Thèse soutenue

Couplage de systèmes magnétiques et mécaniques à échelle moléculaire
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Marc Ganzhorn
Direction : Wolfgang Wernsdorfer
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 13/03/2013
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale physique (Grenoble ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut Néel (Grenoble)
Jury : Président / Présidente : Mairbek Chshiev
Examinateurs / Examinatrices : Wolfgang Wernsdorfer, Benjamin Lassagne
Rapporteurs / Rapporteuses : Takis Kontos, Gary Steele

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans ce manuscrit, nous présentons d'abord le bloc de construction moléculaire ultime pour les dispositifs de spintronique, les aimants à molécule unique (Chapitre 2). En particulier, nous nous concentrerons sur une molecule de TbPc2 et différentes approches pour sonder son aimantation à l'aide de détecteurs a base de nanotubes de carbone et de mécanismes de couplage différents (flux magnétique, couplage électronique et mécanique). Dans le but de construire un detecteur de torque supramoléculaire capable de sonder le moment magnétique d'un aimant moléculaire, nous allons décrire dans le chapitre 3 un candidat très prometteur, un système nanoélectromécanique (NEMS) à base d'un nanotube de carbone. Nous décrirons d'abord les avantages de NEMS à base de carbone par rapport aux résonateurs classiques à base de silicium. Par la suite, nous présenterons l'état de l'art des NEMS à base de nanotubes de carbone, en nous focalisant en particulier sur deux différents mouvements nanomécaniques, un mode de flexion transverse et un mode de compression longitudinal. Dans le chapitre 4, nous présenterons la mise en oeuvre expérimentale d'un detecteur de torque supramoléculaire basé sur NEMS à nanotubes de carbone et des aimants à molécule unique. Nous décrirons d'abord le processus de fabrication ultra propre et les étapes de la caractérisation d'un NEMS à nanotubes de carbone à températures ambiante et cryogénique. Nous allons ensuite démontrer un procédé de greffage d'une molécule aimants de TbPc2 sur un tel NEMS à nanotube de carbone, qui conserve à la fois les propriétés magnétiques de la molécule et les propriétés mécaniques du résonateur. Dans le chapitre 5, nous allons ensuite procéder à une étude systématique du mode de flexion transverse dans un NEMS à nanotube de carbone. Nous montrerons, que la dissipation de ce mode de vibration induit par l'effet tunnel d'électron unique à travers le nanotube de carbone (considére comme point quantique) dépend essentiellement de l'environnement électronique du nanotube, c'est à dire de la capacité, du couplage entre le nanotube de carbone et les electrodes métalliqes, du courant et de la température. Les résultats indiquent que l'on pourrait atteindre des facteurs de qualité de 10^6 ou plus en choisissant un diélectrique de grille appropriées et/ou en améliorant le couplage entre le nanotube de carbone et les electrodes, ce qui permettrait notamment d'augmenter la sensibilité du NEMS nanotubes de carbone par rapport à un torque magnétique générer par le retournement d'un aimant moléculaire. Dans le chapitre 6, nous démontrons la présence d'un mode de vibration longitudinal quantique dans un NEMS à base de nanotube de carbon fonctionnalisé avec des aimants moléculaires de TbPc2. Nous allons en particulier montrer que la nature quantique des deux systèmes, se traduit par un fort couplage entre le mode de compression longitudinal et l'aimantation d'un aimant moléculaire TbPc2 unique greffé sur la parois du nanotube de carbone. Ce fort couplage permet par la suite de détecter les états de spin nucléaire dans la molécule de TbPc2. Enfin, nous présenterons dans la conclusion de ce manuscrit quelques perspectives pour la détection et la manipulation (coherente) d'un seul spin (nucléaire) à l'aide d'un système mécanique quantique.