Dualité homologique projective et résolutions catégoriques des singularités

par Roland Abuaf

Thèse de doctorat en Mathématiques

Sous la direction de Laurent Manivel.

Le président du jury était Christian Peskine.

Le jury était composé de Michel Brion, Stéphane Druel, Paolo Stellari.

Les rapporteurs étaient Alexander Kuznetsov, Daniel Huybrechts.


  • Résumé

    Soit X une variété algébrique de Gorenstein à singularités rationnelles. Une résolution des singularités crépante de X est souvent considérée comme une résolution des singularités minimales de X. Malheureusement, les résolutions crépantes sont très rares. Ainsi, les variétés déterminantielles de matrices anti-symétriques n'admettent jamais de résolution crépante des singularités. Dans cette thèse, on discutera de diverses notions de résolutions catégoriques crépantes développées par Alexander Kuznetsov. Conjecturalement, ces résolutions doivent être minimale du point de vue catégorique. On introduit dans ce manuscrit la notion de résolution magnifiques des singularités et on montre que tout variété munie d'une telle résolution admet une résolution catégorique faiblement crépante. On en déduit que toutes les variétés déterminantielles (carrées, symétriques et anti-symétriques) admettent des résolutions catégoriques faiblement crépantes. Finalement, on s'intéressera à des hypersurfaces quartiques issues du carré magique de Tits-Freudenthal. On ne peut pas construire de résolution magnifique des singularités pour de telles hypersurfaces, mais on montrera qu'elles admettent tout de même des résolutions catégorique faiblement crépantes des singularités. Ce résultat devrait s'avérer intéressant pour la construction de duales projectives homologiques de certaines Grassmaniennes symplectiques sur les algèbres de composition.

  • Titre traduit

    Homological Projective Duality and Categorical Resolution of Singularities


  • Résumé

    Let X be an algebraic variety with Gorenstein rational singularities. A crepant resolution of X is often considered to be a minimal resolution of singularities for X. Unfortunately, crepant resolution of singularities are very rare. For instance, determinantal varieties of skew-symmetric matrices never admit crepant resolution of singularities. In this thesis, we discuss various notions of categorical crepant resolution of singularities as defined by Alexander Kuznetsov. Conjecturally, these resolutions are minimal from the categorical point of view. We introduce the notion of wonderful resolution of singularities and we prove that a variety endowed with such a resolution admits a weakly crepant resolution of singularities. As a corollary, we prove that all determinantal varieties (square, as well as symmetric and skew-symmetric) admit weakly crepant resolution of singularities. Finally, we study some quartics hypersurfaces which come from the Tits-Freudenthal magic square. Though they do no admit any wonderful resolution of singularities, we are still able to prove that they have a weakly crepant resolution of singularities. This last result should be of interest in order to construct homological projective duals for some symplectic Grassmannians over the composition algebras.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Bibliothèques universitaires. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.