Thèse soutenue

Dynamique transitoire des treillis de poutres soumis à des chargements impulsionnels
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yves Le Guennec
Direction : Didier Clouteau
Type : Thèse de doctorat
Discipline(s) : Mécanique dynamique des structures
Date : Soutenance le 04/02/2013
Etablissement(s) : Châtenay-Malabry, Ecole centrale de Paris
Ecole(s) doctorale(s) : École doctorale Sciences pour l'Ingénieur (Châtenay-Malabry, Hauts de Seine)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique des sols, structures et matériaux (Gif-sur-Yvette, Essonne ; 1998-2021)
Jury : Président / Présidente : Olivier Allix
Examinateurs / Examinatrices : Didier Clouteau, Mohamed Ichchou, Brian Mace, Anthony Gravouil, Eric Savin

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail de recherche est dédié à la simulation de la réponse transitoire des assemblages de poutres soumis à des chocs. De tels chargements entraînent la propagation d’ondes haute fréquence dans l’ensemble de la structure. L’énergie qu’elles transportent peut être dommageable pour son fonctionnement ou celui des équipements embarqués. Dans des études précédentes, il a été observé sur des structures expérimentales qu’un régime vibratoire diffusif tend à s’installer pour des temps longs. Le but de cette étude est donc de développer un modèle robuste de la réponse transitoire des assemblages de poutres soumis à des chocs permettant de simuler, entre autres, cet état diffusif. Les champs de déplacement étant très oscillants et la densité modale élevée, la simulation numérique de la réponse transitoire à des chocs peut difficilement être menée par une méthode d’éléments finis classique. Une approche utilisant un estimateur de la densité d’énergie de chaque mode de propagation a donc été mise en œuvre. Elle permet d’accéder à des informations locales sur les états vibratoires, et de contourner certaines limitations intrinsèques aux longueurs d’onde courtes. Après avoir comparé plusieurs modèles de réduction cinématique de poutre à un modèle de Lamb de propagation dans un guide d’ondes circulaire, la cinématique de Timoshenko a été retenue afin de modéliser le comportement mécanique haute fréquence des poutres. En utilisant ce modèle dans le cadre de l’approche énergétique évoquée plus haut, deux groupes de modes de propagation de la densité d’énergie vibratoire dans une poutre ont été isolés : des modes longitudinaux regroupant un mode de compression et des modes de flexion, et des modes transversaux regroupant des modes de cisaillement et un mode de torsion. Il peut être également montré que l’´evolution en temps des densités d’énergie associées obéit à des lois de transport. Pour des assemblages de poutres, les phénomènes de réflexion/transmission aux jonctions ont du être pris en compte. Les opérateurs permettant de les décrire en termes de flux d’´energie ont été obtenus grâce aux équations de continuité des déplacements et des efforts aux jonctions. Quelques caractéristiques typiques d’un régime haute fréquence ont été mises en évidence, tel que le découplage entre les modes de rotation et les modes de translation. En revanche, les champs de densité d’énergie sont quant à eux discontinus aux jonctions. Une méthode d’éléments finis discontinus a donc été développée afin de les simuler numériquement comme solutions d’´equations de transport. Si l’on souhaite atteindre le régime diffusif aux temps longs, le schéma numérique doit être peu dissipatif et peu dispersif. La discrétisation spatiale a été faite avec des fonctions d’approximation de type spectrales, et l’intégration temporelle avec des schémas de Runge-Kutta d’ordre élevé du type ”strong stability preserving”. Les simulations numériques ont donné des résultats concluants car elles permettent d’exhiber le régime de diffusion. Il a été remarqué qu’il existait en fait deux limites diffusives différentes : (i) la diffusion spatiale de l’´energie sur l’ensemble de la structure, et (ii) l’équirépartition des densités d’énergie entre les différents modes de propagation. Enfin, une technique de renversement temporel a été développée. Elle pourra être utile dans de futurs travaux sur le contrôle non destructif des assemblages complexes et de grandes tailles.