Séquestration minérale du CO2 dans les basaltes et les roches ultrabasiques : impact des phases secondaires silicatées sur le processus de carbonatation
Auteur / Autrice : | Olivier Sissman |
Direction : | Fabrice Brunet, Isabelle Martinez |
Type : | Thèse de doctorat |
Discipline(s) : | Géochimie |
Date : | Soutenance en 2013 |
Etablissement(s) : | Institut de physique du globe (Paris ; 1921-....) |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
La formation de carbonates constitue une option pérenne de séquestration géologique du dioxyde de carbone (CO2), susceptible de participer significativement à la réduction des émissions d’origine anthropique. Or, notre compréhension du mécanisme de carbonatation, ainsi que des blocages cinétiques rencontrés au cours de cette réaction chimique, n’est encore que peu développée. Bien qu’il existe de nombreuses études portant sur les cinétiques de dissolution des silicates basiques et de précipitation de carbonates, peu de travaux se sont intéressés à l’impact que la formation de phases secondaires non carbonatées pouvait produire sur ces cinétiques réactionnelles. C’est le parti pris par ce travail de thèse, dans la mesure où seule une bonne connaissance du mécanisme global de carbonatation pourra rendre ce procédé prédictible et efficace. Des données expérimentales de dissolution et carbonatation en réacteur fermé ont ainsi été obtenues sur des minéraux et roches pertinents. Dans une première partie, nous nous intéressons à la carbonatation de l’olivine, phase majeure des péridotites et mineure des basaltes, à 90°C et sous une pression de CO2 de 280 bars. L’altération d’olivine de San Carlos (Mg1. 76Fe0. 24SiO4) est inhibée par la formation d’un gel de silice en surface du minéral, dès lors que le milieu atteint la saturation vis de la silice amorphe (SiO2am). Le transport des espèces, qui se poursuit par un mécanisme de diffusion intra-solide à travers la couche de silice, devient l’étape limitante, ralentissant le processus de dissolution de l’olivine de San Carlos de cinq ordres de grandeur. En revanche, cette passivation des surfaces ne se produit pas lors de l’altération de calcio-olivine (Ca2SiO4), malgré la formation d’une couche de silice. Cette comparaison démontre que ce n’est pas la structure du silicate primaire qui contrôle les propriétés de transport de la silice, mais sa composition chimique. Le second volet se focalise sur la dynamique de formation des phases secondaires, en explorant les effets produits par l’ajout de ligands organiques, ainsi que par des variations de température. L’ajout de citrate à 90°C accélère bien la dissolution d’olivine de San Carlos d’un ordre de grandeur, et permet de libérer du magnésium en concentration suffisante pour former des carbonates avant que la silice ne précipite depuis la solution et passive les surfaces de l’olivine. Une expérience à 120°C en eau pure met en évidence le rôle de la valence du fer (et donc de la fugacité d’oxygène du système) sur les propriétés de transport de la silice, et le fait qu’un environnement réduit doit être nécessaire pour rendre viable la carbonatation de l’olivine. Enfin, une expérience similaire à 170°C montre, par la formation d’un phyllosilicate ferreux en remplacement de la silice, que la minéralogie et les propriétés passivantes des couches interfaciales évoluent avec la température. Le troisième volet de ce travail s’intéresse à la carbonatation d’une roche totale, un basalte provenant d’un site pilote de stockage de CO2 (Hellisheidi, Islande), composé de plagioclases calciques, de pyroxènes, d’oxydes de fer et d’olivines ferromagnésiennes. L’analyse minéralogique et chimique des produits de réaction à 150°C montre que c’est essentiellement l’olivine qui se carbonate. Cette étude confirme le rôle de la fO2 dans la formation de phases passivantes transitoires, et montre que le fer, lorsqu’il ne se situe pas dans le silicate, peut agir efficacement pour réduire le système et initier la formation de carbonates ferromagnésiens.