Thèse soutenue

Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation

FR  |  
EN
Auteur / Autrice : Romain Duboscq
Direction : Xavier AntoineRenaud Marty
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 28/11/2013
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Institut Élie Cartan (1953-1996 ; Nancy, Vandoeuvre-lès-Nancy, Meurthe-et-Moselle)
Jury : Président / Présidente : Erwan Faou
Examinateurs / Examinatrices : Marc Brachet, Anne de Bouard
Rapporteur / Rapporteuse : Éric Cances, Arnaud Debussche

Résumé

FR  |  
EN

Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées