Diffusion de l'information dans les réseaux sociaux
Auteur / Autrice : | Cédric Lagnier |
Direction : | Éric Gaussier, Gilles Bisson |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 03/10/2013 |
Etablissement(s) : | Grenoble |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de Grenoble (Isère, France ; 2007-....) |
Jury : | Président / Présidente : Sihem Amer-Yahia |
Examinateurs / Examinatrices : Ludovic Denoyer | |
Rapporteurs / Rapporteuses : Emmanuel Viennet, Christine Largeron |
Résumé
Prédire la diffusion de l'information dans les réseaux sociaux est une tâche difficile qui peut cependant permettre de répondre à des problèmes intéressants : recommandation d'information, choix des meilleurs points d'entrée pour une diffusion, etc. La plupart des modèles proposés récemment sont des extensions des modèles à cascades et de seuil. Dans ces modèles, le processus de diffusion est basé sur les interactions entre les utilisateurs du réseau (la pression sociale), et ignore des caractéristiques importantes comme le contenu de l'information diffusé ou le rôle actif/passif des utilisateurs. Nous proposons une nouvelle famille de modèles pour prédire la façon dont le contenu se diffuse dans un réseau en prenant en compte ces nouvelles caractéristiques : le contenu diffusé, le profil des utilisateurs et leur tendance à diffuser. Nous montrons comment combiner ces caractéristiques et proposons une modélisation probabiliste pour résoudre le problème de la diffusion. Ces modèles sont illustrés et comparés avec d'autres approches sur deux jeux de données de blogs. Les résultats obtenus sur ces jeux de données montrent que prendre en compte ces caractéristiques est important pour modéliser le processus de diffusion. Enfin, nous étudions le problème de maximisation de l'influence avec ces modèles et prouvons qu'il est NP-difficile, avant de proposer une adaptation d'un algorithme glouton pour approcher la solution optimale.