t)
)

)

a.e t ∈ [0, T ].

(5.15)

Step 3. Convergence of a subsequence of (un(·)) to some absolutely
continuous mapping u(·).
Fix any t ∈ [0, T ] and consider, for any infinite subset N ⊂ N, the sequence
(un(t))n∈N . It follows from (5.10) and (5.14) that

un
(

θn(t)
)

∈ C
(

θn(t), un
(

δn(t)
)

)

∩ βB,

which implies that un(θn(t)) ∈ C([0, T ] × βB) ∩ βB. By (H4) the sequence
(un(θn(t))) is relatively compact, so there is an infinite subset N0 ⊂ N such
that (un(θn(t)))n∈N0

converges to some vector l(t) ∈ H. Putting hn(t) :=
un(θn(t))− un(t) for all n ∈ N0, by (5.13), we obtain

‖hn(t)‖ ≤

∫ θn(t)

t

‖u̇n(s)‖ds ≤M(θn(t)− t) −→
n→∞

0.

Then, (un(t))n∈N0
converges to l(t), thus the set {un(t) : n ∈ N} is relatively

compact in H. The sequence (un)n∈N being in addition equicontinuous ac-
cording to (5.13), this sequence (un)n∈N is relatively compact in CH(0, T ) ,
so we can extract a subsequence of (un)n∈N (that we do not relabel) which
converges uniformly to u on [0, T ]. By the inequality (5.13) again there is a
subsequence of (u̇n)n∈N (that we do not relabel) which converges w(L1

H ,L
∞
H )

in L1
H(0, T ) to a mapping w ∈ L1

H(0, T ) with ‖w(t)‖ ≤ M a.e. t ∈ [0, T ].
Fixing t ∈ [0, T ] and taking any ξ ∈ H, the above weak convergence in
L1
H(0, T ) yields

lim
n→∞

∫ T

0

〈11[0,t](s)ξ, u̇n(s)〉ds =

∫ T

0

〈11[0,t](s)ξ, w(s)〉ds,

or equivalently

lim
n→∞

〈ξ, u0 +

∫ t

0

u̇n(s)ds〉 = 〈ξ, u0 +

∫ t

0

ẇ(s)ds〉.

This means, for each t ∈ [0, T ], that un(t) −→
n→∞

u0 +
∫ t

0
w(s)ds weakly in H.

Since the sequence (un(t))n∈N also converges strongly to u(t) in H, it ensures
that u(t) = u0 +

∫ t

0
w(s)ds, so the mapping u(·) is absolutely continuous on

[0, T ] with u̇ = w. The mapping u(·) is even Lipschitz on [0, T ] with M as a
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Lipschitz constant therein.

Step 4. We show now that u(·) is a solution of (D).
Let zn(t) := g(δn(t), un(δn(t))) for all t ∈ [0, T ]. Since

‖g(δn(t), un(δn(t)))‖ ≤ α for all n ∈ N and t ∈ [0, T ],

we may suppose (taking a subsequence if necessary) that the sequence
(zn(·)) converges w(L

1
H ,L

∞
H ) in L1

H(0, T ) to a mapping z(·) ∈ L1
H(0, T ) with

‖z(t)‖ ≤ α a.e t ∈ [0, T ].
For all t ∈ [0, T ] we have u(t) ∈ C(t, u(t)). Indeed, by (H3) and (5.13)

d
(

un(t), C
(

t, u(t)
)

)

≤ ‖un(t)− un
(

θn(t)
)

‖+ L1|t− θn(t)|+ L2‖u(t)− un
(

δn(t)
)

‖

≤ (M + L1)|t− θn(t)|+ L2M |δn(t)− t|+ L2‖u(t)− un(t)‖

then,

d(un(t), C(t, u(t))) −→
n→∞

0, so d(u(t), C(t, u(t))) = 0 and u(t) ∈ C(t, u(t)).

Further, from the inequality ‖u̇n(t)− zn(t)‖ ≤M +α := γ a.e. and from the
inclusion (5.15) it follows for a.e. t ∈ [0, T ] that

−u̇n(t) + zn(t) ∈ N
C

(

θn(t),un

(

δn(t)
)

)

(

un
(

θn(t)
)

)

⋂

γB

= γ∂d
C

(

θn(t),un

(

δn(t)
)

)

(

un
(

θn(t)
)

)

,
(5.16)

(5.17) zn(t) ∈ G
(

δn(t), un
(

δn(t)
)

)

.

