Thèse soutenue

Modèles de traduction évolutifs

FR  |  
EN
Auteur / Autrice : Frédéric Blain
Direction : Holger Schwenk
Type : Thèse de doctorat
Discipline(s) : Informatique et Applications
Date : Soutenance le 23/09/2013
Etablissement(s) : Le Mans
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et mathématiques (Nantes)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Informatique de l'Université du Maine / LIUM
Jury : Examinateurs / Examinatrices : Holger Schwenk

Résumé

FR  |  
EN

Bien que la recherche ait fait progresser la traduction automatique depuis plusieurs années, la sortie d’un système automatisé ne peut être généralement publiée sans avoir été révisée humainement au préalable, et corrigée le cas échéant. Forts de ce constat, nous avons voulu exploiter ces retours utilisateurs issus du processus de révision pour adapter notre système statistique dans le temps, au moyen d’une approche incrémentale.Dans le cadre de cette thèse Cifre-Défense, nous nous sommes donc intéressés à la postédition, un des champs de recherche les plus actifs du moment, et qui plus est très utilisé dans l’industrie de la traduction et de la localisation.L’intégration de retours utilisateurs n’est toutefois pas une tâche aussi évidente qu’il n’y paraît. D’une part, il faut être capable d’identifier l’information qui sera utile au système, parmi l’ensemble des modifications apportées par l’utilisateur. Pour répondre à cette problématique, nous avons introduit une nouvelle notion (les « Actions de Post-Édition »), et proposé une méthodologie d’analyse permettant l’identification automatique de cette information à partir de données post-éditées. D’autre part, concernant l’intégration continue des retours utilisateurs nous avons développé un algorithme d’adaptation incrémentale pour un système de traduction statistique, lequel obtient des performances supérieures à la procédure standard. Ceci est d’autant plus intéressant que le développement et l’optimisation d’un tel système de traduction estune tâche très coûteuse en ressources computationnelles, nécessitant parfois jusqu’à plusieurs jours de calcul.Conduits conjointement au sein de l’entreprise SYSTRAN et du LIUM, les travaux de recherche de cette thèse s’inscrivent dans le cadre du projet ANR COSMAT 1. En partenariat avec l’INRIA, ce projet avait pour objectif de fournir à la communauté scientifique un service collaboratif de traduction automatique de contenus scientifiques. Outre les problématiques liéesà ce type de contenu (adaptation au domaine, reconnaissance d’entités scientifiques, etc.), c’est l’aspect collaboratif de ce service avec la possibilité donnée aux utilisateurs de réviser les traductions qui donne un cadre applicatif à nos travaux de recherche.