Algorithmes et arithmétique pour l'implémentation de couplages criptographiques
Auteur / Autrice : | Nicolas Estibals |
Direction : | Pierrick Gaudry, Jérémie Detrey |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 30/10/2013 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications |
Jury : | Président / Présidente : Bernard Girau |
Examinateurs / Examinatrices : Jean-Claude Bajard, Fabien Laguillaume, Arnaud Tisserand | |
Rapporteurs / Rapporteuses : Anwar Hasan, Reynald Lercier |
Mots clés
Résumé
Les couplages sont des primitives cryptographiques qui interviennent désormais dans de nombreux protocoles. Dès lors, il est nécessaire de s'intéresser à leur calcul et à leur implémentation efficace. Pour ce faire, nous nous reposons sur une étude algorithmique et arithmétique de ces fonctions mathématiques. Les couplages sont des applications bilinéaires définies sur des courbes algébriques, plus particulièrement, dans le cas qui nous intéresse, des courbes elliptiques et hyperelliptiques. Nous avons choisi de nous concentrer sur une sous-famille de celles-ci : les courbes supersingulières dont les propriétés permettent d'obtenir à la fois des couplages symétriques et des algorithmes efficaces pour leur calcul. Nous décrivons alors une approche unifiée permettant d'établir une large variété d'algorithmes calculant des couplages. Nous l'appliquons notamment à la construction d'un nouvel algorithme pour le calcul de couplages sur des courbes supersingulières de genre 2 et de caractéristique 2. Les calculs nécessaires aux couplages que nous décrivons s'appuient sur l'implémentation d'une arithmétique rapide pour les corps finis de petite caractéristique : la multiplication est l'opération critique qu'il convient d'optimiser. Nous présentons donc un algorithme de recherche exhaustive de formules de multiplication. Enfin, nous appliquons toutes les méthodes précédentes à la conception et l'implémentation de différents accélérateurs matériels pour le calcul de couplages sur différentes courbes dont les architectures ont été optimisées soit pour leur rapidité, soit pour leur compacité