Transfert de l'anomalie isotopique portée par l'ozone dans la troposphère : vers une interprétation quantitative de la composition isotopique en oxygène du nitrate atmosphérique
Auteur / Autrice : | William C. Vicars |
Direction : | Joël Savarino |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences de l'univers |
Date : | Soutenance le 19/04/2013 |
Etablissement(s) : | Grenoble |
Ecole(s) doctorale(s) : | École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble, Isère, France ; 1992-....) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire de Glaciologie et Géophysique de l'Environnement |
Jury : | Président / Présidente : Erik Kerstel |
Examinateurs / Examinatrices : Christof Janssen, Michel Legrand | |
Rapporteurs / Rapporteuses : Matthew s. Johnson, Slimane Bekki |
Mots clés
Mots clés contrôlés
Résumé
L'ozone (O3) possède une anomalie isotopique en oxygène qui est unique et caractéristique, offrant ainsi un précieux traceur des processus oxydatifs à l'œuvre dans l'atmosphère moderne mais aussi ceux ayant eu lieu dans le passé. Cette signature isotopique, dénotée Δ17O, se propage au sein du cycle atmosphérique de l'azote réactif (NOx = NO + NO2) et est préservée lors du dépôt du nitrate (NO3-) présent dans l'aérosol, par exemple. L'anomalie isotopique en oxygène portée par le nitrate, Δ17O(NO3-), représente ainsi un traceur de l'importance relative de l'ozone ainsi que celle d'autres oxydants dans le cycle des NOx. Ces dernières années, de nombreux travaux de recherche ont été dédiés à l'interprétation des mesures de Δ17O(NO3-). Pourtant, les processus atmosphériques responsables du transfert de l'anomalie isotopique de l'ozone vers le nitrate ainsi que leur influence globale sur la composition isotopique du nitrate à différentes échelles spatiales et temporelles sont encore mal compris. De plus, la magnitude absolue ainsi que la variabilité spatio-temporelle de Δ17O(O3) sont peu contraintes, car il est difficile d'extraire de l'ozone de l'air ambiant. Cet obstacle technique contrecarre l'interprétation des mesures de Δ17O depuis plus d'une décennie. Les questions scientifiques posées au cours de ce travail de thèse ont été choisies dans le but de combler ces lacunes. Le principal outil d'analyse utilisé dans ce travail est la « méthode bactérienne » associée à la spectrométrie de masse en flux continu (CF-IRMS), une combinaison de techniques qui permet l'analyse de la composition isotopique totale du nitrate (c'est-à-dire, la mesure de δ15N, δ18O et Δ17O). Cette méthode a été employée pour l'analyse isotopique d'échantillons de nitrate obtenus pour deux cas d'études : (i) une étude des variations spatiales de la composition isotopique du nitrate atmosphérique sur la côte californienne à l'échelle journalière; et (ii) une étude du transfert du nitrate et de sa composition isotopique à l'interface entre l'air et la neige à l'échelle saisonnière sur le plateau Antarctique. En outre, cette méthode a été adaptée à la caractérisation isotopique de l'ozone via la conversion chimique de ses atomes d'oxygène terminaux en nitrate. Au cours de cette thèse, un important jeu de données rassemblant de nombreuses mesures troposphériques de Δ17O(O3) a été obtenu, incluant une année entière de mesures à Grenoble, France (45 °N) ainsi qu'un transect latitudinal de collecte dans la couche limite au-dessus de l'océan Atlantique, entre 50 °S to 50 °N. Ces observations ont permis de doubler le nombre de mesures troposphériques de Δ17O(O3) existantes avant cette thèse et d'accroître de manière conséquente notre représentation globale de cette variable isotopique essentielle. Enfin, les deux cas étudiés et présentés dans ce document révèlent des aspects nouveaux et inattendus de la dynamique isotopique du nitrate atmosphérique, avec d'importantes conséquences potentielles pour la modélisation de la qualité de l'air et l'interprétation de l'information isotopique contenue dans les carottes de glace prélevées aux pôles.