Gestion de l'incertitude pour l'optimisation de systèmes interactifs
Auteur / Autrice : | Lucie Daubigney |
Direction : | Alain Dutech, Olivier Pietquin |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 01/10/2013 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire lorrain de recherche en informatique et ses applications |
Jury : | Président / Présidente : Fabrice Lefèvre |
Examinateurs / Examinatrices : Matthieu Geist, Blaise Thomson | |
Rapporteur / Rapporteuse : Joëlle Pineau, Frédérick Garcia |
Résumé
Le sujet des travaux concerne l'amélioration du comportement des machines dites \og intelligentes\fg, c'est-à-dire capables de s'adapter à leur environnement, même lorsque celui-ci évolue. Un des domaines concerné est celui des interactions homme-machine. La machine doit alors gérer différents types d'incertitude pour agir de façon appropriée. D'abord, elle doit pouvoir prendre en compte les variations de comportements entre les utilisateurs et le fait que le comportement peut varier d'une utilisation à l'autre en fonction de l'habitude à interagir avec le système. De plus, la machine doit s'adapter à l'utilisateur même si les moyens de communication entre lui et la machine sont bruités. L'objectif est alors de gérer ces incertitudes pour exhiber un comportement cohérent. Ce dernier se définit comme la suite de décisions successives que la machine doit effectuer afin de parvenir à l'objectif fixé. Une manière habituelle pour gérer les incertitudes passe par l'introduction de modèles : modèles de l'utilisateur, de la tâche, ou encore de la décision. Un inconvénient de cette méthode réside dans le fait qu'une connaissance experte liée au domaine concerné est nécessaire à la définition des modèles. Si l'introduction d'une méthode d'apprentissage automatique, l'apprentissage par renforcement a permis d'éviter une modélisation de la décision \textit{ad hoc} au problème concerné, des connaissances expertes restent toutefois nécessaires. La thèse défendue par ces travaux est que certaines contraintes liées à l'expertise humaine peuvent être relaxées tout en limitant la perte de généricité liée à l'introduction de modèles