Analyse et contrôle des systèmes dynamiques polynomiaux
Auteur / Autrice : | Mohamed Amin Ben Sassi |
Direction : | Antoine Girard, Guillaume James |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 15/04/2013 |
Etablissement(s) : | Grenoble |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Jean Kuntzmann (Grenoble) |
Jury : | Président / Présidente : Jean-Pierre Raymond |
Examinateurs / Examinatrices : Anatoli Juditsky, Nacim Ramdani | |
Rapporteur / Rapporteuse : Jean-Luc Gouzé, Didier Henrion |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse présente une étude des systèmes dynamiques polynomiaux motivée à la fois par le grand spectre d'applications de cetteclasse (modèles de réactions chimiques, modèles de circuits électriques ainsi que les modèles biologiques) et par la difficulté (voire incapacité)de la résolution théorique de tels systèmes. Dans une première partie préliminaire, nous présentons les polynômes multi-variés et nous introduisons les notions de forme polaire d'un polynôme (floraison) et de polynômes de Bernstein qui seront d'un grand intérêt par la suite. Dans une deuxième partie, nous considérons le problème d'optimisation polynomial dit POP. Nous décrivons dans un premier temps les principales méthodes existantes permettant de résoudre ou d'approcher la solution d'un tel problème. Puis, nous présentons deux relaxations linéaires se basant respectivement sur le principe de floraison ainsi que les polynômes de Bernstein permettant d'approcher la valeur optimale du POP. La dernière partie de la thèse sera consacré aux applications de nos deux méthodes de relaxation dans le cadre des systèmes dynamiques polynomiaux. Une première application s'inscrit dans le cadre de l'analyse d'atteignabilité: en effet, on utilisera notre relaxation de Bernsteinpour pouvoir construire un algorithme permettant d'approximer les ensembles atteignables d'un système dynamique polynomial discrétisé. Une deuxième application sera la vérification et le calcul d'invariants pour un système dynamique polynomial. Une troisième application consiste à calculer un contrôleur et un invariant pour un système dynamique polynomial soumis à des perturbations. Dans le contexte de l'invariance, on utilisera la relaxation se basant sur le principe de floraison.Enfin, une dernière application sera d'exploiter les principales propriétés de la forme polaire pour pouvoir étudier des systèmes dynamiques polynomiaux dans des rectangles.