Adhésion, croissance et différenciation de cellules souches pulpaires sur silicium poreux
Auteur / Autrice : | Pierre-Yves Collart Dutilleul |
Direction : | Dominique Deville de Périère, Frédéric Cuisinier |
Type : | Thèse de doctorat |
Discipline(s) : | Biologie Santé |
Date : | Soutenance le 17/12/2013 |
Etablissement(s) : | Montpellier 1 |
Ecole(s) doctorale(s) : | Sciences Chimiques et Biologiques pour la Santé (Montpellier ; Ecole Doctorale ; ....-2014) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Bioingénierie et Nanosciences (Montpellier) |
Jury : | Examinateurs / Examinatrices : Dominique Deville de Périère, Frédéric Cuisinier, Frédérique Cunin, Csilla Gergely, Philippe Kemoun |
Rapporteurs / Rapporteuses : Raúl J. Martín-Palma, Guy Ladam |
Résumé
Le silicium poreux est un biomatériau prometteur pour l'ingénierie tissulaire car il est non toxique et biorésorbable. Des modifications de surface permettent de contrôler sa vitesse de dégradation et peuvent favoriser l'adhésion cellulaire. Les cellules souches de la pulpe dentaire (DPSC) sont des cellules souches mésenchymateuses retrouvées dans la pulpe dentaire, à l'intérieur des dents, et constituent une source accessible de cellules souches. Regrouper les capacités de prolifération et différenciation des DPSC avec les propriétés morphologiques et biochimiques du pSi représente une approche intéressante pour des applications thérapeutiques de médecine régénératrice. Dans cette thèse, nous avons étudié le comportement de DPSC humaines sur des supports de pSi, avec des pores variant de quelques nanomètres à plusieurs centaines de nanomètres. Nous avons travaillé sur différentes fonctionnalisations chimiques afin d'optimiser l'adhésion cellulaire et de stabiliser le matériau : oxydation thermique, silanisation et hydrosilylation. L'adhésion, la prolifération et la différenciation osseuse ont été évaluées par microscopie à fluorescence, microscopie électronique à balayage, activité enzymatique, tests de prolifération (activité mitotique), immunofluorescence et spectroscopie FTIR. Le pSi avec des pores de 30 à 40 nm de diamètre s'est révélé être le plus approprié pour l'adhésion, la prolifération cellulaire et la différenciation ostéoblastique. De plus, la structure nanométrique et le relargage d'acide silicique par le pSi a démontré un effet positif sur l'induction osseuse et la formation d'une matrice minéralisée. Le pSi est donc apparu comme un matériau prometteur pour l'adhésion de cellules souches mésenchymateuses, que ce soit pour une transplantation immédiate in vivo ou pour expansion et différenciation in vitro.