Modèles de croissance de plantes et méthodologies adaptées à leur paramétrisation pour l'analyse des phénotypes
Auteur / Autrice : | Fenni Kang |
Direction : | Paul-Henry Cournède |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance le 28/05/2013 |
Etablissement(s) : | Châtenay-Malabry, Ecole centrale de Paris |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine) |
Partenaire(s) de recherche : | Laboratoire : Mathématiques et informatique pour la complexité et les systèmes (Gif-sur-Yvette, Essonne ; 2006-....) - Mathématiques Appliquées aux Systèmes |
Jury : | Président / Présidente : Jeremie Lecoeur |
Examinateurs / Examinatrices : Paul-Henry Cournède, Mengzhen Kang, Hubert Vincent Varella, Véronique Letort | |
Rapporteur / Rapporteuse : Mengzhen Kang |
Mots clés
Mots clés contrôlés
Résumé
Les modèles de croissance de plantes cherchent à décrire la croissance de la plante en interaction avec son environnement. Idéalement, les paramètres du modèle ainsi défini doivent être stables pour une large gamme de conditions environnementales, et caractéristiques d'un génotype donné. Ils offrent ainsi des nouveaux outils d'analyse des interactions génotype X environnement et permettent d'envisager de nouvelles voies dans le processus d'amélioration génétique chez les semenciers. Malgré tout, la construction de ces modèles et leur paramétrisation restent un challenge, en particulier à cause du coût d'acquisition des données expérimentales. Dans ce contexte, le premier apport de cette thèse concerne l'étude de modèles de croissance. Pour le tournesol (Helianthus annuus L.), il s'agit du modèle SUNFLO [Lecoeur et al., 2011]. Il simule la phénologie de la plante, sa morphogenèse, sa photosynthèse, sous les contraintes de stress abiotiques. Une amélioration de ce modèle a été proposée : il s'agit du modèle SUNLAB, implémentant dans le modèle SUNFLO les fonctions d'allocation de biomasse aux organes, en utilisant les concepts sources puits du modèle GREENLAB [De Reffye et Hu, 2003]. Pour le maïs (Zea mays L.), le modèle CORNFLO, basé sur les mêmes principes que SUNFLO a également été étudié. Ces modèles permettent la différenciation entre génotypes. D'autre part, afin de paramétrer ces modèles, une méthodologie originale est conçue, adaptée au contexte de l'amélioration variétale chez les semenciers : la méthode MSPE (\multi-scenario parameter estimation'') qui utilise un nombre restreint de traits expérimentaux mais dans un grand nombre de configurations environnementales pour l'estimation paramétrique par inversion de modèles. Les questions d'identifiabilité, d'analyse de sensibilité, et du choix des méthodes d'optimisation sont discutées. L'influence du nombre de scénarios sur la capacité de prévision du modèle, ainsi que sur l'erreur d'estimation est également étudiée. Enfin, il est démontré que le choix des scénarios dans des classes environnementales différentes (définies par des méthodes de classification - clustering) permet d'optimiser le processus expérimental pour la paramétrisation du modèle, en réduisant le nombre de scénarios nécessaires.