Thèse soutenue

Etude expérimentale du comportement dynamique thermique et fluide des flux dans les canaux ouverts : Application à la création de systèmes photovoltaïques intégrés au bâti (BIPV)

FR  |  
EN
Auteur / Autrice : Estibaliz Sanvicente
Direction : Shihe XinChristophe Ménézo
Type : Thèse de doctorat
Discipline(s) : Thermique
Date : Soutenance le 03/07/2013
Etablissement(s) : Lyon, INSA
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône)
Jury : Président / Présidente : Stéphane Lassue
Examinateurs / Examinatrices : Shihe Xin, Christophe Ménézo, Stéphane Lassue, Stéphane Fohanno, Marco Fossa, Stéphanie Giroux-Julien, Victoria Timchenko, John Reizes
Rapporteurs / Rapporteuses : Stéphane Fohanno, Marco Fossa

Résumé

FR  |  
EN

Face à la problématique énergétique, les solutions envisagées dans le domaine du bâtiment s’orientent sur un mix énergétique favorisant la production locale ainsi que l’autoconsommation. Concernant l’électricité, les systèmes photovoltaïques intégrés au bâtiment (BiPV) représentent l’une des rares technologies capables de produire de l’électricité localement et sans émettre de gaz à effet de serre. Cependant, le niveau de température auquel fonctionnent ces composants, influence sensiblement leur efficacité ainsi que leur durée de vie. Ces deux constats mettent en lumière l’importance du refroidissement passif par convection naturelle de ces modules. La configuration privilégiée est une configuration d’intégration au sein d’une enveloppe ventilée qualifiée de double-peau photovoltaïque. La présente étude expérimentale porte sur les transferts de chaleur et les caractéristiques de l’écoulement en convection naturelle dans des canaux chauffés verticaux ou inclinés. Deux bancs d’essais existants ont été complétés afin d’obtenir des données. Ils sont composés de deux plaques planes parallèles séparées par une lame d’air. Les parois sont soumises à des conditions aux limites de type densité de flux imposée. Les températures moyennes à la paroi ont été mesurées par thermocouples. Un système de vélocimétrie par image de particules a permis d’obtenir des profils de vitesse moyenne ainsi que les distributions d’intensité turbulente dans l’écoulement. Les champs de vitesse instantanée ont également été examinés. Trois configurations ont été étudiées avec un nombre de Rayleigh variant entre 3,86 x 105 et 6,22 x 106. La première est un canal vertical avec une des deux parois chauffée uniformément. La seconde est un canal vertical dans lequel les deux parois sont chauffées de façon non-uniforme et alternée. La troisième est de type canal incliné chauffé uniformément sur la paroi supérieure. Le rapport de forme du canal (largeur/hauteur) est de 1/15 pour le deux premières configurations et de 1/16 pour la troisième. Une attention particulière a été portée sur l’identification de la zone de transition laminaire-turbulent. L’étude a permis de mettre en évidence la sensibilité de l’écoulement aux perturbations extérieures. Pour un chauffage uniforme et asymétrique, à partir d’un nombre de Rayleigh Ra* de 3.5 x 106 et pour θ = 60° et 90°, il a été constaté que la propagation de structures cohérentes dans le canal a lieu à partir de la mi-hauteur de ce canal. Ces instabilités favorisent alors les transferts thermiques. Dans le cas d’un chauffage non-uniforme sur les deux parois du canal, l’écoulement est fortement perturbé ce qui conduit à l’augmentation du brassage et de la contrainte de Reynolds sur la majorité de la largeur du canal. Enfin, pour chacune des configurations, des corrélations permettant de quantifier les transferts de chaleur à la paroi et au sein de la lame d’air (nombre de Nusselt moyen en fonction du nombre de Rayleigh) ont été établies.