Thèse soutenue

Etude mécano-fiabiliste et réduction du modèle des problèmes vibro-acoustiques à paramètres aléatoires
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Mohamed Mansouri
Direction : Abdelkhalak El HamiBouchaïb Radi
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 22/04/2013
Etablissement(s) : Rouen, INSA en cotutelle avec Université Hassan Ier (Settat, Maroc)
Ecole(s) doctorale(s) : École doctorale sciences physiques mathématiques et de l'information pour l'ingénieur (Saint-Etienne-du-Rouvray, Seine-Maritime ; ....-2016)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique de Normandie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1993-....) - Laboratoire d'Optimisation et Fiabilité en Mécanique des Structures
Jury : Président / Présidente : Abdelghani Saouab
Examinateurs / Examinatrices : Bouchaïb Radi, Hicham Fassi-Fihri
Rapporteurs / Rapporteuses : Moussa Karama, Ahmed Mousrij, Abdellah Menou

Résumé

FR  |  
EN

Dans de nombreuses applications industrielles, les structures en vibration à dimensionner sont en contact avec un fluide (fluide autour des coques des bateaux, réservoirs, échangeurs de chaleur dans les centrales, l’industrie automobile, etc). Cependant, le comportement dynamique de la structure peut être modifié de façon importante par la présence du fluide. Le dimensionnement doit donc prendre en compte les effets de l’interaction fluide-structure.Ces applications nécessitent un couplage efficace. En outre, l’analyse dynamique des systèmes industriels est souvent coûteuse du point de vue numérique. Pour les modèles éléments finis des problèmes couplés fluide-structure, l’importance de la réduction de la taille devient évidente car les degrés de liberté du fluide seront ajoutés à ceux de la structure. Des méthodes de réduction du modèle seront utilisées pour réduire la taille des matrices obtenues.Traditionnellement, l’étude de ces systèmes couplés est fondée sur une démarche déterministe dans laquelle l’ensemble des paramètres utilisés dans le modèle prennent une valeur fixe.Par contre, il suffit d’avoir procédé à quelques expérimentations pour se rendre compte des limites d’une telle modélisation, d’où la nécessité de la prise en compte des incertitudes sur les paramètres du système couplé.Ce travail de thèse s’articule autour de trois études principales. La première consiste à mener une étude déterministe numérique et analytique des problèmes vibro-acoustiques sans réduction de modèles. Cette dernière est basée sur une formulation non symétrique déplacement/pression et une formulation symétrique déplacement/pression et potentiel des vitesses. Dans la deuxième étude, on propose deux méthodes de réduction du modèle : analyse et synthèse modales pour la résolution des problèmes vibro-acoustiques des grandes tailles des systèmes couplés modélisés par la méthode des éléments finis. La méthode de synthèse modale développée couple une méthode de sous-structuration dynamique de type Craig et Bampton et une méthode de sous domaines acoustiques.Enfin, pour tenir compte des incertitudes sur les paramètres du système couplé, on a développé dans la troisième étude une méthode numérique stochastique de synthèse modale étendue à une étude de fiabilité basée sur les approches FORM et SORM pour la résolution de ces problèmes. Ces démarches vont nous permettre de résoudre les problèmes vibro-acoustiques, sans utiliser les méthodes classiques, qui consistent à faire un calcul modal direct allié à la simulation de Monte Carlo demandant un coup de temps très élevé.Plusieurs exemples académiques et industriels ont été traités pour valider les approches proposées.L’étude numérique est conduite en utilisant un code élaboré sous MATLAB couplé au code commercial ANSYS afin d’évaluer la fiabilité du système couplé. La confrontation des résultats numériques, analytiques et expérimentaux nous permet de valider conjointement le processus de calcul et les méthodes proposées dans le domaine de l’analyse fréquentielle et l’étude fiabiliste des structures immergées. D’un point de vue industriel, ces méthodes visent à promouvoir l’introduction de la culture de l’incertain dans les métiers de la conception et encouragent la construction d’un modèle fiable et robuste pour les problèmes d’interaction fluide-structure.