Thèse soutenue

Synthèse de modèles de plantes et reconstructions de baies à partir d’images

FR  |  
EN
Auteur / Autrice : Jérôme Guénard
Direction : Vincent CharvillatGéraldine Morin
Type : Thèse de doctorat
Discipline(s) : Image, Information et Hypermédia
Date : Soutenance le 04/10/2013
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mathématiques, informatique et télécommunications (Toulouse)
Partenaire(s) de recherche : Laboratoire : Institut de Recherche en Informatique de Toulouse (1995-....)
Jury : Examinateurs / Examinatrices : Vincent Charvillat, Géraldine Morin, Frédéric Boudon, Raphaëlle Chaine, Michel Devy, Pierre Gurdjos
Rapporteurs / Rapporteuses : Thierry Chateau, Marc Neveu

Résumé

FR  |  
EN

Les plantes sont des éléments essentiels du monde qui nous entoure. Ainsi, si l’on veut créer des environnements virtuels qui soient à la fois agréables et réalistes, un effort doit être fait pour modéliser les plantes. Malgré les immenses progrès en vision par ordinateur pour reconstruire des objets de plus en plus compliqués, les plantes restent difficiles à reconstruire à cause de la complexité de leur topologie. Cette thèse se divise en deux grandes parties. La première partie s’intéresse à la modélisation de plantes, biologiquement réalistes, à partir d’une seule image. Nous générons un modèle de plante respectant les contraintes biologiques de son espèce et tel que sa projection soit la plus fidèle possible à l’image. La première étape consiste à extraire de l’image le squelette de la plante. Dans la plupart de nos images, aucune branche n’est visible et les images peuvent être de qualité moyenne. Notre première contribution consiste en une méthode de squelettisation basée sur les champs de vecteurs. Le squelette est extrait suite à un partitionnement non déterministe du feuillage de l’image assurant son réalisme. Dans un deuxième temps, la plante est modélisée en 3D. Notre deuxième contribution est la création de modèles pour différents types de plantes, basée sur les L-systèmes. Puis, un processus d’analyse-par-synthèse permet de choisir le modèle 3D final : plusieurs propositions de squelette sont générées et un processus bayésien permet d’extraire le modèle maximisant le critère a posteriori. Le terme d’attache aux données (vraisemblance) mesure la similarité entre l’image et la reprojection du modèle, la probabilité a priori mesure le réalisme du modèle. Après avoir généré des modèles de plantes, des modèles de fruits doivent être créés. Ayant travaillé principalement sur les pieds de vigne, nous avons développé une méthode pour reconstruire une grappe de raisin à partir d’au moins deux vues. Chaque baie est assimilée à un ellipsoïde de révolution. La méthode obtenue peut être plus généralement adaptée à tout type de fruits assimilables à une quadrique de révolution. La seconde partie de cette thèse s’intéresse à la reconstruction de quadriques de révolution à partir d’une ou plusieurs vues. La reconstruction de quadriques et, en général, la reconstruction de surfaces 3D est un problème très ancien en vision par ordinateur qui a donné lieu à de nombreux travaux. Nous rappelons les notions nécessaires de géométrie projective des quadriques, et de vision par ordinateur puis, nous présentons un état de l’art sur les méthodes existantes sur la reconstruction de surfaces quadratiques. Nous détaillons un premier algorithme permettant de retrouver les images des foyers principaux d’une quadrique de révolution à partir d’une vue « calibrée », c’est-à-dire pour laquelle les paramètres intrinsèques de la caméra sont connus. Puis, nous détaillons comment utiliser ce résultat pour reconstruire, à partir d’un schéma de triangulation linéaire, tout type de quadriques de révolution à partir d’au moins deux vues. Enfin, nous montrons comment il est possible de retrouver la pose 3D d’une quadrique de révolution dont on connaît les paramètres à partir d’un seul contour occultant. Nous évaluons les performances de nos méthodes et montrons quelques applications possibles.