Since (−u̇n + zn, zn)n converges weakly in L1
H×H(0, T ) to (−u̇ + z, z), by

Mazur theorem, there are

(5.18) ξn ∈ co {−u̇q + zq : q ≥ n} and ζn ∈ co {zq : q ≥ n}

such that (ξn, ζn)n converges strongly in L1
H×H(0, T ) to (−u̇+ z, z). Extract-

ing a subsequence if necessary we suppose that (ξn(·), ζn(·))n converges a.e.
to (−u̇(·) + z(·), z(·)), then there is a Lebesgue negligible set S ⊂ [0, T ] such
that for every t ∈ [0, T ]\S on one hand (ξn(t), ζn(t)) → (−u̇(t) + z(t), z(t))
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strongly in H and on the other hand the inclusions (5.16) and (5.17) hold
true for every integer n as well as the inclusions

−u̇(t)+z(t) ∈
⋂

n

co
{

−u̇q(t)+zq(t) : q ≥ n
}

and z(t) ∈
⋂

n

co
{

zq(t) : q ≥ n
}

.

It results from (5.16) and (5.17) that for any n ∈ N, any t ∈ [0, T ]\S, and
for any y ∈ H

〈

y,−u̇n(t) + zn(t)
〉

≤ σ

(

y, γ∂d
C

(

θn(t),un

(

δn(t)
)

)

(

un
(

θn(t)
)

)

)

(5.19)

and

(5.20)
〈

y, zn(t)
〉

≤ σ

(

y,G
(

δn(t), un
(

δn(t)
)

)

)

.

Further, for each n ∈ N and any t ∈ [0, T ]\S, from (5.18) we have

〈

y, ξk(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

for all k ≥ n

and
〈

y, ζk(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

for all k ≥ n

and taking the limit in both inequalities as k → +∞ gives through (5.19)
and (5.20)

〈

y,−u̇(t) + z(t)
〉

≤ sup
q≥n

〈

y,−u̇q(t) + zq(t)
〉

≤ sup
q≥n

σ

(

y, γ∂d
C

(

θq(t),uq

(

δq(t)
)

)

(

uq
(

θq(t)
)

)

)

and
〈

y, z(t)
〉

≤ sup
q≥n

〈

y, zq(t)
〉

≤ sup
q≥n

σ

(

y,G
(

δq(t), uq
(

δq(t)
)

)

)

,

which ensures that

〈

y,−u̇(t) + z(t)
〉

≤ lim sup
n→+∞

σ

(

y, γ∂d
C

(

θn(t),un

(

δn(t)
)

)

(

un
(

θn(t)
)

)

)

and
〈

y, z(t)
〉

≤ lim sup
n→+∞

σ

(

y,G
(

δn(t), un
(

δn(t)
)

)

)

.
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According to (H3) and Proposition 5.1.1, the multimapping ∂dC(t,u)(x)
takes on weakly compact convex values and is upper semicontinuous from
[0, T ]×H×H into (H,w(H,H)), hence for each y ∈ H the real-valued func-
tion σ(y, γ∂dC(·,·)(·)) is upper semicontinuous on [0, T ] × H × H. Further,
σ(y,G(·, ·)) is also upper semicontinuous on [0, T ]×H by assumption (H1).
It follows that, for every t ∈ [0, T ]\S and every y ∈ H,

〈

y,−u̇(t) + z(t)
〉

≤ σ
(

y, γ∂d
C
(

t,u(t)
)

(

u(t)
)

)

and
〈

y, z(t)
〉

≤ σ
(

y,G
(

t, u(t)
)

)

,

which ensures that −u̇(t) + z(t) ∈ γ∂dC(t,u(t))(u(t)) and z(t) ∈ G(t, u(t)),
consequently

u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+ z(t) a.e.

z(t) ∈ G
(

t, u(t)
)

a.e.

with
‖u̇(t)− z(t)‖ ≤ γ.

The proof is complete.

It is worth mentioning that the next theorem proves the existence of
solution on the whole interval R+ := [0,+∞[. Nevertheless, the assumptions
H1, · · · ,H4 are replaced by G1, · · · ,G4 when the time describes R+.

Theorem 5.2.2. Let G : R+ ×H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a
Hilbert space, that G1,G2,G3,G4 below hold:

(G1) There exists a non-negative function β(·) ∈ L∞
loc(R+) such that

d
(

0, G(t, u)
)

≤ β(t)

for all t ∈ R+ and u ∈ H with u ∈ C(t, u);

(G2) For each t ∈ R+ and each u ∈ H, the sets C(t, u) are nonempty closed
in H and equi-uniformly subsmooth;

(G3) There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ R+

and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.
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(G4) For any real τ > 0 and any bounded subset A ⊂ H, the set C([0, τ ]×A)
is relatively ball-compact.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally Lipschitz continuous on R+ and satisfies

(DR+
)



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ R+,

u(t) ∈ C
(

t, u(t)
)

∀t ∈ R+,

u(t) = u0 +
∫ t

0
u̇(s)ds ∀t ∈ R+.

