Thèse soutenue

Approche multi-échelle de la rupture des structures en béton : Influence des agrégats sur la longueur interne du matériau
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Huu Phuoc Bui
Direction : Frédéric DufourFrançois Faure
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 21/11/2013
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Equipe de recherche : Sols, Solides, Structures-Risques
Jury : Président / Présidente : Jean-Yves Delenne
Examinateurs / Examinatrices : Vincent Richefeu, Yves Berthaud
Rapporteurs / Rapporteuses : Christian La borderie, Arnaud Delaplace

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Pour l'analyse de durabilité et la conception économique (moins de matériel) de structures en matériaux ressemblant à du béton, la modélisation de la rupture est essentielle. Dans le cadre de la mécanique des milieux continus, une longueur interne est introduite dans les modèles non locaux pour remédier au problème lié à la sensibilité du maillage qui est une pathologie des modèles d'endommagement classiques , lorsqu'il s'agit de matériaux adoucissantes. Toutefois, l'évaluation de la longueur interne de hétérogénéités du matériau est toujours une question difficile, ce qui rend un problème obscur en utilisant des modèles non locaux. Nos travaux portent sur le développement d'un outil numérique basée sur la méthode des éléments en treillis (LEM) qui est un modèle discret pour la simulation et la prévision de la rupture des structures en béton. En utilisant le modèle de réseau à l'échelle mésoscopique, il n'est pas nécessaire d'introduire une longueur interne dans la loi de comportement, comme cela se fait dans les modèles non locaux, et nous pouvons affranchir ce paramètre en introduisant explicitement la mesotructure matérielle via une description géométrique. Basé sur l'outil numérique développé, nous avons étudié, en effectuant des tests numériques de traction uniaxiale, l'influence géométrique de la mesotructure du matériau ainsi que l'influence des conditions aux limites et de tailles d'échantillons (qui se traduisent par le gradient de sollicitation et le champ de rotation de matériel différents) sur le taille de la FPZ (fracture process zone) et sur la longueur caractéristique du matériau quasi-fragile homogénéisé. Ces études fournissent des recommandations/avertissements lors de l'extraction d'une longueur interne nécessaire pour les modèles nonlocaux à partir de la microstructure du matériau. Par ailleurs, les études contribuent un aperçu direct de l'origine mésoscopic de la taille FPZ et la longueur de la caractéristique du matériau, et par conséquent sur l'origine et la nature du comportement non linéaire du matériau. Ensuite, nous avons implanté le modèle du treillis dans la bibliothèque de SOFA développé par l'INRIA pour réaliser le couplage avec la méthode des éléments finis (MEF) afin de faire face avec des structures à grande échelle. Nous avons proposé un algorithme de couplage entre une approche macroscopique représentée par MEF et une approche mésoscopique infligés par LEM au sein d'une manière adaptative. Le modèle de couplage est d'abord utilisée pour valider l'approche multi-échelle proposée sur des simulations heuristiques. Et à long terme, il fournit un outil prometteur pour des simulations de grandes structures en matériaux quasi-fragiles de la vie réelle.