Caractérisation numérique couplée fluide-aérothermique/structure dédiée à partir de techniques aux frontières immergées
Auteur / Autrice : | Hong Quan Luu |
Direction : | Frédéric Plourde, Dominique Couton |
Type : | Thèse de doctorat |
Discipline(s) : | Energétique, thermique, combustion |
Date : | Soutenance le 18/12/2013 |
Etablissement(s) : | Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique |
Ecole(s) doctorale(s) : | École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018) |
Partenaire(s) de recherche : | Laboratoire : Institut Pprime / PPRIME |
Jury : | Examinateurs / Examinatrices : Marc Medale |
Rapporteur / Rapporteuse : Denis Clodic, Patrick Glouannec |
Mots clés
Résumé
La caractérisation des mécanismes de transfert entre un écoulement fluide incompressible et une structure solide constitue l’objectif principal de ce présent mémoire. A partir d’un solveur développé au sein de l’équipe, les travaux se sont plus particulièrement focalisés sur les stratégies de couplage avec un solveur solide, afin de traiter à la fois les échanges énergétiques et les mouvements de la structure. Dans notre approche, le modèle traitant la partie solide est le solveur ASTER et une attention particulière a été portée sur la stratégie de couplage à mettre en place.Dans la partie couplage fluide/structure, des cas de référence ont été réalisés avec une complexité croissante et l’intégration de la problématique des frontières immergées a été étudiée. En effet, alors que la modélisation avec des frontières immergées semble ne pas perturber les traitements côté fluide, les changements d’état de la topologie induit par le mouvement du solide dans le domaine de calcul génèrent des discontinuités dans les forces fluides estimées sur la structure. Ces dernières peuvent être plus ou moins amorties par l’introduction de techniques hybrides dans les traitements aux frontières immergées.Malgré ses quelques limitations, le solveur est capable de traiter de grande déformation assurant un fonctionne robuste et rapide pour la caractérisation des mécanismes fortement couplés. Pour le souligner, une application sur des écoulements anisothermes au sein d’une cavité représentant une cellule frigorifique a été réalisée dans le cadre du projet de recherche OSEO. A notre connaissance, les traitements réalisés ont pour la première fois permis de quantifier l’effet des ouvrants (dans les phases d’ouverture et fermeture des portes de la cellule) sur les écoulements et les échanges thermiques. Une telle modélisation permet alors de proposer des améliorations de la géométrie en cours d’analyse.