Proof. Put Tk = k for all k ∈ {0} ∪ N. It will suffice to prove that
Theorem 5.2.1 applies on each interval [Tk, Tk+1].

According to assumptions G1,G2,G3,G4 we have H1,H2,H3,H4 hold on
the interval [T0, T1]. Since u0 ∈ C(T0, u0), by Theorem 5.2.1 there exists a
Lipschitz continuous mapping u0 : [T0, T1] → H such that



























u̇0(t) ∈ −N
C
(

t,u0(t)
)

(

u0(t)
)

+G
(

t, u0(t)
)

a.e t ∈ [T0, T1],

u0(t) ∈ C
(

t, u0(t)
)

∀t ∈ [T0, T1],

u0(T0) = u0.

Suppose u0, · · · , uk−1 have been constructed such that, for l = 0, · · · , k−
1, ul : [Tl, Tl+1] → H is Lipschitz continuous, ul(Tl) = ul−1(Tl), u

l(t) ∈
C(t, ul(t)) for all t ∈ [Tl, Tl+1] and

u̇l(t) ∈ −N
C
(

t,ul(t)
)

(

ul(t)
)

+G
(

t, ul(t)
)

a.e t ∈ [Tl, Tl+1].

In an analogous way as above, the hypotheses G1,G2,G3,G4 ensure that
H1,H2,H3,H4 hold on the interval [Tk, Tk+1] and we have uk−1(Tk) ∈
C(Tk, u

k−1(Tk)). It follows from Theorem 5.2.1 that there is a Lipschitz
continuous mapping uk : [Tk, Tk+1] → H such that

(5.21)



























u̇k(t) ∈ −N
C
(

t,uk(t)
)

(

uk(t)
)

+G
(

t, uk(t)
)

a.e t ∈ [Tk, Tk+1],

uk(t) ∈ C
(

t, uk(t)
)

∀t ∈ [Tk, Tk+1],

uk(Tk) = uk−1(Tk).

So, we obtain by induction uk for all k ∈ {0} ∪N with the above properties.
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Let u : R+ → H be the mapping defined by

u(t) := uk(t) for all t ∈ [Tk, Tk+1[ with k ∈ {0} ∪ N.

It is easily seen that u is locally Lipschitz continuous on R+. Therefore, it
results from (5.21) that



























u̇(t) ∈ −N
C
(

t,u(t)
)

(

u(t)
)

+G
(

t, u(t)
)

a.e t ∈ R+,

u(t) ∈ C
(

t, u(t)
)

∀t ∈ R+,

u(0) = u0(T0) = u0.

This proves the theorem.

As a direct consequences of Theorem 5.2.1 and Theorem 5.2.2 we obtain:

Corollaire 5.2.1. Let G : [0, T ] × H ⇒ H be a multimapping which is
scalarly upper semicontinuous with respect to both variables. Assume that H
is a finite dimensional Euclidean space and that the assumptions below hold:

• There exists a positive real number α such that

d
(

0, G(t, u)
)

≤ α

for all t ∈ [0, T ] and u ∈ H with u ∈ C(t, u);

• For each t ∈ [0, T ] and each u ∈ H, the sets C(t, u) are nonempty
closed in H and equi-uniformly subsmooth;

• There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ [0, T ]
and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : [0, T ] → H
which is Lipschitz continuous on [0, T ] and satisfies (D). Further, we have
‖u̇(t)‖ ≤ L1+2α

1−L2
a.e. t ∈ [0, T ].

Corollaire 5.2.2. Let G : R+×H ⇒ H be a multimapping which is scalarly
upper semicontinuous with respect to both variables. Assume that H is a
finite dimensional Euclidean space and that the following assumptions hold:
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• There exists a non-negative function β(·) ∈ L∞
loc(R+) such that

d
(

0, G(t, u)
)

≤ β(t)

for all t ∈ R+ and u ∈ H with u ∈ C(t, u);

• For each t ∈ R+ and each u ∈ H, the sets C(t, u) are nonempty closed
in H and equi-uniformly subsmooth;

• There are real constants L1 > 0, L2 ∈]0, 1[ such that, for all t, s ∈ R+

and x, y, u, v ∈ H

∣

∣d
(

x, C(t, u)
)

− d
(

y, C(s, v)
)∣

∣ ≤ ‖x− y‖+ L1|t− s|+ L2‖u− v‖.

Then, given u0 ∈ H with u0 ∈ C(0, u0), there exists a mapping u : R+ → H
which is locally Lipschitz continuous on R+ and satisfies (DR+

).
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