Thèse soutenue

Structures de semiconducteurs II-VI à alignements de bande de type II pour le photovoltaïque

FR  |  
EN
Auteur / Autrice : Lionel Gérard
Direction : Régis AndréJoël Bleuse
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 17/12/2013
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale physique (Grenoble, Isère, France ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut nanosciences et cryogénie (Grenoble ; 2008-2018) - Institut Néel (Grenoble, Isère, France ; 2007-....)
Jury : Président / Présidente : Daniel Bellet
Examinateurs / Examinatrices : Vincent Sallet
Rapporteur / Rapporteuse : Philippe Christol, Hervé Folliot

Résumé

FR  |  
EN

Ce travail porte sur l'étude d'hétérostructures de semiconducteurs II-VI à alignements de bande de type II, en particulier sous forme de superréseaux. Il s'agit d'un système qui peut être prometteur pour une application photovoltaïque, et c'est dans cette optique qu'est orienté ce travail. Une première partie traite ainsi d'une réflexion conceptuelle sur l'apport des interfaces de type II au photovoltaïque.Nous présentons ensuite une étude sur la croissance de CdSe et ZnTe par épitaxie par jets moléculaires, sur différents substrats. Ces matériaux sont particulièrement intéressants et adaptés pour cette application car ils ont un gap direct, quasiment le même paramètre de maille, un alignement de bandes de type II, et le CdSe une bande interdite compatible avec le spectre solaire. Mais en contrepartie il s'agit de semiconducteurs binaires qui n'ont aucun atome en commun, de sorte que la croissance d'échantillons avec des épaisseurs précises à la monocouche près constitue un vrai défi. Pour cette raison nous avons procédé à une étude fine des interfaces grâce à des analyses de diffraction de rayons X et de microscopie en transmission, qui nous permet de conclure sur la nature chimique des atomes à proximité des interfaces.Vient ensuite une étude poussée de spectroscopie sur les effets des interfaces de type II sur les porteurs de charges, à travers leur énergie et cinétique de recombinaison. Nous avons développé un modèle analytique qui permet d'ajuster précisément toutes les caractéristiques observées en relation avec ces interfaces, et qui témoigne d'un mécanisme de séparation des charges très efficace. Nous montrons par la suite que ces effets observés sont des caractéristiques intrinsèques de toutes les interfaces de type II, indépendamment des matériaux et des structures, et que ceux-ci nous permettent d'extraire avec précision les valeurs des décalages de bandes entre différents matériaux à alignement de type II.