Thèse soutenue

Photonique sur silicium à base de nanostructures III-V épitaxiées sur silicium
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Thanh Tra Nguyen
Direction : Olivier Durand
Type : Thèse de doctorat
Discipline(s) : Physique optoélectronique
Date : Soutenance le 17/09/2013
Etablissement(s) : Rennes, INSA
Ecole(s) doctorale(s) : École doctorale Sciences de la matière (Rennes ; 1996-2016)
Partenaire(s) de recherche : Laboratoire : Fonctions Optiques pour les TélécommunicatiONs . EQUIPE OHM : Optoélectronique, Hétéroépitaxie et Matériaux - Fonctions Optiques pour les Technologies de l'informatiON
: Université européenne de Bretagne (2007-2016)
Jury : Président / Présidente : Nicolas Bertru
Examinateurs / Examinatrices : Guillaume Saint-Girons, Alexandre Boulle, Charles Cornet
Rapporteurs / Rapporteuses : Daniel Bouchier, Chantal Fontaine

Résumé

FR  |  
EN

Cette thèse porte sur l’optimisation de la croissance hétérogène de nanostructures III-V sur substrat de Si(001) désorienté selon [110]. Le but principal concerne la réalisation de sources optiques efficaces sur substrat de Si pour les interconnexions optiques à très haut débit inter et intra puces, dans le cadre du développement de circuits optoélectroniques intégrés (OEIC –optoelectronic integrated circuit). Dans un premier temps, cette étude porte sur l’optimisation de l’incorporation d’azote dans GaPN sur substrat de GaP (001), de façon à obtenir l’accord de paramètre de maille avec le Si. Cette étude est intéressante pour la croissance des composés III-V à azote dilué, tels que GaAsPN, qui sont très attractifs pour des applications lasers à grande longueur d’onde et des applications photovoltaïques à haut rendement, sur substrats de Si. Nous avons ensuite étudié la croissance d’une couche active à base de boîtes quantiques (In,Ga)As sur substrat de GaP(001). Ces boîtes présentent une haute densité et une bonne uniformité en taille. La photoluminescence à température ambiante est également obtenue sur ces boîtes quantiques, ce qui est très encourageant pour la réalisation de sources optoélectroniques intégrées sur substrat de silicium. Dans latroisième partie, nous avons étudié la croissance homoépitaxiale de Si par UHV/CVD nécessaire pour enterrerdes contaminants résiduels à la surface, et obtenir une surface propice à l’hétéroépitaxie de GaP de qualité structuraleoptimale. L’étude de croissance inclue la formation de doubles marches atomiques, favorisée par la désorientation du substrat, permettant de limiter l’apparition de défauts structuraux. Finalement, l’interface GaP/Si est optimisée, tout en obtenant une surface de GaP plane et une densité de défauts minimale. Une méthodologie pour quantifier les défauts structuraux (domaines d’antiphase, micro-macles) par diffraction des rayons X au Synchrotron et en laboratoire est présentée. Cette étude révèle une anisotropie d’orientation des micro-macles, liée à la direction de désorientation du substrat de Si, et une forte réduction de la densité de macles à haute température de croissance. La croissance de GaP sur substrat de Si, en couche mince d’épaisseur inférieure à l’épaisseur critique est obtenue spécifiquement avec un cluster de croissance composé d’un bâti Si UHV/CVD connecté sous ultra-vide avec un bâti III-V MBE. Les résultats montrent une réduction importante des défauts structuraux ce qui permet d’obtenir un pseudo-substrat GaP/Si présentant une surface plane, appropriée pour la croissance ultérieure de sources optiques efficaces. Les résultats obtenus permettent d’envisager la réalisation de sources lasers à base de composés III-V sur substrat de silicium.