Mise en forme par extrusion de supports de catalyseurs à base d'alumine et à microstructure multi-échelles : Effet de la composition granulaire et du liant sur les propriétés des matériaux
Auteur / Autrice : | Stefania Cassiano Gaspar |
Direction : | Jérôme Chevalier |
Type : | Thèse de doctorat |
Discipline(s) : | Matériaux |
Date : | Soutenance le 01/07/2013 |
Etablissement(s) : | Lyon, INSA |
Ecole(s) doctorale(s) : | École doctorale Matériaux de Lyon (Villeurbanne ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : MATEIS - Matériaux : Ingénierie et Science (Rhône) |
Jury : | Président / Présidente : Christian Olagnon |
Examinateurs / Examinatrices : Jérôme Chevalier, Christian Olagnon, Fabrice Rossignol, Henri Van Damme, Yves Jorand, Patrick Euzens, Eric Lecolier, Loïc Rouleau | |
Rapporteurs / Rapporteuses : Fabrice Rossignol, Henri Van Damme |
Mots clés
Mots clés contrôlés
Résumé
L'empilement maîtrisé de granules de différentes tailles est un concept utilisé dans la plupart de procédés de mise en forme de matériau. Cette organisation hiérarchique est connue pour améliorer les propriétés d'écoulement à l'étape de mise en forme et les caractéristiques mécaniques du matériau final. Il est apparu intéressant d'appliquer ce concept à la mise en forme par extrusion de supports de catalyseurs avec des petites (2 µm) et grosses (19 µm) granules d'alumine poreuse dont l'assemblage est assurée par un liant traditionnel, la boehmite peptisée et neutralisée, ou par un liant plus original, le phosphate d'aluminium. L'étude vise ainsi à évaluer l'effet du liant et de la microstructure multi-échelles apportée par l'organisation hiérarchique des granules, sur les propriétés texturales et mécaniques des supports. Le contrôle des conditions de mise en forme et l'optimisation de la formulation des deux liants ont permis d'obtenir des extrudés à microstructure comparable entre la boehmite et le phosphate d'aluminium et variable en fonction de la proportion de petites. Cette population remplit les espaces entre les grosses granules de manière optimale entre 40 et 60% pds et les desserre aux plus fortes teneurs. La rétraction du liant au cours des traitements thermiques génère un volume de macropores qui est minimisé lorsque les petites granules comblent les espaces formés par les grosses. La macroporosité minimale conduit à de meilleures résistances à la rupture (par tests d'écrasement de type brésilien) et les matériaux les plus résistants sont ceux mis en forme avec le phosphate d'aluminium. Ce résultat est expliqué par la nature très cohésive de ce liant formée in situ par réaction de l'acide phosphorique avec la boehmite et la périphérie des granules d'alumine. Dans ce cas, la rupture a lieu au sein des granules différemment des supports mis en forme avec la boehmite peptisée à l'acide nitrique qui présentent une rupture à l'interface granule-liant. Les matériaux à microstructure multi-échelles présentent également une meilleure ténacité déterminée par des essais de flexion trois points. Le phosphate d'aluminium étant un liant non-poreux conduit à des supports avec une mésoporosité plus faible. Les nouveaux supports à microstructure multi-échelles semblent prometteurs pour des nombreuses applications catalytiques sensibles aux propriétés diffusionnelles et mécaniques.